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ABSTRACT: Peptide amidination labeling using S-methyl
thioacetimidate (SMTA) is investigated in an attempt to
increase the number and types of peptides that can be detected
in a bottom-up proteomics experiment. This derivatization
method affects the basicity of lysine residues and is shown here
to significantly impact the idiosyncracies of peptide
fragmentation and peptide detectability. The unique and
highly reproducible fragmentation properties of SMTA-labeled
peptides, such as the strong propensity for forming b1
fragment ions, can be further exploited to modify the scoring
of peptide-spectrum pairs and improve peptide identification. To this end, we have developed a supervised postprocessing
algorithm to exploit these characteristics of peptides labeled by SMTA. Our experiments show that although the overall number
of identifications are similar, the SMTA modification enabled the detection of 16−26% peptides not previously observed in
comparable CID/HCD tandem mass spectrometry experiments without SMTA labeling.

KEYWORDS: mass spectrometry, proteomics, chemical modification, peptide fragmentation, amidination, peptide identification,
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■ INTRODUCTION

Over the past decade, mass spectrometry has become the
dominant platform in proteome research.1−5 Advances in
technology and algorithm development have recently enabled
deep proteome coverage of several model organisms with the
current draft of the human proteome reaching 92%.6 Shotgun
methods have played an important role in this field, although
technical and statistical limitations still prevent complete
coverage of identified protein sequences in a single experiment.
This shortcoming compromises our ability to detect many
biologically important events such as alternatively spliced
products7 or post-translational modifications.8

Shotgun proteomics experiments are normally carried out in
the following steps:9 proteins are extracted from lysed cells,
they are enzymatically digested, and the resulting peptides are
chromatographically separated and analyzed by mass spectrom-
etry. All of these steps still need to be perfected to improve
protein amino-acid sequence coverage. For example, numerous
papers have applied new enzyme digestion strategies for
proteome analysis.10−12 The development of new particle sizes
and coatings has led to improvements in chromatographic
resolution,13,14 and modifications in liquid chromatography
solvents have led to enhanced electrospray ionization of
peptides.15,16 Furthermore, peptides have been chemically
modified to enable N- and C-terminal fragments to be
distinguished and to modify ion fragmentation patterns.17,18

Typically, for unmodified tryptic peptides, the collision-
induced dissociation (CID) spectra are dominated by b- and y-

type fragment ions. The latter tend to be more abundant than
the former because b ions undergo secondary fragmentation
more readily than y ions, thus creating small fragments that may
not be detectable with the ion trap. Multiple strategies have
been developed to alter the ion fragmentation patterns to
improve peptide detectability by charge-remote or charge-
induced processes.19−21 The locations of modified groups in
peptides can directly influence the locations of protons and
thus influence the fragment ion patterns; in addition, altering
fragmentation by changing the basicity or acidity of residues
may lead to different peptide identifications by mass
spectrometry.18 Beyond the well-established database searching
methods, computational researchers have incorporated this
type of information into database searching and postprocessing
of search results.22−25

We have previously studied labeling techniques and provided
anecdotal evidence that peptide amidination leads to changes in
peptide basicity thereby affecting their ionizability26 and
fragmentation.27,28 This is because N-terminal amidination
leads to the formation of cyclic intermediates that enable
peptide bond cleavage, stabilizing of otherwise unobservable b1
ions and subsequent intense yN−1 ions.26−28 We have also
systematically investigated peptide fragmentation and detect-
ability.29−32 To follow up on that work, the present study
focuses on quantifying the impact of amidination on peptide
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fragmentation and detectability of a large number of peptides.
By exploiting the idiosyncrasies of peptides containing this
label, we have then developed a new data interpretation
algorithm to postprocess peptide assignments from standard
database search engines that ultimately lead to an improved
diversity of identified peptides and better proteome coverage.

