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ABSTRACT

The protein inference problem represents a major challenge in shotgun proteomics. In this
article, we describe a novel Bayesian approach to address this challenge by incorporating the
predicted peptide detectabilities as the prior probabilities of peptide identification. We pro-
pose a rigorious probabilistic model for protein inference and provide practical algoritmic
solutions to this problem. We used a complex synthetic protein mixture to test our method and
obtained promising results.
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1. INTRODUCTION

In shotgun proteomics, a complex protein mixture derived from a biological sample is directly analyzed

via a sequence of experimental and computational procedures (Aebersold and Mann, 2003; McDonald

and Yates, 2003; Kislinger and Emili, 2005; Swanson and Washburn, 2005). After protease digestion,

liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) is typically used to separate

and fragment peptides from the sample, resulting in a number of MS/MS spectra. These spectra are subse-

quently searched against a protein database to identify peptides present in the sample (Marcotte, 2007;

Nesvizhskii, 2007). Many peptide search engines have been developed, among which Sequest (Yates et al.,

1995), Mascot (Perkins et al., 1999), and X!Tandem (Craig and Beavis, 2004) are commonly used. However,

after a reliable set of peptides is identified, it is often not straightforward to assemble a reliable list of proteins

from these peptides. This occurs because some identified peptides, referred to as the degenerate peptides, are

shared by two or more proteins in the database. As a result, the problem of determining which of the proteins

are indeed present in the sample, known as the protein inference problem (Nesvizhskii and Aebersold, 2005),

often has multiple solutions and can be computationally intractable. Nesvizhskii et al. (2003) first addressed

this challenge using a probabilistic model, but different problem formulations and new solutions have

recently been proposed as well (Nesvizhskii and Aebersold, 2005; Alves et al., 2007; Zhang et al., 2007).

Previously, we introduced a combinatorial approach to the protein inference problem that incorporates

the concept of peptide detectability, i.e., the probability of a peptide to be detected (identified) in a standard

1School of Informatics and 2Department of Chemistry, Indiana University, Bloomington, Indiana.
3Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai,

China.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 16, Number 8, 2009

# Mary Ann Liebert, Inc.

Pp. 1–11

DOI: 10.1089/cmb.2009.0018

1



proteomics experiment, with the goal of finding the set of proteins with the minimal number of missed

peptides (Alves et al., 2007). As in the other combinatorial formulations (Zhang et al., 2007), the parsimony

condition was chosen only for convenience reasons, without theoretical justification. Furthermore, parsi-

monious formulations often lead to the minimum cover set problem, which is NP-hard. Thus, heuristic

algorithms following greedy (Alves et al., 2007) or graph-pruning strategies (Zhang et al., 2007) are used to

solve the protein inference problem without performance guarantee.

In this article, we address protein inference by proposing a novel Bayesian approach that takes as input a

set of identified peptides from any peptide search engine, and attempts to find a most probable set of proteins

from which those identified peptides originated. We considered two Bayesian models in our approach. The

basic model assumes that all identified peptides are correct, whereas the advanced model also accepts

the probability of each peptide to be correctly identified in the sample by spectrum matching. Compared with

the previous probabilistic models, such as ProteinProphet (Nesvizhskii et al., 2003), both of our models differ

in two key aspects. First, our approach incorporates the prior probability of peptide identification (Tang et al.,

2006), since it has been recently shown that even among the peptides that belong to the same protein, some

peptides are commonly observed, while some others are not (Tang et al., 2006; Lu et al., 2007). This results in

the fact that the peptides not identified by peptide search engines may have significant impact on the final

solution. Second, we devise a rigorious model to incorporate dependences between the identification of

peptides in the computation of the protein posterior probabilities and adopt a Gibbs sampling approach to

estimate them. The results of this study provide evidence that our models achieve satisfactory accuracy and

can be readily used in protein identification.

