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Peptide detectability is defined as the probability that a peptide is identified in an LC-MS/MS experiment
and has been useful in providing solutions to protein inference and label-free quantification. Previously,
predictors for peptide detectability trained on standard or complex samples were proposed. Although
the models trained on complex samples may benefit from the large training data sets, it is unclear to
what extent they are affected by the unequal abundances of identified proteins. To address this challenge
and improve detectability prediction, we present a new algorithm for the iterative learning of peptide
detectability from complex mixtures. We provide evidence that the new method approximates
detectability with useful accuracy and, based on its design, can be used to interpret the outcome of
other learning strategies. We studied the properties of peptides from the bacterium Deinococcus
radiodurans and found that at standard quantities, its tryptic peptides can be roughly classified as
either detectable or undetectable, with a relatively small fraction having medium detectability. We extend
the concept of detectability from peptides to proteins and apply the model to predict the behavior of
a replicate LC-MS/MS experiment from a single analysis. Finally, our study summarizes a theoretical
framework for peptide/protein identification and label-free quantification.
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Introduction

For a specific shotgun proteomics platform, collectively
including the steps from the sample preparation protocol to
peptide fragmentation and database search, peptide detectabil-
ity is defined as the probability of observing (or identifying) a
peptide from a standard sample mixture.1 Peptide detectability
can be approximately computed using machine learning
models given the peptide sequence and its parent protein,
where the training is typically performed using a set of model
proteins mixed at equal abundances. The predicted peptide
detectability has been used to address several problems in
shotgun proteomics, including protein inference2-4 and label-
free quantification.1,5

In practice, however, several issues emerge if one relies on
standard protein mixtures for detectability prediction. First,
peptide detectabilities trained for standard conditions, referred
to as standard detectabilities, cannot be directly used to predict
peptides that are likely to be observed in nonstandard samples
under diverse cellular conditions because the peptides in
nonstandard samples typically have unequal abundances. In
other words, detectability of a peptide in a complex sample,
referred to as the effective detectability,3,4 is not an intrinsic

property of the peptide because it depends on both the
physicochemical properties of the peptide/protein and its
abundance. Second, it may be impractical to provide a standard
sample mixture for every proteomics platform in order to
predict peptide detectabilities for this platform. Finally, stan-
dard protein mixtures are relatively simple, consisting of 10-50
proteins, and are often nonrepresentative of complex mixtures.
As a result, the detectability predictor trained using these data
may not be able to achieve high accuracy when applied to
complex biological samples.

In addition to the use of standard samples, several groups
have proposed to learn peptide detectabilities using identified
peptides from single or pooled biological samples.5-11 Although
these predictors benefit from the large data sets employed in
the training step, they may be affected by the unequal
abundances of identified peptides as protein and peptide
quantities can vary by orders of magnitude in biological
samples.12 For example, peptides with high standard detect-
ability and low abundance as well as those peptides with
relatively low standard detectability that are detected owing
to their high abundance may confuse the model during
training. Such predictors may appear to be designed to learn
effective detectability, but because effective detectability is not
an intrinsic property of a peptide, and proteins with a small
number of identified peptides may be removed during training,
it is not immediately obvious whether their output is closer to
either the standard or the effective detectability.
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To address these concerns, the goal of this work is to deepen
our understanding of both standard and effective detectability
as well as the properties of computational models used to learn
them. In addition, we seek to expand the use of detectability
in biological experiments. While standard detectability has been
a useful concept in protein inference and quantification, the
notion of effective detectability is inherently related to two
important concepts in proteomics: peptide repeatability and
peptide reproducibility.13 Peptide repeatability is related to the
technical replicates of the sample, when the same sample is
analyzed by the same operator using the same instrument in
consecutive runs. On the other hand, the reproducibility
analysis implies that the operator and/or the instrument, but
not the analytical platform or the protocols, are varied. Because
effective detectability is tied to both sample and proteomics
experimental protocol, including sample preparation, MS
platform, operator, and peptide identification software, it
provides the asymptotic limit of peptide repeatability as the
number of technical replicates approaches infinity. Thus,
accurate prediction of the effective detectability from complex
mixtures can directly estimate repeatability of the peptide and
provide an upper limit on peptide reproducibility using a single
run. As such, it may be incorporated into experimental design
in proteomics in order to improve confidence for those proteins
identified from a small number of peptide hits.

In practical terms, we present a novel iterative algorithm to
simultaneously learn standard and effective peptide detect-
abilities from complex samples. We provide evidence that this
algorithm is accurate, but more importantly, it improves
protein inference algorithms and enables estimation of the
number of protein identifications in replicated experiments.
It also facilitates estimation of the number of proteins in an
organism that may not be identifiable under realistic assump-
tions of their relative quantities. Finally, we analyze the practical
limits on the prediction of peptide detectability.

Materials and Methods

Iterative Learning of Peptide Detectabilities. We consider
a set of proteins reliably detected in a tandem mass spectrometry
experiment. For training purposes, a set of (tryptic) peptides from
these proteins is partitioned into the positive (identified) and
negative (not identified) sets. For simplicity, miscleaved, truncated,
degenerate, or post-translationally modified peptides are not
considered. We then train a computational model to approximate
both the standard and effective detectability of any given peptide
as well as protein relative quantities (abundances).