■ METHODS

Sample Preparation

Escherichia coli K12 MG1655 cells were grown at 37 °C in Luria
Broth media for 16 h. Cells were harvested by centrifugation at
7000 rpm for 10 min using a JA10 rotor. The bacterial pellet
was resuspended in lysis buffer (25 mL of Spedding buffer A,
8.75 μL of 2-mercaptoethanol, and three protease inhibitor
tablets) and lysed by a French press for three consecutive cycles
at 10 000 PSI pressure at room temperature. Cell debris was
removed by centrifugation with a JA20 rotor at 13 000 rpm for
45 min. For each 100 μL of cell lysate, 200 μL of glacial acetic
acid and 33 μL of 1 M MgCl2 were added. The precipitated
RNA was removed after centrifugation at 14 000g on a table-
top Eppendorf microcentrifuge. Excess acid was removed by
filtration through a 3 kDa Amicon filter several times until the
pH reached 6. The pH was checked to be between 5 and 6,
which is suitable for strong cation exchange (SCX)
chromatography. The protein concentration was determined
by a Bradford assay using bovine serum albumin as a standard.

Strong Cation Exchange of Cell Lysate Proteins

Approximately 250 μg of whole cell lysate proteins were loaded
onto a 4.6 mm ID SCX chromatography column. The following
mobile phases were used: Mobile phase A: 6 M urea + 20 mM
acetic acid; Mobile phase B: 6 M urea + 20 mM acetic acid +
500 mM NaCl; pH 5. Proteins were eluted with a 90 min
piecewise gradient that was optimized for cell lysate protein
separation. Twenty fractions were collected using C4 trapping
columns using previously described instrumentation.33,34 Each
of the 20 fractions was desalted using 5% acetonitrile, 0.1%
trifluoroacetic acid (TFA) and then eluted using 90%
acetonitrile, 0.1% TFA. The fractions were dried in a vacuum
evaporator to remove the acid and acetonitrile. The samples
were then resuspended in 25 mM NH4HCO3 to prepare for
digestion.

Trypsin Digestion and Amidination

SCX-fractionated proteins were reduced by adding 10 mM
dithiothreitol (DTT) and incubating for 1 h at 60 °C. The
samples were allowed to cool to room temperature and
alkylated using 10 mM iodoacetamide. The reaction took place
in the dark for 1 h. Reduced and alkylated proteins were
digested using trypsin with a protein-to-enzyme ratio of 50:1
for 18 to 20 h at 37 °C. The resulting peptide samples were
divided into two parts; one was amidinated and the other was
used as a control. For the amidination reaction, S-methyl
thioacetamidate (SMTA) at a concentration of 43.4 μg/μL was
added to the peptides at a volume equal to the original volume
of the peptide solution. The reaction was allowed to proceed
for 1 h at room temperature. During this time, an equal amount
of SMTA solution was added to the reaction mixture every 15
min. After 1 h the amidination reaction was stopped by adding
5% TFA and 5% ACN. Excess SMTA was removed and the
samples were concentrated by Pierce PepClean C18 spin
columns. Peptides were eluted with 70% acetonitrile. Samples
were dried in a vacuum evaporator, reconstituted in 25 mM

NH4HCO3 buffer with 0.1% formic acid, and mass analyzed.
The control samples were also treated with 0.1% formic acid
before mass analysis.
LC−MS/MS

One set of the SCX-separated protein fractions was digested
and then analyzed with a Waters or Eksigent liquid chromato-
graph using a 1 mm C18 reversed phase column with a 120 min
gradient. The eluent was electrosprayed into a ThermoFisher
LTQ Orbitrap. By using its HCD capability, lower mass ion
fragments such as b1 ions could be detected that were not
typically observable with the LTQ ion trap alone. Likewise,
eight sets of amidinated and unlabeled digested fractions were
run on an Eksigent capillary liquid chromatograph and
ThermoFisher LTQ ion trap mass spectrometer. In these
cases a 100 min gradient was employed for each sample.
Database Searches

Acquired mass spectrometer RAW files were converted to mgf
files using the default parameters in ProteomicsTools.35