2. METHODS

To illustrate the challenge of protein inference, we define the protein configuration graph (Fig. 1a), i.e., a

bipartite graph in which two disjoint sets of vertices represent the proteins in the database and the peptides

from these proteins, respectively, and where each edge indicates that the peptide belongs to the protein. We

emphasize that the protein configuration graph is independent of the proteomics experiment, and thus can

be built solely from a set (database) of protein sequences. Therefore, in constrast to the bipartite graph used

previously (Zhang et al., 2007), where only the identified peptides and the proteins that contain those

peptides were represented, our model also considers the non-identified peptides. A protein configuration

graph is partitioned into connected components, each representing a group of proteins (e.g., homologous
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FIG. 1. (a) A protein configuration graph consisting of two connected components. (b) Basic Bayesian model for

protein inference, in which peptides are represented as a vector of indicator variables: 1 (gray) for identified peptides,

and 0 (white) for non-identified peptides. (c) Advanced Bayesian model for protein inference, in which each peptide is

associated to an identification score (0 for non-identified peptides). Sizes of circles reflect prior/posterior probabilities.
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proteins) sharing one or more (degenerate) peptides. If there are no degenerate peptides in the database,

each connected component will contain exactly one protein and its peptides. In practice, however, the

protein configuration graph may contain large connected components, especially for protein databases of

higher animals or those containing closely related species.

Given that the protein configuration graph can be interpreted as a Bayesian network with edges pointing

from proteins into peptides, it is straightforward to show that protein inference can be addressed separately

for each individual connected component. In this approach, the peptide identification results are first

mapped to the protein configuration graph. We use a vector of indicator variables (y1, . . . , yj, . . . , yn),

referred to as the peptide configuration, to denote a set of identified peptides. Given the peptide config-

uration, the protein configuration graph can be simplified by removing proteins containing no identified

peptides. We note, after the simplification, one connected component in the original protein configuration

graph may be partitioned into several small components. A connected component is called trivial if it

contains no identified peptides. Clearly, in this case protein inference is simple—none of the proteins

should be present in the sample. Therefore, the protein inference problem can be reduced to finding the

most likely protein configuration (x1, . . . , xi, . . . , xm) by analyzing non-trivial components only. In the

basic model, all identified peptides are assigned equal probabilities (¼ 1) (Fig. 1b), whereas in the advanced

model different probabilities are considered for different identified peptides depending on the associated

identification scores (s1, . . . , sj, . . . , sn) (Fig. 1c). Notation and definitions used in this study are summa-

rized in Table 1.

2.1. Basic Bayesian model

The basic model can be considered as a special case of the advanced model, in which the probabilities rj

for different peptides j are limited to 0 (for non-idenfitied peptides) or 1 (for identified peptides). We first

describe the basic model that formalizes the protein inference problem illustrated above, and will extend it

to the advanced model in the next section. In practice, the basic model can be used if the probabilities rj are

not provided, while the identified peptides are obtained at a stringent false discovery rate (FDR), e.g., 0.01,

by either a heuristic target-decoy search strategy (Elias et al., 2005; Zhang et al., 2007; Elias and Gygi,

2007) or by probabilistic modeling of random peptide identification scores (Keller et al., 2002; Wu et al.,

2006; Bern and Goldberg, 2007). In the next section, we extend this basic model to a more realistic model

in which we incorporate different probabilities for different identified peptides that are estimated based on

the peptide identification scores. When the probabilities of identified peptides are available, we expect the

advanced model should perform better than the basic model.

Let us now consider m proteins and n peptides from these proteins within a non-trivial connected

component of the protein configuration graph. Each protein i is either present in the sample or absent from

it, which can be represented by an indicator variable xi. Therefore, any solution of the protein inference

problem corresponds to a vector of indicator variables, (x1, . . . , xm), referred to as a protein configuration.