The training method consists of two components: (i) a
modular neural network that incorporates estimated protein
quantities as well as peptide sequence properties as input to
predict the standard and effective peptide detectabilities
simultaneously (Figure 1), and (ii) a procedure to estimate
protein abundances based on the predicted effective peptide
detectabilities and the confidence of the identified peptides.
The model training starts by assuming equal protein quantities
(i.e., qi ) 1 for each protein i) and then iterating the above-
mentioned steps until the model converges to a solution. To
train a network, we utilize protein quantities estimated in the
previous iteration, whereas to estimate protein quantities, we
utilize the neural networks trained in the previous step to
approximate the effective peptide detectabilities. The pseudo
code is shown in Algorithm 1.

Neural Network Architecture. We use two groups of features
as input to the network (Figure 1). The first set of 292 features

were computed solely from peptide sequences and the neigh-
boring residues in the proteins from which they were digested.
Similar to the model we described previously,1 these features
include amino acid compositions, peptide length, peptide mass,
N- and C-terminal residues, sequence complexity, and several
derived or predicted peptide properties such as aromatic
content, hydrophobicity, flexibility, hydrophobic moment, and
intrinsic disorder. The second group of features includes only
the estimated quantity of the protein of origin for the peptide.

For a specific peptide j from protein i, the prediction process
is carried out as follows: (i) all sequence-based features are
derived from its primary structure (including sequence of its
parent protein) and are input to the neural network together
with the quantity measure of protein i, (ii) its standard
detectability (dij

0) is approximated by using the subnetwork
involving only sequence-based features (as shown in the
dashed rectangle in Figure 1), (iii) the effective detectability dij

is calculated in the rightmost node in Figure 1 from the
standard detectability dij

0 and estimated quantity qi. The last
step is referred to as the quantity adjustment.

It is worth emphasizing that the standard detectability is
predicted by the subnetwork involving only peptide sequence
features (Figure 1). However, during the training process, only
effective detectabilities can be compared with the known
identification results and can be used to optimize the model
when the proteins in the sample are not at the same abun-
dance. Thus, both detectabilities are learned simultaneously.

Algorithm 1. The proposed algorithm for learning standard
and effective peptide detectabilities. Indices i and j represent
proteins and peptides, respectively; pij ) peptide j from protein
i; Pi ) the set of tryptic peptides from protein i; ANN ) the
artificial neural network as depicted in Figure 1; dij

0 ) standard
detectability estimate for pij; dij ) effective detectability estimate
for pij; qi ) relative quantity estimate for protein i.

Estimation of Peptide Quantities. We propose here a simple
approach to estimate protein quantity based on peptide
identification information only. The approach requires mini-
mum information from an LC-MS/MS experiment, i.e. neither
spectral counts nor ion intensity information is needed. Hence,
it can be applied to any type of input. Assuming that the
quantity of protein i in the sample is qi, the effective detect-
ability diJ of peptide j from this protein can be modeled as

where q0 is the peptide quantity at the standard condition and
dij

0 is the standard detectability of peptide j. Clearly, dij
0 ) dij(q0).

Because we ignore the influence of degenerate, miscleaved,
truncated, and post-translationally modified peptides, all iden-

dij(qi) ) 1 - (1 - dij
0)qi/q0 (1)

Peptide Detectability in MS/MS Proteomics research articles

Journal of Proteome Research • Vol. 9, No. 12, 2010 6289



tified peptides from protein i can be considered to have the
same abundance. Then, the prior expectation for the number
of identified peptides from protein i at quantity qi can be
expressed as

where Pi is the set of peptides in protein i (in a somewhat
abused notation where Pi represents both peptides and their
indices). On the other hand, we can compute the posterior
expectation of the number of identified peptides directly from
the peptide identification results using peptide detectability dij

as a prior probability.3,4 Therefore, we also have

where LRij is the identification likelihood ratio of peptide j,
defined as the ratio of the likelihood of a peptide being
identified and the likelihood of it not being identified. We note
that LRij can be computed from the peptide identification
scores (as reported by search engines) based on probabilistic
models such as PeptideProphet.14 When a peptide is identified
multiple times, the maximum value can be taken as its
identification score (likelihood). A derivation of eq 3 is provided
in Supporting Information. In the extreme case, if we consider
all identified peptides as true positives, we can assign LRij ) ∞
for identified peptides, and LRij ) 0 for nonidentified peptides.3,4

In this case, N1
i (qi) corresponds to a count of confidently

identified peptides. If we can approximate standard peptide
detectabilities dij

0 of peptides in Pi using a neural network,
then we can estimate the abundance of protein i by combining
the prior and posterior expectations from eqs 2 and 3 as

The new quantity qi in eq 4 can be obtained by a simple
bisection search algorithm until the difference between the left-
and right-hand side of the equation falls below a small
prespecified threshold. This approach is similar to the method

of moments commonly used in statistical parameter estima-
tion.15 An alternative strategy is the maximun likelihood (ML)
parameter estimation. We describe the ML approach in the
Supporting Information and show that it provides similar
solutions to those of eq 4.

Quantities qi are normalized by q0, which itself is selected
such that the average standard detectability in the set of
identified proteins equals 0.5. More specifically, the relative
quantity of the standard sample (q0) is computed by solving

where P ) ∪iPi is the set of all peptides and |P | is the
cardinality of P. Then, the new value of qi is computed as

We emphasize that the normalization step is critical for the
convergence of the iterative learning algorithm.