Converted mgf files were searched by MSGF+36 against the
E. coli reference proteome consisting of 4306 sequences
(Supporting Information) and the often-observed contaminant
proteins from the common Repository of Adventitious Proteins
(http://www.thegpm.org/crap). In total, the database con-
tained 4306 E. coli proteins and 116 contamination proteins as
well as the 4422 decoy reversed protein sequences to estimate
false discovery rate by target-decoy approaches. For the LTQ
ion trap data, the searches were carried out with a 1.5 Da
precursor tolerance and semitryptic selectivity. Maximum
charge was set at 5 and minimum charge at 1. Carbamido-
methyl cysteine was set as a fixed modification, while
methionine oxidation, peptide N-terminal amidination
(+41.027), and lysine amidination (+41.027) were all variable
modifications. For the Orbitrap/HCD data, the precursor
tolerance was set as 10 ppm, the instrument type is “High-res”
LTQ, and the fragment method is selected as “HCD”. The
other parameters were the same as with the LTQ instrument. It
is worth noting that MSGF+ does not accept a “fixed” fragment
ion tolerance. Instead, it utilizes mass errors in scoring; for
example, a peak with error 0.01 Da contributes higher score
than another with error 0.2 Da. MSGF+ also selects an
appropriate error model based on the ”-inst” parameter. For the
LTQ data, we used the default parameter of the instrument. For
Orbitrap/HCD, we set the parameter as “-inst 1”.
Normalization Method from Spectral Counting Label-Free
Quantification

We first obtained the raw spectral counts for each peptide
across all samples. Assuming equal peptide abundances in each
sample, we scaled the observed spectral count for each peptide
in a sample by the sum of the spectral counts for all peptides
detected in that sample. This information was used to interpret
the relative detectability of amidinated peptides.
Classification-Based Postprocessing

We developed a simple postprocessing procedure to predict the
probability that a PSM is a correct identification. The procedure
involved training a logistic regression model based on the
spectral and peptide features. The positive examples contained
the top PSM for every spectrum, whereas the negative examples
contained the second best PSM. Both groups were selected
from the top 10% of identifications, excluding those from the
decoy database, to ensure that the top PSM candidates were
correct. The predictor was then applied to top PSMs, and the
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target-decoy approach was used to select the score threshold
corresponding to the chosen FDR. The details of this workflow
are shown in Figure 3A.
The features used to represent peptide-spectrum matches

(PSMs) were exclusively related to the annotated fragmentation
spectra. They included: (1) precursor error (in ppm units), (2)
the charge of the matched spectrum, (3) a binary indicator of a
b1 ion match that was set to 1 if the intensity was higher than
5% of the maximum peak intensity, (4) b1 ion match intensity
relative to the maximum intensity, (5) a binary indicator of a b2
ion match that was set to 1 if the intensity was higher than 5%
of the maximum intensity, (6) b2 ion match intensity, (7) a
binary indicator of a yN−1 ion match that was set to 1 if the
intensity was higher than 5% of the maximum intensity, (8)
yN−1 ion match intensity, (9) b ion matches intensity other than
b1 and b2, (10) the fraction of total intensity of the b ion
matches other than b1 and b2, (11) the total intensity of the y
ion matches other than yN−1, and (12) the fraction of total
intensity of the y ion matches other than yN−1. In total, there
were 12 numerical features used for predictor development.
To estimate different feature combination effects, we

compiled the above-mentioned 12 features into three different
groups: b1-including, b1-excluding, and b1-only. The b1-including
feature set included all 12 features, the b1-excluding feature set
excluded b1, b2, and yN−1 features and the b1-only feature set
only kept the b1 feature, specifically only consisted of b1 and
yN−1. The b1-including and b1-excluding combinations kept the
precursor and charge features. The precursor and charge
features were excluded from the b1-only experiments.

Detectability of Amidinated Peptides

We developed another logistic regression classifier to study the
signatures of peptides whose detectability is increased after
SMTA labeling compared with their unlabeled counterparts.
The features used to represent the identified peptides in this
model were as follows: (1) a binary vector of length 20
representing the N-terminal amino acid, (2) a binary vector of
length 20 representing the C-terminal amino acid, (3) a length-
20 vector of amino acid compositions (relative frequencies),
(4) molecular weight of the peptide sequence, (5) aromaticity
of the peptide sequence,37 (6) hydrophobicity value based on
the KD scale,38 (7) hydrophobicity value based on the HW
scale,39 (8) hydrophobicity value based on EM scale,40 (9)

instability index of the peptide sequence,41 (10) flexibility of
peptide sequence,42 (11) isoelectric point of the peptide, (12)
fraction of residues in peptides that tend to form helix (amino
acids V, I, Y, F, W, L), turn (amino acids N, P, G, S), and sheet
(amino acids E, M, A, L) secondary structure, and (13) length
of the peptide sequence. In total, we engineered 89 numerical
features for the predictor development.