Given the set of identified peptides from peptide search engines (peptide configuration (y1, . . . , yn)), our

Table 1. Notations and Definitions

Notation Definition

(1, . . . , i, . . . , m) m proteins within a non-trivial connected component of the protein configuration graph

(x1, . . . , xi, . . . , xm) protein configuration: indicator variables of proteins’ presences

(1, . . . , j, . . . , n) all n peptides from m proteins being considered

(Z11, . . . , Zij, . . . , Zmn) indicator variables of peptide j belonging to protein i if peptide j is a peptide from

protein i, Zij¼ 1; otherwise Zij¼ 0

(y1, . . . , yj, . . . , yn) peptide configuration: indicator variables of peptides’ presences if peptide j is present,

yj¼ 1; otherwise yj¼ 0

(s1, . . . , sj, . . . , sn) assigned scores of peptides if peptide j is not identified, sj¼ 0

(r1, . . . , rj, . . . , rn) probabilities of peptides being correctly identified also the estimated probabilities of

peptides’ presences

(LR1, . . . , LRj, . . . , LRn) likelihood ratio between peptides’s presences and absences

(d11, . . . , dij, . . . , dmn) prior probabilities of peptides to be identified from proteins if Zij¼ 1, dij¼ the

detectability of peptide j from protein i; otherwise, dij¼ 0
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goal is to find the maximum a posteriori (MAP) protein configuration, that is the configuration that

maximizes the posterior probability P(x1, . . . , xmjy1, . . . , yn),

(x1, . . . , xm)MAP¼ argmax(x1, ..., xm)P(x1, . . . , xmjy1, . . . , yn) (1)

Using Bayes’ rule, the posterior probability can be expressed as

P(x1, . . . , xmjy1, . . . , yn)¼ P(x1, . . . , xm)P(y1, . . . , ynjx1, . . . , xm)P
(x1, ..., xm) [P(x1, . . . , xm)P(y1, . . . , ynjx1, . . . , xm)]

¼
P(x1, . . . , xm)

Q
j [1�Pr(yj¼ 1jx1, . . . , xm)]1� yj Pr(yj¼ 1jx1, . . . , xm)yjP

(x1, ..., xm) P(x1, . . . , xm)
Q

j [1�Pr(yj¼ 1jx1, . . . , xm)]1� yj Pr(yj¼ 1jx1, . . . , xm)yj

(2)

where P(x1, . . . , xm) is the prior probability of the protein configuration. Assuming the presence of each

protein i is independent of other proteins, this prior probability can be computed as

P(x1, . . . , xm)¼
Y

i

P(xi) (3)

Pr(yj¼ 1jx1, . . . , xm) is the probability of peptide j to be identified by shotgun proteomics given the protein

configuration (x1, . . . , xm). Assuming that different proteins contribute independently to the identification

of a peptide, we can compute it as

Pr(yj¼ 1jx1, . . . , xm)¼ 1�
Y

i

[1� xiPr(yj¼ 1jxi¼ 1, x1¼ . . . ¼ xi� 1¼ xiþ 1¼ . . . ¼ xm¼ 0)] (4)

where Pr(yj¼ 1jxi¼ 1, x1¼ . . . ¼ xi� 1¼ xiþ 1¼ . . . ¼ xm¼ 0) is the probability of peptide j to be identi-

fied if only protein i is present in the sample. As we previously showed, for a particular proteomics platform

(e.g., LC-MS/MS considered here), this probability, referred to as the standard peptide detectability dij, is

an intrinsic property of the peptide (within its parent protein), and can be predicted from the peptide and

protein sequence prior to a proteomics experiment (Tang et al., 2006). Combining equations 2–4, we can

compute the posterior probabilities for protein configurations as

P(x1, . . . , xmjy1, . . . , yn)¼
Q

i P(xi)
Q

jf[
Q

i (1� xidij)]
1� yj [1�

Q
i (1� xidij)]

yjgP
(x0

1
, ..., x0m)

Q
i P(x0i)