Protein Detectability. Here we extend the concept of peptide
detectability to protein detectability. Because peptide detect-
ability is defined as

we similarly define detectability of protein i as

where xi ) 1 indicates that protein i exists in the sample, qi is
the quantity of the protein, and yij ) 1 indicates that peptide
j from protein i is correctly identified based on the MS/MS
spectra (formally, xi and yij are indicator variables). Thus, ∑jyij

g c means that at least c peptides from protein i are correctly
identified. In this work, we consider c ) 1, and use di(q) to
represent di, 1(q). Generally, correct peptide identifications
cannot be guaranteed, thus c > 1 or protein dependent values
may be necessary.

Assuming conditional independence of peptide identifica-
tions given that the protein is present in the sample, we can
compute protein detectability di based on peptide detectabili-
ties dij. This assumption is reasonable because peptides from
the same protein typically do not elute at the same time and
hence do not compete for ionization and fragmentation. Given
the conditional independence condition, we have

We can further define protein standard detectability di
0 )

di(q0) ) 1 - ∏j(1 - dij
0) and obtain di(q) ) 1 -(1 - di

0)q/q0. This
detectability has the same form as peptide detectability shown
in eq 1.

Neural Network Training. The neural network was opti-
mized toward the maximum log-likelihood (cross-entropy)
measure

Figure 1. Neural network architecture used for simultaneously
predicting standard and effective peptide detectabilities. Indices
i and j represent proteins and peptides, respectively. Peptide/
protein sequence features and protein quantities qi are presented
to the model. The deterministic transformation in the rightmost
node ensures that the subnetwork in the dashed rectangle
estimates the standard detectability dij

0, whereas the final output
estimates the effective detectability dij.

N0
i (qi) ) ∑

j∈Pi

dij(qi) (2)

N1
i (qi) ) ∑

j∈Pi

LRij ·dij(qi)

LRij ·dij(qi) + (1 - dij(qi))
(3)

∑
j∈Pi

dij(qi) ) ∑
j∈Pi

LRij ·dij(qi)

LRij ·dij(qi) + (1 - dij(qi))
(4)

1
|P |

· ∑
i,j

dij
0 ) 0.5 (5)

qi r
qi

q0
(6)

dij(q) ) P(yij ) 1|xi ) 1, qi ) q) (7)

di,c(q) ) P( ∑
j

yij g c|xi ) 1, qi ) q) (8)

di(q) ) 1 - ∏
j

(1 - dij(q)) (9)
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where P is the set of all peptides, dij is the approximated
effective detectability of peptide j from protein i, and tj is the
target variable (tj ) 1 for identified peptides and tj ) 0 for
nonidentified peptides). Prior to the network training, we
applied a t test feature selection as described previously.1 Each
model was trained with 20 random initializations of neural
network weights to alleviate the problem of the local minimum
convergence, and up to 10 iterations were allowed for protein
quantity estimation (usually less than 5 iterations were suf-
ficient for convergence). Finally, to avoid overfitting and obtain
better generalization performance, we used the Bayesian
regularization algorithm to train the network.16

Model Comparison. The new iterative learning (IL) algorithm
was trained using proteins with two or more confidently
identified peptides. We refer to the model predicting effective
detectabilities as IL2, whereas its variant predicting standard
detectabilities (rightmost node in the dashed box in Figure 1)
is referred to as IL20. For comparison purposes, we also
implemented several simple methods for peptide detectability
prediction. The first method (M2) used all proteins with two
or more identified peptides for training without the protein
quantity adjustment. This was equivalent to assuming that all
proteins were mixed at equal abundances in the sample. The
second and third methods, similar to the one implemented in
APEX,5,10 excluded low abundance proteins from the training
set by selecting proteins with a large number of identified
peptides (i.e., g5 in model M5 and g10 in model M10). These
methods were aimed at exploiting smaller but more homoge-
neous training sets with respect to the quantities of identified
proteins. Technically, the learning algorithm for models M2,
M5, and M10 uses the subnetwork inside the dashed box in
Figure 1, whereas IL2 utilizes the full neural network. The final
method used for the comparisons was one we constructed
previously.1 This method, referred to as the standard sample
predictor (SSP), was trained on a standard sample of 12 model
proteins mixed at similar abundances. Although the training
set of the SSP model was guaranteed to be homogeneous with
respect to quantity, the performance of the method may suffer
due to the small size of the training data.

Data Sets. The data set used in this study includes 20
replicate LC-MS/MS analyses of a biological sample from the
bacterium Deinococcus radiodurans. D. radiodurans proteins
were extracted by four passes through a French press at 16000
psi, cleared by centrifugation at 13000g for 45 min. Duplicate
protein extracts were trypsin digested overnight in the presence
of 0.05% RapiGest SF (Waters, Milford, MA) acid-labile surfac-
tant and 25 mM ammonium bicarbonate after reduction and
alkylation with dithiothreitol and iodoacetamide. Trypsin was
deactivated and the acid-labile surfactant was cleaved with the
addition of 5 µL of 90% formic acid followed by incubation at
37 °C for 2 h and centrifugation at 13000g for 10 min. The
peptide samples were cleaned by solid phase extraction using
a Waters OASIS HLB cartridge and the manufacturer’s protocol.
After removing the solvent by speed-vac at 45 °C for 2 h, the
digest was suspended in 200 µL of solvent.

The 20 replicates comprised 2 × 10 experiments, i.e. the
original sample was split in two separate vials and digested with
trypsin. Peptides corresponding to at most 1.3 µg of protein
were loaded and separated using a 120 min gradient from 3%
to 40% acetonitrile at 250 nL/min using a nano 2DLC (Eksigent

Technologies, Dublin, CA) on a 15 cm, 75 µm capillary column
packed in-house with 5 µm C-18AQ particles (Michrom Biore-
sources, Auburn, CA). The eluting peptides were electrosprayed
into the source of a ThermoFinnigan (San Jose, CA) LCQ Deca
XP ion-trap mass spectrometer. A dynamic exlusion protocol
was used to limit the acquisition of each precursor mass to
twice over a 45 s window.

