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ABSTRACT

Motivation: Advances in high-throughput genotyping and next
generation sequencing have generated a vast amount of human
genetic variation data. Single nucleotide substitutions within protein
coding regions are of particular importance owing to their potential
to give rise to amino acid substitutions that affect protein structure
and function which may ultimately lead to a disease state. Over
the last decade, a number of computational methods have been
developed to predict whether such amino acid substitutions result
in an altered phenotype. Although these methods are useful in
practice, and accurate for their intended purpose, they are not well
suited for providing probabilistic estimates of the underlying disease
mechanism.

Results: We have developed a new computational model, MutPred,
that is based upon protein sequence, and which models changes
of structural features and functional sites between wild-type and
mutant sequences. These changes, expressed as probabilities of
gain or loss of structure and function, can provide insight into the
specific molecular mechanism responsible for the disease state.
MutPred also builds on the established SIFT method but offers
improved classification accuracy with respect to human disease
mutations. Given conservative thresholds on the predicted disruption
of molecular function, we propose that MutPred can generate
accurate and reliable hypotheses on the molecular basis of disease
for ~11% of known inherited disease-causing mutations. We also
note that the proportion of changes of functionally relevant residues
in the sets of cancer-associated somatic mutations is higher than for
the inherited lesions in the Human Gene Mutation Database which
are instead predicted to be characterized by disruptions of protein
structure.

Availability: http://mutdb.org/mutpred

Contact: predrag@indiana.edu; smooney@buckinstitute.org

1 INTRODUCTION

With rapid advances in high-throughput genotyping and next-
generation sequencing technologies, a vast amount of genetic

*To whom correspondence should be addressed.

variation has been discovered and deposited in databases, with much
more still to come (Mooney, 2005). Currently, there are over 50 000
coding region mutations, causing or associated with human genetic
disease, listed in the Human Gene Mutation Database (HGMD)
(http://www.hgmd.org; Stenson et al., 2009), of which ~40000 are
amino acid substitutions. Amino acid substitutions have the potential
to alter the function of their corresponding protein, either directly or
via disruption of structure. Hence they are of particular interest as
candidates for further experimental assessment (Cargill et al., 1999;
Ng and Henikoff, 2006).

There is a need to effectively and efficiently identify functionally
important variants which may be deleterious or disease-causing and
to identify their molecular effects. For this purpose, a number of
computational methods, based on amino acid sequence, structure
and evolutionary information, have been proposed (Hon et al., 2008;
Karchin, 2009; Mooney, 2005; Steward et al., 2003). One of the
earliest tools developed in this area, Sorting Intolerant From Tolerant
(SIFT), uses sequence homology to classify amino acid substitutions
as tolerated or deleterious (Ng and Henikoff, 2001, 2003). Owing
to its impressive predictive power and simplicity, SIFT continues to
be used as a benchmark for other methods and approaches (Bao and
Cui, 2005; Bromberg and Rost, 2007; Chan et al., 2007; Kulkarni
et al., 2008). Protein structure information has been incorporated
through the rule-based approach of Wang and Moult (2001) and
supervised methods by Yue et al. (2005) and Yue and Moult
(2006). PolyPhen also exploits sequence conservation, structure,
and rich annotations from protein databases to classify damaging
amino acid substitutions (Ramensky et al., 2002; Sunyaev et al.,
2001). Scores utilizing more sophisticated alignments based on
hidden Markov models from protein families were incorporated with
the development of the Substitution Position-Specific Evolutionary
Conservation (subPSEC) scores in the PANTHER database (Thomas
et al., 2003). Features from comparative protein structural models
have been incorporated via the LS-SNP approach (Karchin et al.,
2005), while the usefulness of ab initio structural models was
evaluated by Saunders and Baker (2002). Finally, servers such as
SNAP (Bromberg and Rost, 2007), PMUT (Ferrer-Costa et al.,
2005), or CanPredict (Kaminker et al., 2007a, b) use a number of
sequence-based, structural and evolutionary features, combined with
various classification approaches and training sets.
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Currently, there are three general areas in need of improvement
for the development of better classification approaches. First,
experimentally validated and unbiased training sets of disease
causing or deleterious mutations need to be developed. Ideally, these
data sets would be quantitatively phenotyped at both the organismal
and molecular level. Second, new mutational attributes (i.e. beyond
sequence composition, structure and evolutionary conservation) that
improve classification accuracy and yield hypotheses on molecular
mechanisms of disease, need to be identified and characterized.
Finally, new computational approaches need to be developed that
improve classification accuracy when similar attributes and training
sets are used. The second and third areas are the focus of this work.