Q
jf[
Q

i (1� x0idij)]
1� yj [1�

Q
i (1� x0idij)]

yjg
(5)

Sometimes, we are also interested in the marginal posterior probability of a specific protein i to be

present in the sample, which can be expressed as,

P(xijy1, . . . , yn)¼
X

x1, ..., xi� 1, xiþ 1, ..., xm

P(x1, . . . , xmjy1, . . . , yn) (6)

2.2. Advanced Bayesian model

The basic model described above requires that all identified peptides have equal probability (¼ 1) of

being correctly identified. Here we relax this assumption by introducing into the model a peptide identi-

fication score sj for each peptide j, which is the output of the peptide search engines. We assume the peptide

identification score is highly correlated with the probability of a peptide being correctly identified and their

relationship (denoted by rj¼Pr(yj¼ 1jsj)) can be approximately modeled using probabilistic methods

adopted by some search engines such as Mascot (Perkins et al. (1999)) or post-processing tools such as

PeptideProphet (Keller et al. (2002)). Our goal is to compute P(x1, . . . , xmjs1, . . . , sn) by enumerating all

potential peptide configurations

P(x1, . . . , xmjs1, . . . , sn)¼
X

(y1, ..., yn)
[P(x1, . . . , xmjy1, . . . , yn)P(y1, . . . , ynjs1, . . . , sn)]

¼
X

(y1, ..., yn)

P(x1, . . . , xm)

P(s1, . . . , sn)
P(y1, . . . , ynjx1, . . . , xm)P(s1, . . . , snjy1, . . . , yn)

� � (7)

Assuming that sj is independent of the presences of the other peptides (i.e. (y1, . . . , yj� 1, yjþ 1, . . . , yn))

for each peptide j, we have
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P(s1, . . . , snjy1, . . . , yn)¼
Y

j

P(sjjyj) (8)

and applying Bayes’ rule, we have

P(s1, . . . , snjy1, . . . , yn)¼
Y

j

P(yjjsj)P(sj)

P(yj)
¼
Y

j

(1� rj)
(1� yj)r

yj

j P(sj)

P(yj)
(9)

where the marginal probability of a peptide j can be computed as

P(yj)¼
X

(x1, ..., xm)
[P(yjjx1, . . . , xm)P(x1, . . . , xm)]

¼ 1�
Y

i
(1�Pr(xi¼ 1)dij)

h iyj Y
i
(1�Pr(xi¼ 1)dij)

h i(1� yj) (10)

Combining these equations, we can compute the posterior probability of protein configurations as

P(x1, . . . , xmjs1, . . . , sn)¼
P

(y1, ..., yn)

�Q
i P(xi)

Q
j

�
[
Q

i (1� xidij)]
1� yj [1�

Q
i (1� xidij)]

yj
(1� rj)

(1� yj)r
yj
j

P(yj)

��

P
(x01, ..., x0m)(y1, ..., yn)

�Q
i P(x0i)

Q
j

�
[
Q

i (1� x0idij)]
1� yj [1�

Q
i (1� x0idij)]

yj
(1� rj)

(1� yj)r
yj
j

P(yj)

�� (11)

If we do not assume any prior knowledge about the protein presence in the sample, we can set

Pr(xi)¼ 0.5 in equations 5 and 11. In practice, prior knowledge, such as the species which the sample is

from, the number of candidate proteins, and known protein relative quantities or protein families that are

likely present in the sample, can be directly integrated into our Bayesian models. In the result section, we

demonstrate this by applying Pr(xi¼ 1)¼ T / N to all candidate proteins, where T is the estimated number

of actual proteins in the sample, and N is the total number of candidate proteins in the database containing

at least one identified peptide (Table 2).