The peptides were identified using MASCOT,17 allowing for
variable oxidation of methionine and fixed carbamidomethyl-
ation at cysteine, with the false discovery rate (FDR) of 0.01
using the decoy D. radiodurans database. In total, the Deino-
coccus data included 1301 identified peptides (126 of charge
+1, 1022 of charge +2, and 277 of charge +3) at 1% peptide-
spectrum match (PSM) level FDR. At a 1% peptide (with charge)
level FDR, the data consisted of 1013 identified peptides (48 of
charge +1, 857 of charge +2, and 210 of charge +3). For the
training set used in the machine learning step, only proteins
with two or more unique and confidently identified (at 1% PSM
FDR) peptides were included. For these proteins, all peptides
were assumed to be unique to them. Note that the 20 replicates
of the Deinococcus sample are not technical replicates in the
strict sense because the sample was split prior to digestion and
analyzed using different LC columns. The data set is available
upon request.

Results

Comparison of Prediction Models. We assessed the perfor-
mance of several computational models in the task of predict-
ing proteotypic peptides7,18,19 in a complex mixture. In this
experiment, the first of the 20 Deinococcus runs was used for
training and quantity estimation, while the remaining 19 runs
were used for defining which peptides were proteotypic (pep-
tides unique to their parent protein, identified in g50% of the
experiments in which their parent protein is identified). Four
different detectability predictors were compared: (i) SSP model
for the detectability prediction of peptides of charge +2 trained
on a standard sample,1 (ii) predictor M2 trained on the proteins
with g2 peptide hits in a complex sample; (iii) predictors M5
and M10 trained on the highly abundant proteins (i.e., proteins
with g5 and g10 peptide hits, respectively) from a complex
sample, and (iv) the new predictor (IL2) trained using the
iterative learning procedure with quantity adjustment using
proteins with g2 peptide hits from a complex sample. Only
peptides whose m/z was within the instrument range were used
for training and accuracy estimation. Note that models IL2 and
M2 were trained on exactly the same data, whereas models M5
and M10 exploited only a subset of proteins. Approximately
40% of the proteins had g5 identified peptides, while only
about 10% had g10 identified peptides.

The receiver operating characteristic (ROC) curves for the
five predictors on the Deinococcus data set are shown in Figure
2. ROC curves are commonly used to visualize the true positive
rate (or sensitivity) against the false positive rate (or 1 -
specificity) for a binary classifier.20 The series of true/false
positive rates are obtained by varying the decision threshold
on the raw prediction outputs. The performance accuracies,
measured by the area under the ROC curve (AUC), of the
predictors were ranked as IL2 > M2 > M5 > SSP > M10 (Table
1). The SSP model was inferior to most algorithms because it
was trained on a small sample that also had a different sample
preparation procedure and instrument (Thermo Electron LTQ
linear ion-trap mass spectrometer) from the samples used in
this work. Surprisingly, M2 outperformed M5 and M10 models,

ce ) ∑
j∈P

[(1 - tj) log(1 - dij) + tj log(dij)] (10)
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which indicates that it may not be necessary to restrict the
training set to highly abundant proteins as in previous work.5,10

The iterative training method (IL2) further improved the
proteotypic peptide prediction over M2 (IL2 and M2 models
used exactly the same training set, which indicates the useful-
ness of the quantity adjustment).

In addition to providing an accurate effective detectability
predictor, our goal was to understand the nature of the
predictions of the remaining models trained on complex
samples. To achieve this, we compared the outputs of models
M2, M5, and M10 to the standard detectability predictor IL20

and effective detectability predictor IL2. Table 2 shows the
Pearson correlation coefficients between the outputs of these
models on the first replicate of the Deinococcus data.

The high correlation between the outputs of M2 and IL20,
together with the modest correlation between M2 and IL2,
suggest that M2 model learns standard peptide detectability.
This result is not completely unexpected given that effective
detectability cannot be predicted from sequence alone. Some-
what surprisingly, however, we find that the standard sample
predictor (SSP) was highly correlated with M10 model, despite
somewhat different analytical platforms. We believe this may
be caused by the effects of competition which are more
pronounced in the learning of IL2 and M2 models. These
models may be capturing the relationship between sequence

and retention times at which the competition for ionization is
the strongest for a particular group of peptides. In such a way,
the detectability of peptides in these high-competition regions
may be reduced. Thus, we believe that both SSP and IL20

models learn peptide detectability but that they may be
capturing different properties of peptides and analytical plat-
forms. In such a case, SSP models would be more appropriate
for the application in simple protein mixtures, whereas the IL20

model would more effectively capture properties of a system
with significant competition.

Effective Detectability As a Probability Estimate. While AUC
is a useful measure of classification performance, it only tests
for a correct ranking of predictions. This is unsatisfactory here
because detectability must also represent the prior probability
of peptide identification.3,4 Such applications require not only
the correct ranking but also that the predicted detectability be
an accurate estimate of the probability that the peptide will
be identified.