■ RESULTS

Workflow Overview

Figure 1 graphically displays the experimental protocol.
Proteins were extracted from the whole cell lysate of E. coli,
then fractionated into 20 traps by ion exchange chromatog-
raphy in order to reduce protein complexity. Tryptic digestion
of the contents of each trap was followed by a reversed-phase
HPLC−MS analysis. Two types of mass spectrometers were
employed to analyze the tryptic peptides. The first, an LTQ-
Orbitrap with HCD ion fragmentation, enabled the detection of
all fragment ions, including b1 ions. The second, a standalone
LTQ ion trap, had a low-mass cutoff that prevented the
observation of most b1 ions. The two types of instruments were
utilized to explore the overall characteristics of SMTA labeling
and its effect on peptide fragmentation.
Improving Peptide Identification by Incorporating b1 Ions

In previous work we demonstrated that peptide amidination
can significantly affect the mass distribution of fragment ions
generated by collisional activation.27,28 In fact, b1 and, to a
lesser degree, yN−1 ions become dominant features in MS/MS
spectra of labeled peptides. This is unusual because b1 ions are
relatively unstable28,43,44 and are often not observed when
unmodified peptide ions are fragmented. Their dominant
appearance in the fragmentation of amidinated peptides has
been explained by the creation of a cyclic intermediate
involving the amidino modification.27 This facilitates peptide
backbone cleavage in a manner analogous to the effect that
aspartic acid has in inducing charge-remote peptide fragmenta-
tion.45 A complication to exploiting this phenomenon is the
low-mass cutoff of ion trap instruments that can obviate the
observation of b1 ions. Our previous solution to this problem
was to employ a TOF mass analyzer that had no such
limitation. In the present experiments we utilize an Orbitrap
instrument with high-energy collisional dissociation (HCD) ion

Figure 1. Workflow overview. Proteins were extracted from whole cell lysate of E. coli and fractionated into 20 traps by ion exchange
chromatography. Tryptic digestion of the contents of each trap was followed by reversed-phase HPLC−MS/MS analysis. Two types of mass
spectrometers were employed to analyze the tryptic peptides.
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fragmentation to enable the detection of low b1 ion masses. We
are thus able to investigate how peptide ion fragment
distributions in a large-scale HCD experiment are affected by
the amidination modification and whether b1 ions can
specifically be exploited to improve peptide identifications.
The numbers of identified spectra in labeled and unlabeled

experiments were comparable. In orbitrap labeled experiments,
we acquired 172 370 raw spectra. By using target-decoy
approaches, based on 1% FDR filtering strategy, 17 575 PSMs
were identified and 176 PSMs were matched to the decoy
database with an MSGF+ E-value cutoff of 2.26 × 10−8 (i.e., 1%
FDR). In orbitrap unlabeled experiments, 171 664 raw spectra
were recorded and 17 176 PSMs were identified with 1% FDR
with an E-value cutoff of 2.16 × 10−8 (172 PSMs were matched
to the decoy database). In terms of unique peptide
identifications based on peptide sequence, not on charge states
or PTMs, 2408 unique peptides were identified in SMTA
experiments, 2847 were identified in unlabeled experiments,
1683 peptides were identified in both experiments, while 725
peptides were identified in the SMTA sample that were not
identified in the unlabeled sample (an increase of 25.5%).
Altered Fragmentation Pattern of Amidinated Pep-

tides. Of the 17 575 PSMs identified in SMTA experiments,
15 516 (88.3%) were identified as N-terminally amidinated
peptides. We focus on N-terminally amidinated peptides here
because the b1 ion is predominantly observed following N-
terminal amidination. When annotating spectra of both
amidinated and unlabeled samples, a b1 ion assignment was
considered to be credible only when the experimentally
observed intensity was at least 1% of the maximum intensity
in the spectrum. Among the 15 516 PSMs from the amidinated
data, 14 126 (91.0%) PSMs included a matched b1 ion. This
fragment was often intense, accounting on average for 87.9% of
the maximum peak intensity in the spectrum. In contrast, of the
17 176 PSMs from unlabeled peptide experiments, 17 007
(99.0%) were identified as nonamidinated and 169 (1.0%) were
identified as N-terminally amidinated or lysine-amidinated. We
attributed these 169 amidinated spectra to incorrect matches
(Supporting Information).
We also annotated other ions (b2, yN−1, yN/2) to compare

their relative intensities, where yN/2 indicates a middle y ion,
which dominates the intensity in unmodified peptides. We
demonstrate this significant difference in a violin plot (Figure