Similarly, as in the basic model, we can also compute the posterior probability of a specific protein

i present in the sample as

P(xijs1, . . . , sn)¼
X

x1, ..., xi� 1, xiþ 1, ..., xm

P(x1, . . . , xmjs1, . . . , sn) (12)

and the marginal posterior probability of a peptide j as

P(yjjs1, . . . , sn)¼
X

(x1, ..., xm;y1, ..., yj� 1, yjþ 1, ..., yn)
[P(x1, . . . , xmjy1, . . . , yn)P(y1, . . . , ynjs1, . . . , sn)] (13)

2.3. Adjustment of peptide detectabilities

An adjustment of the predicted peptide detectabilities is necessary when applying them here, since the

predicted standard peptide detectabilities (denoted as d0
ij) reflect the detectability of a peptide under a

standard proteomics experimental setting, in particular, under fixed and equal abundances (i.e. q0) for all

Table 2. Number of MS/MS Spectra, Candidate Peptides, Candidate Proteins,

and True Proteins in Each of the Three Sigma49 Datasets

Experiment No. of spectra

No. of candidate

peptides

No. of candidate

proteins

Estimated nos.

of true proteins

No. of proteins

for detectability

training Protein prior

1 5297 739 514 55 25 55/514

2 5155 684 481 55 22 55/481

3 5034 626 393 50 19 50/393

The peptides with Peptide-Prophet probability >0.05 were considered as candidate peptides, and the proteins containing at least one

candidate peptide were considered as candidate proteins. The number of true proteins is estimated by a preliminary run of the Bayesian

inference algorithm. Protein prior represents the prior probabilities of proteins used in the Bayesian model.
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proteins (Tang et al., 2006). Assuming that the abundance of protein i in the sample mixture is qi instead of

q0, the effective detectability of peptide j from this protein should be adjusted to

dij¼ 1� (1� d0
ij)

qi / q0

(14)

Although we do not know qi explicitly, since the probability of a peptide j being correctly identified is

given by rj (or yj for basic model), we can estimate qi by solving the equation
P

j dij¼
P

j Zijrj for a specific

protein i. We note that this adjustment method may immediately lead to a new approach to absolute protein

quantification (Lu et al., 2007). However, we will address the evaluation of its performance in our future

work. Here, our goal is to utilize it to adjust the predicted standard peptide detectabilities based on the

estimated protein abundances.

2.4. Gibbs sampling

Given a protein configuration graph, the peptide detectabilities (dij), and the probabilities of peptides

being correctly identified (rj), the posterior distribution of protein configurations can be computed directly

from equations 5 or 11, depending on which Bayesian model is used. This brute force method, which has

computational complexity of O(2m) (for the basic model) or O(2mþn) (for the advanced model), is very

expensive and only works for small connected components in the protein configuration graph.

Gibbs sampling is a commonly used strategy to approximate a high-dimensional joint distribution that is

not explicitly known (Geman and Geman, 1984; Liu, 2002). We adopted this algorithm to achieve the

optimal protein configuration with the MAP probability. The original Gibbs sampling algorithm considers

one individual variable at a time in the multi-dimentional distribution. It, however, often converges slowly

and is easily trapped by local maxima for long time. Several techniques have been proposed to improve the

search efficiency of Gibbs sampling algorithm, such as random sweeping, blocking, and collapsing (Liu,

2002). Because in our case each variable xi to be sampled has small search space (i.e., {0,1}), we applied

Algorithm 1 Gibbs sampler for protein inferencing using the advanced model

Input : Probabilities of correct peptide identification (r1, . . . , rn) and peptide

detectabilities {dij}

Output :MAP protein configuration (x1, . . . , xm)

Initialize (x1, . . . , xm) and (y1, . . . , yn) randomly;

MaxPr  0;

while not converge do

c a random number between 0 and t;

(v1, . . . , vc) a random c-block from (1, . . . , m);

d  t� c;

(w1, . . . , wd) a random d-block from (1, . . . , n);

Compute normalizing factor T  Value(x1, ..., xm ;y1, ..., yn)
F(xv1

, ..., xvc , yw1
, ..., ywd

)
;