To assess this property, we tested whether the predicted
effective detectability correlates with the repeated identification
of the same peptide in multiple LC-MS/MS runs. In this
experiment, we used the first of the Deinococcus replicates
(PQ21) to train the detectability predictors, whereas the
remaining 19 analyses were used to calculate the relative
frequency of peptide identifications for all tryptic peptides
(both identified and nonidentified) from the identified proteins
in the first replicate. Figure 3 shows that the quantity-adjusted
detectability model (IL2) provides significantly better ap-
proximation (mean squared error mse ) 0.047; correlation
coefficient F ) 0.65) of the technical replicability of a peptide
than the standard detectability models (IL20: mse ) 0.29, F )
0.41; M2: mse ) 0.059, F ) 0.43; SSP: mse ) 0.22, F ) 0.28).
Note that the ideal detectability predictions should appear on
the dashed diagonal line in this diagram.

Better Detectability Prediction Improves Protein Inference.
An important application of peptide detectability is in protein
identification. Because effective detectability is the conditional
probability that a peptide is identified in an LC-MS/MS
experiment given that the protein(s) containing the peptides

Figure 2. ROC curves of predictions of proteotypic peptides for
the five detectability predictors. The detectability and the protein
quantities were estimated on the first replicate. The proteotypic
peptides were defined by the remaining 19 Deinococcus analy-
ses. The corresponding AUC values for each curve are shown in
Table 1.

Table 1. Performance Comparisons among Different
Detectability Predictors in Predicting Proteotypic Peptidesa

performance
measures

models

SSP M10 M5 M2 IL2

AUC 0.750 0.708 0.849 0.889 0.928
ce 1980.2 1227.8 1012.1 779.1 654.1
mse 0.240 0.124 0.102 0.078 0.065

a Models M2, M5, M10, and IL2 were trained on the Deinococcus data
generated in this study, while the standard sample predictor (SSP) was
developed in previous work.1 For all models, the first replicate was used
for training and the remaining 19 experiments to define proteotypic
peptides. The performance was evaluated based on the area under the
ROC curve (AUC), cross-entropy (ce), and mean square error (mse). The
difference between models M2 and IL2 is significant with the p-value P )
9.8 × 10-13, based on the likelihood ratio test with 111 degrees of
freedom (111 being the number of extra parameters used in IL2 but not
M2, i.e., the number of proteins included in training). The p-values for
the pairwise comparisons of the AUC values are shown in Table S1,
Supporting Information.

Table 2. Relationships among Different Models Measured by
the Pearson Correlation Coefficienta

models SSP M2 M5 M10 IL20 IL2 Rep

SSP 1.00 0.67 0.68 0.86 0.63 0.45 0.28
M2 1.00 0.88 0.66 0.91 0.69 0.43
M5 1.00 0.72 0.83 0.63 0.40
M10 1.00 0.60 0.44 0.27
IL20 1.00 0.68 0.41
IL2 1.00 0.65
Rep 1.00

a Models M2, M5, M10, and IL2 were trained on the first replicate of
the Deinococcus data; the standard sample predictor (SSP) was developed
in previous work on a somewhat different platform.1 IL20 represents the
standard detectability output from the IL2 model (Figure 1). All models
except IL2 were normalized to have the mean value of 0.5 using eq 5.
Rep stands for the repeatability model, where detactabilities were
approximated by the fraction of times a peptide (from an identified
protein in the first replicate) was identified in the remaining 19 analyses.
For the smallest correlation coefficient 0.27, the p-value for it not being
zero is 4.0 × 10-54 (t ) 15.80, two-tail t-test with degree of freedom 3108,
where 3110 is the sample size or number of peptides). The p-values for
correlation between M2 and IL2 (0.69) being smaller than the correlation
between M2 and IL20 (0.9) is ,1.0 × 10-10 (z ) 34.16, one-tailed Steiger’s
Z-test for correlated correlations, computed using FZT calculator (http://
psych.unl.edu/psycrs/statpage/comp.html)). The correlation between
M10 and SSP (0.86) vs correlation between M5 and SSP (0.68) are
different with p-value ,1.0 × 10-10 (Steiger’s z ) 24.40).
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exist at some known quantities, it can be naturally incorporated
into a Bayesian network model reflecting the peptide/protein
identification process.3,4

A straightforward question is the extent to which the
improved accuracy of detectability prediction influences pro-
tein inference. To address this question, we compared three
standard detectability models (M2, M5, and IL20) coupled with
the MSBayesPro algorithm3,4 on the first replicate of the
sample. To carry out probabilistic inference, we converted the
MASCOT scores of peptides to probabilities using PeptidePro-
phet.14 Peptides identified multiple times (at same or different
charge states) were represented by the maximum probability
values. For the training of detectability models (M2, M5, IL20),
only proteins with two or more identified peptides (at 1% FDR)
were used, but all proteins with one or more peptides identified
with probability >0.05 were included in protein inference.

We used the maximum a posteriori (MAP) decoding solution
and the marginal posterior probabilities3,4 for protein identi-
fication. By both criteria, we observed that the new algorithm
led to an improved number of protein identifications compared
to M2 and M5 models (Figure 4). Protein level FDR curves
showed similar results (Figure 4b). Together, these results

suggest that the improvements in detectability prediction by
including low quantity proteins and the use of quantity
adjustment during training are beneficial to protein inference
models.