2). Violin plots are a combination of a box plot and a kernel
density plot.46 Figure 2 shows density of b1, b2, yN−1, and yN/2
ions in amidinated and unlabeled peptides. Specifically, b1 ions
contribute on average 70.1% of the maximum fragment ion
intensity in SMTA spectra. Conversely, only 2.3% of the
intensity of unmodified spectra are annotated as b1 ions. b2 also
shows an obvious difference: 4.6% of the intensity of SMTA
spectra are annotated as b2, compared with 21.5% of the
intensity in unlabeled spectra. It is noted here that this
significant intensity difference in b2 is the reason to exclude b2
from the feature set b1-excluding. Because of the ease of
detecting b1 ions, complementary yN−1 ions are also expected,
and this is validated in this statistical data. yN−1 ions have
average 10.8% intensity in SMTA labeled samples, while in
unmodified samples they only have 4.5% average intensity. The
average intensity of yN/2 ions is not significantly affected by
amidination. In unlabeled peptides they have an average
intensity of 28.5%, while in amidinated peptides their average
intensity is 24.3%. In conclusion, our fragmentation data
demonstrate that the SMTA did not significantly alter the y
series fragmentation ions or the b series ion intensities except
for b1, b2, and yN−1.

Reproducibility of Amidinated Peptides. We also
investigated the reproducibility of fragmentation patterns in
SMTA versus SMTA, unmodified versus unmodified, and
SMTA versus unmodified experiments. We annotated the
spectra by b series, y series, b-H2O series, y-H2O series, b-NH3
series, and y-NH3 series. For each unique peptide, we then
obtained a set of fixed-length vectors of dimension 6(N − 1),
where N is the length of the peptide sequence, of annotated ion
intensities (a fragment ion was assigned the intensity of 0 no
experimental peak could be matched within the m/z tolerance).
On the basis of these annotated fragment-ion vectors, we
calculated the Pearson correlation coefficients between each
pair of spectra identified as the same peptide. The average
correlation between all replicated SMTA spectrum-pairs was
0.94 with standard error 0.0016 over 2131 unique peptides that
were identified by at least two spectra, whereas the correlation
between replicated unmodified experiments, consistent with
our previous observations,29 was 0.92 with standard error 0.002
over 1805 unique peptides. Using the set of 1683 unique
peptides that were identified in both SMTA and unmodified
experiments, we found that the average correlation coefficient

Figure 2. Violin plot of b1, b2, yN−1, and yN/2 ions in amidinated and regular peptides. X axis indicates the fragment ions and the samples, and y axis
represents the intensity/maximum intensity ration. Red color represents b1, blue color represent b2, green is yN−1 ion, and black is the yN/2.
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between the SMTA and unmodified experiments was only 0.45
with standard error 0.0055 (the reproducibility for a set of
unrelated unmodified peptides of the same length was 0.42,
whereas the corresponding reproducibility for the SMTA
peptides was 0.54). The P value for the difference in means
between unmodified versus unmodified and SMTA versus
unmodified groups was zero. In summary, the high
reproducibility of SMTA spectra and a very low agreement
between SMTA and unmodified spectra provide evidence that
SMTA labeling results in altered yet reproducible peptide
fragmentation patterns.

Peptide-Spectrum Match Postprocessing

On the basis of the tendency of amidinated peptides to form b1
ions, we adopted a supervised approach, with features designed
to incorporate b1 ions into a postprocessing procedure (Figure
3A). Prior to classifier development, regular database searching
was performed that resulted in a ranked list of peptides for each
experimental spectrum. The top PSMs from most confident
10% of identifications were treated as positive examples, while
the second best PSMs from the corresponding identifications
were selected as negative examples (all decoy hits were
excluded). This method was designed to estimate the
probability that a PSM reported by a database search engine
is correct, for both SMTA and unlabeled experiments, for each
feature set (b1-including, b1-excluding, and b1-only; see
Methods). The three classifiers, based on logistic regression,
were used to better understand the importance of b1 ions for
classification.