#Note: for the 1st iteration, set T  1;
for all (xv1

, . . . , xvc
) and (yw1

, . . . , ywd
) do

Compute F(xv1
, . . . , xvc

; yw1
, . . . , ywd

);

memorizing: Value(x1, . . . , xm, y1, . . . , yn) F · T ;

if Value(x1, . . . , xm, y1, . . . , yn)4MaxPr then

MaxPr  Value(x1, . . . , xm, y1, . . . , yn);

(xMax
1 , . . . , xMax

m ) (x1, . . . , xm);

(xMax
v1

, . . . , xMax
vc

) (xv1
, . . . , xvc

);

(yMax
1 , . . . , yMax

n ) (y1, . . . , yn);

(yMax
w1

, . . . , yMax
wd

) (yw1
, . . . , ywd

);
end

end

Sample (x0v1
, . . . , x0vc

; y0w1
, . . . , y0wd

) from normalized F(xv1
, . . . , xvc

; yw1
, . . . , ywd

);

(xv1
, . . . , xvc

) (x0v1
, . . . , x0vc

);

(yw1
, . . . , ywd

) (y0w1
, . . . , y0wd

);

end

Report MaxPr, (xMax
1 , . . . , xMax

m ), and compute marginal probabilities;
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the block sampling technique in our Gibbs sampler algorithm (Algorithm 1). Without increasing the

computational complexity, we adopt a novel memorizing strategy that keeps a record of all (as well as the

maximum) posterior probabilities (and the corresponding protein configurations) among all configura-

tions we evaluated during the sampling procedure, and report the maximum solution in the end. The

memorized posterior probabilities are also used to calculate the marginal posterior protein probabilities in

equations 6, 12, and 13. We sketched the block Gibbs sampling algorithms and the memorizing approach in

Algorithm 1 for the advanced Bayesian model. A similar but simplified Gibbs sampling algorithm can be

used for the basic Bayesian model.

In these two algorithms discussed here, we have the following:

F(xv1
, . . . , xvc

, yw1
, . . . , ywd

)¼
Y
i2v

P(xi)
Y

j2N þ (v)[w

P(yjjxN � (j))
Y
j2w

P(yjjsN þ (j))

P(yj)
(15)

where Nþ(.) represents the set of peptide nodes in the protein configuration graph that the current protein

node (.) is linked, whereas N�(.) represent the set of protein nodes that the current peptide node (.) is

linked; v¼fv1, . . . , vcg and w¼fw1, . . . , wdg are the indeces of blocks for protein x and peptide y,

repectively. For the basic model, the set of blocks w is empty (or d¼ 0). Hence, P(yjjxN � (j)) can be

computed by equation 4, and Pr(yj¼ 1jsN þ (j)) are set to rj.

2.5. Datasets

We used three datasets from replicated LC/MS/MS analysis of a synthetic mixture of 49 standard

proteins (called Sigma49), which was made available by Sigma Corporation for the assessment of protein

analysis protocols. Tandem mass spectra of all three experiments were downloaded from the website at

Vanderbilt University (Zhang et al., 2007).

3. RESULTS

As in Zhang et al. (2007), prior to the protein inference, the MS/MS spectra acquired from Sigma49

sample in one LC/MS experiment were searched against the human proteome in Swiss-Prot database

(version 54.2). PeptideProphet (Keller et al., 2002) was then used to assign a probability score for each

identified peptide. To compute the peptide detectability, we trained separate predictors (neural networks)

for each of three experiments. For each experiment, a protein is included in the training set only if (1) it

contains at least two confidently identified peptides (i.e., PeptideProphet probability >0.95); and (2) it does

not share any identified peptide (with PeptideProphet probability >0.05) with other proteins. The positive

(detected) and negative (non-detected) training sets were composed of peptides from these proteins with

PeptideProphet probability >0.90 and <0.10, respectively. The remaining peptides (with PeptideProphet

probability between 0.1 and 0.9) were not used for training. To incorporate the changes of detectability due

to the variation of protein abundances, we employed the quantity adjustment method described in previ-

ous section to obtain the standard peptide detectability, which is presumably equivalent to the detectability of

a peptide at the standard abundance. After the predictors were trained, we used them to compute the standard

detectabilities for all tryptic peptides from all proteins, which were subsequencely used in the Bayesian

inference algorithms. Table 2 shows the details of the training datasets for each of the three experiments.