Standard vs Effective Detectability. Figure 5a shows the
distribution of predicted standard and effective detectabilities
for all peptides in a protein database using the IL2 and IL20

models. We observe a U-shaped distribution for standard
detectability, indicating that a majority of peptides have either
high detectability (close to 1) or low detectability (close to 0),
whereas a relatively small fraction of peptides have medium
detectability. In contrast, the distribution of effective detect-
ability shows a high peak close to 0 and a steep decrease in
density as the detectability increases. The distribution of
effective detectability can be explained by the distribution of
standard detectability combined with the distribution of protein
quantities in biological samples.21

As indicated in the peptide quantity-detectability model (eq
1), we propose that quantity and standard detectability together
determine the detection probability of a peptide. To model this
effective detectability, or peptide repeatability, we employed a
simple approach for estimating protein quantity (hence peptide
quantity, because we ignored degenerate peptides or post-
translational modifications). Estimated protein quantities from
eq 3, however, correlate well (F ) 0.77) with those of normalized
spectral counts used in the APEX approach,5,10 with a linear
trend across the entire range of values (Figure 5b). This result
suggests that our simple quantity estimation, which corre-
sponds to a detectability-weighted peptide count, is reasonably
accurate.

Note that the five most abundant proteins identified in the
Deinococcus sample were 50S ribosomal protein L28 (NP_
296244.1), FraH-related protein (NP_285656), 30S ribosomal
protein S13 (NP_295848), cochaperonin GroES (NP_294329.2),
and 30S ribosomal protein S16 (NP_295018).

Empirical Limits of Detectability Prediction. The model of
peptide detectability is limited by several factors, including the
particular peptide-spectrum matching algorithm, data repre-
sentation, selection of the machine learning model, and the
assumption that all peptides in the sample are independent.
Here, we evaluated the empirical upper limits of the perfor-
mance of the peptide detectability predictors. A detectability
predictor (IL2) trained on the first Deinococcus analysis (PQ21)

Figure 3. Experimental peptide repeatability as a function of
peptide detectability. For each model, peptides are binned by
predicted detectability (bin size ) 0.1), and in each bin the
repeatability is averaged. Predictors were trained on the first
LC-MS/MS replicate (PQ21), and the repeatability is estimated
based on the remaining 19 analyses of the Deinococcus sample.
The mean square errors of each fit are shown in Table 1.

Figure 4. The effect of standard detectability predictions on protein identifications using two iterations of the MSBayesPro protein
inference algorithm.3,4 Two criteria were used: (a) the number of identified proteins through the MAP decoding of protein configuration,
(b) FDR curves using protein marginal posterior probability P as a score for each protein. Decoy Deinococcus database was used to
estimate FDR. Note that no decoy proteins were identified by the MAP decoding.
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was compared to another predictor (“Repeatability”) obtained
by averaging the identifications over the remaining 19 replicates
in the task of predicting identified peptides (Figure 6). Observe
that the Repeatability model is not a predictor in the traditional
sense, as it uses the empirical repeatability values (the fraction
of times a peptide was identified over the 19 experiments)
directly as predictive score and serves as an indicator of an
uppper limit for the effective detectability prediction. Both
predictors were also compared with the SSP model.

The AUCs of the three models suggest that the iterative
learning with quantity adjustment significantly improved pre-
diction of peptide detectability over standard detectability.
However, this model was significantly outperformed by the
empirical repeatability of peptide identifications. This suggests
that some of the assumptions used in our model may be
violated. For example, we have not explicitly modeled competi-
tion among coeluting peptides for ionization and fragmentation
in a complex proteome (eliminating this limitation was beyond
the scope of this study). In addition, a design of more
sophisticated machine learning models could further improve
the prediction.

Estimating Protein Identifications in Replicate Analyses.
To predict the cumulative protein identifications in replicated
LC-MS/MS experiments from a single analysis, it is necessary

to estimate the distribution of protein quantities in the Deino-
coccus sample. However, because many proteins do not have
any identified peptides, estimating quantities of individual
proteins based on a single experiment cannot be accomplished.
On the other hand, simply estimating the fraction of unidenti-
fied proteins at each quantity level is straightforward once the
distribution of protein quantities is estimated.

To accomplish this, let us first define the average effective
detectability of all proteins in D. radiodurans at quantity q and
calculate it as µd(q) ) ∑i ) 1

N di(q)/N, where N is the number of
proteins in D. radiodurans database (N ) 3167 proteins from
2 chromosomes and 2 plasmids, retrieved from GenBank on
08/27/2009). Using the definition of protein detectability from
eq 8, if the sample contains k different proteins (randomly
selected from the proteome) at quantity q, we expect k ·µd(q)
of these proteins to be identified in any single experiment.
Thus, given all the identified proteins at quantity level q, the
number of unidentified proteins at that same quantity level
can be easily estimated.

On the basis of previous work,5,22-24 we fit the observed
protein quantities {qi} from the first experiment to a log-normal
probability distribution

where parameters µ and σ were to be determined (note that
the log-normal distribution is similar to the power-law distri-
bution21).

The parameters of the distribution were estimated using the
maximum likelihood approach with two modifications. First,
each protein at quantity qi was assigned weight 1/µd(qi) to
compensate for the tendency of low quantity proteins to remain
unidentified (we refer to this weighting procedure as the bias
correction step). Second, due to the properties of analytical
platforms, proteins at quantities lower than the minimum
observed quantity qm will not be identified at all, resulting in a
left-truncated log-normal quantity distribution. Accordingly,
parameters µ and σ were estimated (µ̂, σ̂) by maximizing the
following log-likelihood function

Figure 5. (a) Distribution of values of predicted detectability based on the first LC-MS/MS analysis of the Deinococcus sample. (b)
Quantity estimation by peptide identification (ID), according to eqs 5-6, compared to the spectral counting SC/D method (in-house
reimplementation of the APEX method5,10