Prediction Accuracy. To evaluate classification models, we
estimated the area under the Receiver Operating Characteristic
(ROC) curve of each classifier through 5-fold cross-validation.
The area under the ROC curves was estimated as 0.86 for b1-
only, 0.96 for b1-including, and 0.94 for b1-excluding for the
SMTA experiments and 0.80 for b1-only, 0.95 for b1-including,
and 0.94 for b1-excluding for the unlabeled experiments. Details
of the cross-validation results are shown in the Supporting
Information.

Improving Peptide Identification by Postprocessing.
After scoring each PSM, we set out to apply these scores in the
postprocessing procedure, as shown in Figure 3A. Given a
particular threshold cutoff τ, we obtained two groups of
peptides: one with the prediction score greater than or equal to
the cutoff τ, while the other group has scores lower than the
cutoff τ. Following this step, we applied a 1% FDR control
using target-decoy approach on each of these two groups
separately to obtain the final identifications. The underlying
rationale for this procedure is that the group with higher
prediction probability has a lower chance of having decoy
identifications. In Figure 3B, we plotted the MSGF+’s − log (E
value) as a function of the prediction score. Forward hits are
depicted in black and the decoy hits are in red. Figure 3B shows
that the density of decoy hits is very high in the area where the
prediction score is low. As the prediction scores gets higher, the
density of decoy hits becomes lower.
As shown in Figure 3C, the dependence of the number of

identifications on the probability cutoff τ varies for different
prediction models. Specifically, by using the b1-including model

Figure 3. (A) Prediction procedure. (B) XYPlot of the Evalue of MSGF+ as a function of prediction scores. (C) Number of identified spectra (y
axis) at different threshold τ (x axis) when the b1-including, b1-excluding, and b1-only models (represented by squares, triangles, and circles,
respectively) are used for the postprocessing of SMTA (purple) and unlabeled (blue) experiments.
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and the prediction threshold of τ = 0.4, ∼17.2% more PSMs are
identified at 1% FDR. The other models, b1-excluding and b1-
only, were only able to increase the number of identifications
by ∼12.0%. We also applied the same strategy on the unlabeled
peptide experiments. The results show that b1-only model has
no impact on the identification, while the other two (b1-
including and b1-excluding) exhibit similar trends, approaching
12% more identified PSMs. As expected, by incorporating the
dominant b1 and b1-related features in the postprocessing,
identifications could be significantly improved in SMTA MS/
MS experiments.
While the number of PSMs has been significantly improved

by our postprocessing approach, we also compared the unique
peptides identified by the original searching (MSGF+ results
without postprocessing, which will be referred to as “baseline”)
and prediction-based postprocessing. Figure 4 depicts Venn
diagrams that indicate the number of unique peptides in each of
these four data sets: UnlabelO represents the baseline IDs
(unique peptides) in the unlabeled data set, whereas UnlabelP

represents the IDs from the unlabeled data set after applying
postprocessing. Similarly, SMTAO and SMTAP represent the
baseline and the post-processing procedure applied to SMTA
experiments, respectively. Figure 4A shows the number of
unique peptides supported by at least one spectrum and Figure
4B shows the number of unique peptides supported by at least
two spectra. After the postprocessing of the SMTA data set,
227 unique peptides not seen in the unlabeled experiments
were identified, 134 of which had at least two PSMs supporting
each peptide. The number of identified unique peptides also
increased after applying postprocessing to the unlabeled data
set, with 258 peptides supported by one spectrum and 174
peptides supported by at least two spectra in the unlabeled data
set. Thus postprocessing increased the number of unique
peptides in both unlabeled and SMTA experiments, with a
slightly higher percent improvement in the SMTA experiments
(12.5% in SMTA vs 9.6% in unlabeled), suggesting that
incorporating the fragment ion information into the post-
processing is beneficial.