To set the probability rj for each peptide identification, we first converted the PeptideProphet probability

into a likelihood ratio LRj: LRj¼PrPP(yj¼ 1)/[c · (1�PrPP(yj¼ 1))], where PrPP (yj¼ 1) is the Peptide-

Prophet probability, and c is the ratio between the prior probabilities of the peptide’s presence and absence;

and then converted LRj to rj: rj¼ LRj · dj/(LRj · djþ (1� dj)). For both models, we used block size 3 in the

Gibbs sampler.

In the extended abstract of this work presented at RECOMB meeting (Li et al., 2008), we have compared

the protein inference performances of the basic and advanced Bayesian models with that from Protein-

Prophet (Nesvizhskii et al., 2003) and the minimum missed peptide (MMP) approach we proposed pre-

viously (Alves et al., 2007) on the set of peptides identified using þ2 precursor ions in Sigma49 sample.

We concluded that the advanced Bayesian model gives better results than the basic model and previous

published methods. We also showed the adjustment of peptide quantity and the incorporation of expected

number of proteins into the protein prior estimation can improve the performance of protein inference. Here

PROTEIN INFERENCE PROBLEM 7



we extended our model in order to utilize all identified peptides regardless of their charge states. We note

that all details of our model remain the same except that the detectability of a peptide is redefined as the

probability of identifying this peptide as þ1, þ2 or þ3 charged ions instead of þ2 charged ions only in our

previous model. We implemented the advanced Bayesian model accordingly with estimated protein priors

(see the rightmost column in Table 2) and compared its results with ProteinProphet.

Sigma49 protein mixture sample were made by mixing 49 human proteins. However, repeated pro-

teomics experiments confirmed the existence of many contaminant proteins in the mixture. In the three

replicated LC/MS data sets, we analyzed here, 46 out of the 49 proteins were identified by at least one

peptide with PeptideProphet probability >0.05 (see the leftmost column in Table 3). Table 3 shows the

comparison between the results of ProteinProphet and that of the Bayesian inference model. It can be

observed that Bayesian inference model outperforms ProteinProphet by reporting more true positive pro-

teins, less false positive proteins and less false negative proteins in each of the three datasets.

As mentioned in the methods section, the Bayesian inference model can also be used to calculate a

posterior probability for each identified peptide (equation 13). This probability can be viewed as a re-

evaluation of the possibility of each peptide identification being correct, taking into account not only the

quality of the matching between the peptide and the MS/MS spectrum, but also the relationship among

peptides (and their matching with the corresponding MS/MS spectra) from the same protein. Therefore, it

should be a better way to assess the correctness of the peptide identification given a single LC/MS/MS

experiment as a whole. Figure 2 shows the precision-recall curves for the peptide identification using

posterior probabilities and the PeptideProphet probabilities that are used as input to Bayesian inference. On

average, the posterior Bayesian inference can improve the accuracy of the peptide identification by ap-

proximately 6% for the Sigma49 datasets (Table 4).