Figure 6. The upper limit of detectability prediction, demonstrated
by the ROC curves of the models predicting effective detectability
on the first analysis of the Deinococcus sample (false positive
range 0-0.5). Three models are compared: the standard detect-
ability predictor (SSP), the effective detectability predictor (IL2),
and the model computing the repeatability of peptide identifica-
tions by the proportion of the remaining 19 replicate experiments
in which a peptide was identified. The corresponding AUC values
are: 0.984 (Repeatability), 0.925 (IL2) and 0.740 (SSP).

f(q;µ, σ2) ) 1

qσ√2π
e-(ln q - µ)2/2σ2

(11)

log L ) ∑
i

1
µd(qi)

· log( f(qi;µ, σ2)

1 - Φ(log(qm) - µ
σ )) (12)
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where Φ( · ) is the cumulative density function of a normally
distributed random variable. Figure 7a shows the distribution
of original protein quantities, the bias-corrected distribution,
and the fitted distribution that maximizes log L.

To estimate the number of experimentally identified proteins
after multiple runs, we used a 5% peptide-level FDR to obtain
a list of identified peptides, which were then mapped to the
proteins from D. radiodurans. The number of correct protein
identifications is then estimated as the difference between the
number of proteins identified from the target database and the
number of proteins from the decoy database. Obviously, a
number of proteins identified by single peptides are false
identifications, while many other proteins identified by correct
peptide-spectrum matches were missing because those pep-
tides were not in the list of confident peptide identifications.

Given the standard protein detectability predictions {di
0} for

all proteins in D. radiodurans and estimated quantity distribu-
tion f(q, µ̂, σ̂2), the number of proteins identified after r
replicate experiments, n̂r, can be estimated as follows: (i)
sample quantities {q′i} from the distribution f(q, µ̂, σ̂2) for all
proteins in D. radiodurans proteome; (ii) compute the effective
detectability d′i for each protein i; (iii) denoting n1 as the
number of proteins identified in the first LC-MS/MS run,
calculate the expected number of proteins (identified or not)
in the sample as n ) n1(N)/∑(d′i); (iv) finally, calculate the
expected number of protein identifications after r replicate
experiments n̂r as

In Figure 7a, we show the estimated log-normal distribution
of protein quantities, while in Figure 7b, we compare the
predicted and observed number of protein identifications in
20 replicate analyses. Our primary concern was not whether a
particular protein was identified but rather the number of
identified proteins. Good agreement between the expected and
observed accumulation of identified proteins provides evidence

that the theoretical framework and assumptions used for
estimating peptide/protein detectabilities were reasonable and
can be effectively used in practice. Note that for the replicate
experiments, the peptides were first pooled together and then
a 5% peptide-level FDR cutoff was estimated and applied. By
doing this, the number of false identifications was prevented
from accumulating. This approach, however, may result in a
decreased number of protein identifications with a number of
pooled experiments.

The estimated quantity of proteins in the Deinococcus sample
can also be used to gain insight into the number of proteins
from D. radiodurans that can be identified by LC-MS/MS if
at sufficiently high quantity qM. We used the estimated quantity
distribution from the first run of the Deinococcus sample and
examined how many proteins would be identifiable in a single
run with the criteria that the effective detectability di(qM) g
0.5. Surprisingly, 99.7% of proteins would be identifiable if qM

were set to be the maximum estimated quantity among
identified proteins, while 94.8% of proteins would be identifi-
able with qM equal to an average of the observed quantities for
the identified ribosomal proteins (ribosomal proteins were used
to represent housekeeping proteins). This result is consistent
with the good proteome coverage already achieved for D.
radiodurans25 and a consensus that the dynamic range of the
cellular proteome and analytical platform are major challenges
in a proteomics experiment.26 Finally, Figure 8 shows the
average protein detectability as a function of proteins’ average
(tryptic) peptide length in D. radiodurans. Observe that proteins
with average peptide length of around 11 are most detectable.

Discussion

The goal of this study was to investigate the properties and
expand the use of peptide detectability in shotgun proteomics,
both with respect to statistical inference of peptide and protein
presence (and quantities) and experiment design. We devel-
oped a novel computational model for predicting standard and
effective detectabilities in a proteomics experiment. This itera-
tive algorithm is based on simultaneous learning of standard
and effective detectabilities coupled with a label-free quantity
estimation. The experiments performed in this work provide
evidence that the new algorithm provides practically useful

Figure 7. Predicting cumulative protein identifications in replicated LC-MS/MS experiments based on one survey experiment. (a)
Estimated quantity distribution of all proteins in the sample (identified or not) based on the first experiment PQ21. The bias corrected
values were obtained by weighting the observed values by the inverse of the average protein detectability 1/µd(q), while the log-
normal fit curve was obtained by maximum likelihood fitting using eq 12. (b) Estimated number of proteins identified (relative to
number of identifications in the first experiment, n1) after replicated LC-MS/MS experiments. Protein quantities were sampled from
the log-normal distribution estimated in (a) and the standard protein detectabilities were derived from standard peptide detectabilities
predicted using the IL20 predictor trained on experiment PQ21.

n̂r )
∑
i)1

N

[1 - (1 - d′i
r]

N
·n )

∑
i)1

N

[1 - (1 - d′i)
r]

∑ d′i
·n1

(13)
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detectability estimates. The results shown were obtained using
the first replicate analysis (PQ21) as the training set, however,
similar results were achieved when a different run was used
instead of PQ21 (Supporting Information; we note that the
variability of estimates is significantly influenced by the
outcome of the first replicate analysis). We have also experi-
mented with several other data sets from different proteome
samples and different platforms and observed similar trends
among the models (data not shown).