Figure 4. Four-way Venn diagram of unique peptide identifications in unlabeled (UnlabelO and UnlabelP representing the IDs before and after
postprocessing, respectively) and the SMTA (SMTAO and SMTAP representing the IDs before and after postprocessing, respectively) data sets. (A)
Number of unique peptides supported by at least one spectra and (B) number of unique peptides supported by at least two spectra.
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Peptide Identification in MS/MS Spectra without b1 Ions

To investigate whether amidination improves peptide identi-
fication even when b1 ions are not exploited, peptides were
analyzed using an LTQ ion trap mass spectrometer. Whole-cell
lysate protein mixtures digested by trypsin were separated into
two batches. One batch followed the regular experimental
procedure (as described in Methods), while the other was
amidinated by SMTA. Both peptide batches were analyzed
using LC−MS/MS, with CID-fragmentation in the ion trap.
These pairs of experiments were repeated eight times, resulting
in 16 different LTQ LC−MS/MS runs. Peptide identifications
obtained in amidinated and unlabeled experiments were
compared.
In total, 1 617 477 PSMs were identified from LTQ

experiments, from which there were 1621 decoy hits with an
E-value cutoff at 1.1 × 10−9; 196 unique peptides and 1503
proteins were identified under 1% FDR at the PSM level.
Analysis of E. coli whole-cell lysates showed that SMTA labeling
enabled the identification of different peptides: 5342 peptides
from nonamidinated experiments, 4068 peptides in SMTA
experiments, and 2648 in both experiments. Amidination thus
enabled the identification of 1420 (26.6%) additional peptides
in the cell lysates that were not identified without this
modification. Because the LTQ instrument has lower mass
resolution and thus gives less confident identifications, we
considered peptides supported by at least two PSMs to estimate
the increase in confidence by SMTA labeling. 4032 unique
peptides were identified (supported by two or more PSMs) in
unlabeled experiments, 3296 were identified in SMTA
experiments, and 2648 unique peptides were identified in
both experiments. 648 additional unique peptides were
identified in the amidination experiments, corresponding to a
16.1% improvement. Hence, we conclude that amidination of
tryptic peptides could alter both the fragmentation and the
detectability of peptides, resulting in the identification of
different peptides in MS/MS spectra.

Figure 5 further demonstrates the ability to detect different
peptides through SMTA. The number of unique peptides
identified in unlabeled experiments increases as more replicated
experiments were conducted, but the rate of increase goes
down gradually. On the contrary, the slope increases
considerably when SMTA data are included. Specifically, after
seven unlabeled experiments were combined, the eighth
unlabeled experiment was only able to identify 3% more
unique peptides, whereas one batch of SMTA experiment can
identify 7% additional unique peptides. On the basis of the
eight replicated experiments on unmodified peptides, we used a
logarithmic function to forecast the incremental number of
unique peptides with the increasing number of replicated
experiments. The fitted function is expressed as y = 1606.3·
ln(x) + 2225.6 (R2 = 0.9934) in which x represents the number
of replicated experiments and y represents the total number of
identified unique peptides. By using this logarithmic function
(Figure 5) to extrapolate additional increases in unlabeled
experiments, it is evident that SMTA enhances peptide
identification, while the replicated unlabeled experiments
approach saturation after a small number of experiments.

Quantity Change in Amidinated Peptides

We observed that between 16.1 and 26.6% different peptides
were identified in eight replicated LTQ experiments supported
by either one or two spectra. This limited increase is reasonable
because of the inability to detect b1 ions in the LTQ
instrument. In contrast, the Orbitrap instrument benefits
from the uniqueness of b1 ions. Nevertheless, even with the
LTQ instrument’s inability to detect b1 ions, amidination still
enabled more peptides to be detected. Altered ionization
efficiency and modulation of the fragment distribution are the
two sources of improvement. Moreover, the ionization
efficiency alteration contributed not only to the unique peptide
identifications but also to the spectral count of detected
peptides.
We further examined the peptides that exhibited significant