4. DISCUSSION

In this study, we proposed and evaluated a new methodology for protein inference in shotgun pro-

teomics. The Bayesian approach proposed herein attempts to find the set of proteins that is most likely to be

present in the sample. The new approach has several advantages over the existing methods: (1) it calculates

or, if the global optimum is not reached, approximates a MAP solution for the set of proteins present in the

sample and can also output the marginal posterior probability of each protein to be present in the sample;

(2) it can output the marginal posterior probabilities of the identified peptides to be correct, given the entire

experiment; (3) the Gibbs sampling approach used to approximate the posterior probabilities of protein

configuration is a proven methodology, and its performance and convergence has been well-studied; and (4)

our probabilistic models are based on clear assumptions, thus can be readily extended further.

It is common in proteomics for a sample to be analyzed multiple times in order to increase coverage of

the proteome as well as to increase confidence in low sequence coverage proteins (Brunner et al., 2007).

While not specifically addressed, the application of the Bayesian models described here adequately

Table 3. Protein Inference Results on Three Sigma49 Dataset Using ProteinProphet (PP)

and Bayesian Inference Model (BI)

Experiment

No. of identified

true proteins

TP FP FN F-measure

PP BI PP BI PP BI PP BI

1 46/60 40.5/46.5 46/49 9.5/3.5 9/1 8.5/36.6 3/34 0.82/0.70 0.89/0.74

2 46/59 42.8/49.8 44/50 14.2/7.2 11/5 6.2/33.2 5/33 0.81/0.71 0.85/0.73

3 46/57 41.8/47.8 43/49 7.2/1.2 7/1 7.2/35.2 6/34 0.85/0.73 0.87/0.74

All results are evaluated based on the true positive (TP), false positive (FP) and false negative (FN) numbers of proteins, and and

F-measure (F) in two categories of true proteins in the sample: model (49) proteins, and model proteins plus all contaminations (83 in

total). The total number of identified true proteins (i.e., with at least one peptide hit of PeptideProphet probability >0.05) in these two

categories are shown in the second column. MAP solutions were used as positive proteins for our probabilistic models; and 0.5 cutoff

was used for ProteinProphet. ProteinProphet may report a group of undistinguishable proteins. Here we assigned an equal fraction

value to each member in such group. As a result, some fractional values were assigned to TP/FP/FN protein numbers for

ProteinProphet.
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FIG. 2. Precision-recall curves of the peptide identification using posterior probabilities by Bayesian inference (light

curves, denoted as BI in the figure legend) and the PeptideProphet probabilities (dark curves) for the Sigma49 datasets 1

(a), 2 (b), and 3 (c).



accommodates such data since peptide detectability, used as prior probabilities to estimate the probabilities

of identified peptides, should assign lower values to those peptides not identified in all the replicate

analyses. In addition, higher mammalian proteomes often contain multiple very similar homologous pro-

teins due to recent gene duplications. Using existing protein inference algorithms, these proteins are

frequently impossible to differentiate using shotgun proteomics, if some but not all of these proteins are

present in the sample. We approached the problem by utilizing the different sets of tryptic peptides (and

their detectabilities) among homologous proteins, including both the identified and non-identified peptides.

Notably, although the MAP solution of the protein inference problem often reports the actual proteins (with

relatively higher posterior probabilities then the other candidate proteins), they each may receive a low

marginal posterior probability (e.g., <0.5). While we have not explicitly addressed this problem here, we

note that the proposed models can easily treat a given set of proteins as a group and then compute the

probability of their presence as a whole. We will test this functionality in future implementation of the

models.

The peptide detectability is originally defined as a probability of a peptide to be identified in a standard

shotgun proteomics experiment, in which all peptides are of equal abundances. To accommodate this

definition, we originally trained the detectability predictor using a standard protein mixture (Tang et al.,

2006). As a result, the predicted detectabilities may not be accurate for those peptides with very high or low

abundances. Since the detectability of each peptide should be based on the abundance at which each peptide

is present in the sample, we used estimated protein abundance values to adjust detectability both during the

training and the protein inference. As a result, the inference results from our current Bayesian models not

only report the presence of a protein, but also its abundance relative to the abundance of the standard

proteomics experiment, even though in this article we only analyzed the first part of the results.
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