Although we provided evidence that the proposed detect-
ability learning algorithm and proteomics modeling approaches
are useful, there are several limitations worth further inversti-
gation. First, only fully tryptic peptides were considered
throughout this study. Extending the approach to semi/
nontryptic peptides and peptides with missed cleavages should
generally improve the applicability of peptide detectability.
Second, degenerate peptides that are present in multiple
proteins (e.g., splice isoforms, protein families) are not formally
addressed in this work. However, we believe that this is
primarily a problem of estimating protein/peptide quantity,
thus, if coupled with more powerful quantity estimation
algorithms, the effective detectability should be readily ap-
plicable to the proteomes with extensive homology. Finally, we
emphasize that the machine learning framework proposed here
for detectability learning should generally work with data from
subproteome samples. However, estimation of protein identi-
fications in replicate analyses should be carried out with
caution due to the lack of evidence that the log-normal protein
quantity distribution holds in subproteomes.

An important part of this work was to investigate the
behavior of previously proposed detectability models.1,5,7-11

We hypothesized that detectability models M2, M5, and M10,
which are trained on complex samples, may not be able to infer
standard detectabilities as a result of unequal protein abun-
dances in the training data. However, because the effective
detectability is not an intrinsic property of a peptide, such
models cannot be expected to accurately approximate peptide
repeatability either. Our experiments show that detectability
models trained on complex biological mixtures, in fact, are able
to approximate standard detectability. Such argument is sup-
ported by the fact that the outputs of IL20 and M2 models were
significantly correlated (Table 2) but also by the ability of the
M2 model to be quantity-adjusted (one step application of eq
4, postlearning) to achieve only slightly lower performance
accuracy than the IL2 model (data not shown). If the data set

is large enough, noise present in the training data will not
significantly influence models M2, M5, and M10. Their final
output can be seen as standard detectability for peptides when
the proteins are present at one fixed quantity, probably
corresponding to the average over all identified proteins. These
detectability models thus benefit from the ability of machine
learning models (neural networks in this work) to infer posterior
probabilities even in the presence of large amounts of class-
label noise.27

We also suggest that due to inherent differences in distribu-
tions of identified peptides over organisms and experimental
conditions, one can expect the best performance if the detect-
ability predictor is trained in-sample, that is, after the first set
of peptide identifications are made.10 Such predictors are likely
to outperform pretrained models (compare SSP model with M2,
M5, and M10). However, if the number of identified proteins
in an experiment is not sufficiently large, the pretrained models
can still be valuable and are also easier to use by experimental
scientists. We suggest that while using the pretrained approach,
only the standard detectability predictions dij

0 be transferred.
Protein quantities, which are sample specific, should be
estimated from the sample of interest (e.g., using a one-step
quantity calculation from eq 4), thus enabling the estimation
of effective detectabilities.

Accurate estimation of standard detectability was shown to
have important applications in computational MS/MS pro-
teomics. Previously, we used standard detectability to predict
peptideslikelytobetruncated28 andimproveproteininference.2-4

Here, we showed that an improvement in detectability predic-
tion directly results in increased number of protein identifica-
tions. However, an accurate estimation of detectability can also
result in improved label-free protein quantification,1,5 better
identification of post-translational modifications, or more
effective experiment design. Our work demonstrates that it is
possible to accurately estimate, from a single analysis, the
behavior of a replicated experiment with respect to achieving
a saturation point in protein identifications. Such estimates
were previously possible only for organisms for which protein
quantities were roughly known and under relatively standard
cellular conditions.29

Interestingly, we observed a U-shaped distribution of the
standard detectability and L-shaped distribution of the effective
detectability in a complex sample. This indicates that peptides
in a protein at standard quantity can be roughly divided into
detectable and nondetectable, with a relatively small fraction
of peptides with medium detectability. Also, we suggest that a
transformation from a U-shaped to the L-shaped distribution
is the result of large variability in protein quantity and,
potentially, competition. This has implications for proteotypic
peptide identification which are typically defined as peptides
frequently observed (i.e., >50% of the time) in the experiments
where their parent proteins were identified.7,18,19

We showed that a peptide detectability predictor can ac-
curately approximate peptide repeatability and thus can be
used for the prediction of proteotypic peptides from the
biological samples of species that have not been extensively
studied. We note that the symmetric shape of the standard
detectability distribution is influenced by an assumption that
the average detectability over all peptides is 0.5. In our
experience (data not shown), it is reasonable to estimate that
the average standard peptide detectability was close to 0.5.
Other mean values may skew this distribution to the left (if
average detectability is lower than 0.5) or to the right, but it

Figure 8. Average protein detectability in D. radiodurans pro-
teome as a function of the average tryptic peptide length in
proteins. Note that -log(1 - dj

0) is a monotonic transformation
of standard protein detectability dj

0, where j is the index for
proteins.
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always results in some peptides being detectable and others
undetectable.

Finally, in this work, the concept of peptide detectability was
extended to proteins in order to study detectability of cellular
proteomes and also guide MS/MS proteomics experiments. As
shotgun proteomics typically requires multiple replicated
experiments, our work can provide informatics support that is
necessary for such approaches from the increased power in
protein identification and quantification to understanding the
behavior of replicate analyses. We believe that the concept of
peptide detectability is key to a Bayesian formalism in the
analysis of tandem mass spectrometry data. Thus, better
understanding of its definitions, strategies of learning, as well
as its use are important for experimental and computational
communities.
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