quantitative changes with SMTA compared with unlabeled

Figure 5. Number of identified unique peptides from eight unlabeled and eight SMTA experiments by MSGF+. The first eight points show the
unique peptides identified in eight unlabeled experiments, while the following eight points show the incremental identification results from eight
SMTA experiments. At point 16, 7196 were identified, whereas an estimated number of identified peptides after 16 unlabeled experiments is 6678, an
estimated 7.7% increase.
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experiments. These results are displayed as a heatmap in Figure
6, where the horizontal axis represents 16 (eight unlabeled and
eight amidinated) experiments and the vertical axis represents
identified unique peptides. The red color represents higher
quantity and the blue color represents lower quantity based on
spectral counts. We first normalized the label-free spectral
counts for each peptide (see Methods). Student’s t test was
then used to check whether the quantities were significantly
different in SMTA experiments and unlabeled experiments. The
P value of 0.05 was chosen as a cutoff to select the peptides,
resulting in 212 peptides showing higher quantities in SMTA
experiments and 119 peptides having higher quantities in
unlabeled experiments (Figure 6). Although both experiments
were loaded with equal amounts of proteins, different peptides
show different quantitative characteristics. Hierarchical cluster-
ing visibly distinguishes the SMTA versus unlabeled experi-
ments through the quantities of identified peptides, indicating
that amidination alters the detectability of some peptides.
When multiple experiments are run, this process diversifies the
set of identified peptides and prevents saturation related to
repeated experiments.
We next investigated the characteristics of peptides that were

differentially detected in the SMTA and unlabeled experiments.
On the basis of these selected peptides, we trained a logistic
regression classifier with the features, as described in Methods

to predict whether amidination increases or decreases their
detected quantity. The area under the ROC curve of this
classifier was 76%, which indicates that this is a good classifier
(see Supporting Information for the performance of the
classifier). We also examined the top ten features with greatest
contribution to classification accuracy. As shown in Table 1, the
N-terminal residues played a vital role in the classifier, with
residues G, E, D, and N having positive contributions and
residues V and F having negative contributions. As expected,

Figure 6. Heatmap of quantities of identified unique peptides in unlabeled and SMTA across 16 experiments. The x axis is the 16 experiments (8
unlabeled and 8 SMTA) and the y axis represents the identified unique peptides. The color reflects the normalized spectral counts quantity: blue
indicates lower quantity and red indicates higher quantity.

Table 1. Regression Coefficients of the Top Ten Features
Contributing to the Classifier of Peptides with Differentially
Detected Quantities in SMTA and Unlabeled Datasets

feature regression coefficient

N-terminal G 1.32
N-terminal V −1.08
N-terminal E 1.08
N-terminal F −1.04
C-terminal R 0.95
grand average of hydropathy (GRAVY) 0.91
hydrophibicity of second C-terminus amino acid −0.84
N-terminal D 0.82
hydrophibicity of first N-terminus amino acid −0.72
N-terminal N 0.71
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hydrophobicity-related characteristics of the peptides were
important features for the classifier.31 Because the amidinated
peptides are more basic than unlabeled peptides, this labeling
technique results in altered detectability of peptides, depending
on their amino acid composition and overall hydrophobicity.

■ SUMMARY AND CONCLUSIONS
Our prior experience led us to investigate the impact of SMTA
labeling of peptides on protein identification in high-
throughput shotgun proteomics. By introducing an amidino
group into the N-termini of peptides, their fragmentation
patterns and detectability have been significantly altered. We
observed that b1 ions are primarily and significantly enhanced,
which enables accurate recognition of peptide N-terminal
amino acids. Accordingly, the complementary yN−1 ions are
enhanced to a lesser degree, while b2 fragment ions are
diminished. Even though b1 and yN−1 ions are most significantly
intensified in the MS/MS spectra of amidinated peptides, the
intensities of yN/2 fragment ions are hardly affected. This is a
notable feature that can be exploited in targeted proteomics
such as selective reaction monitoring (SRM) for protein
quantification.
On the basis of the 16 replicated LTQ experiments in which

b1 ions were not detected, we found that SMTA modification
not only enables the identification of additional peptides but
also significantly changes the fragmentation patterns of some
peptides. We reasoned that the detectability of these peptides is
altered by the increased basicity of their N-termini. Under-
standing the characteristics of the peptides with altered
detectability could help to identify and quantify some peptides
that are unlikely to be observed in experiments with unlabeled
samples.
Finally, in this work, we also showed that integrating prior

knowledge of amidinated peptide fragmentation into the
computational postprocessing can substantially improve pep-
tide identification. Overall, we estimated that the postprocess-
ing procedure implemented in this study identifies 12.5%
additional peptides in SMTA experiments that are unlikely to
be identified otherwise.
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