Although current approaches are valuable in selecting and
prioritizing mutations by yielding the most likely disease-causing
polymorphisms, few of them provide clues as to the putative
molecular mechanisms by which the mutations affect phenotypes
(Wang and Moult, 2001; Yue et al., 2005; Yue and Moult, 2006), and
even fewer when protein structure is not available. This is a severe
limitation since it is unreasonable to expect that a high-resolution
3D structure will be available for all proteins and their mutants,
either due to difficulties in structure determination and modeling,
or because the proteins are intrinsically disordered (Dunker et al.,
2001). Therefore, introducing novel sequence-based methods is
important.

Several systematic studies have shown that predicting the
molecular underpinnings of disease is feasible in practical terms: for
example, by comparing the crystal structures or 3D models between
wild-type and mutant proteins, Wang and Moult (2001) were able
to catalog amino acid substitutions into five classes according to
their effects on molecular function. These classes included changes
in protein stability, but also direct changes in protein function
via disrupted ligand binding, catalysis, allosteric regulation, and
post-translational modifications, without necessarily affecting the
stability of the molecule. Gains of N-linked glycosylation sites
causatively implicated in disease were studied by Vogt et al. (Vogt
et al., 2005, 2007). In our previous work, mutations predicted to
cause a gain or loss of phosphorylation target sites were found to
be significantly more prevalent among somatic cancer mutations
than in control data sets, suggesting that phosphorylation target site
mutation is an active general mechanism of dysregulation in cancer
(Radivojac et al., 2008).

In this study, we extend our approach to include a number
of additional structural and functional properties and show that
predictions of the gain and loss of such properties can provide good
classification accuracy, but also have the potential to estimate, in
probabilistic terms, the underlying biochemical cause of disease.

2 METHODS
2.1 Data sets

A collection of five data sets of human amino acid substitutions were
constructed from online databases and the literature (Table 1). Four of
these data sets are composed of disease-associated mutations (CANCER,
KiNasE, HGMD and SPD), whereas the remaining data set (SPp) contains
inherited, putatively neutral polymorphisms. The CANCER data set comprises
somatic mutations in genes re-sequenced from 22 cell lines from breast
and colorectal cancer tissues (Sjoblom et al., 2006). The KINASE data
set contains somatic mutations from sequencing kinase genes from 210
individual tumors (Greenman et al., 2007). Both of these sets are expected

Table 1. Summary of data sets

Data set Substitutions Proteins Type

CANCER 653 519 Disease, somatic
KINASE 422 231 Disease, somatic
HGmD 26 655 1305 Disease, inherited
SPDp 6606 680 Disease, inherited
SPp 23426 8728 Neutral, inherited

to contain mutations that lead to neoplastic progression (drivers) as well
as neutral mutations that do not influence tumorigenesis (passengers).
Mutations annotated with evidence for being disease-causing in HGMD
constitute inherited disease-causing mutations in the HGMD data set. Finally,
the Swiss-Prot database (Boeckmann et al., 2003) contains amino acid
substitutions that are either disease-causing (SPD) or polymorphic (SPp). The
full sequences of proteins harboring these mutations were downloaded and
used for attribute generation. Table 1 describes the data sets, excluding the
substitutions for which at least one of the attributes could not be computed.

2.2 Attribute construction

We generated a broad array of attributes from protein sequences and
utilized them in classification. These attributes can be grouped into three
classes: (i) attributes based on predicted protein structure and dynamics,
(ii) attributes based on predicted functional properties and (iii) attributes
based on amino acid sequence and evolutionary information. Sequence-based
predictions of structural features or protein dynamics included secondary
structure (Rost, 1996), solvent accessibility (Rost, 1996), transmembrane
helices (Krogh et al., 2001), coiled-coil structure (Delorenzi and Speed,
2002), stability (Capriotti et al., 2005), B-factor (Radivojac et al., 2004),
and intrinsic disorder (Peng et al., 2006). Predictions of functional sites
included DNA-binding residues (Ahmad et al., 2004), catalytic residues (Xin
and Radivojac, unpublished data), calmodulin-binding targets (Radivojac
et al., 2006), as well as the phosphorylation (Iakoucheva et al., 2004),
methylation (Daily et al., 2005), ubiquitination (Radivojac et al., 2009) and
glycosylation (Radivojac, unpublished data) sites. Note that the calmodulin-
binding target classifier predicts short structured or loosely structured helical
segments within otherwise disordered regions and was used as a substitute
for predicting Molecular Recognition Fragments (MoRFs), as proposed
by Mohan et al. (2006). Each predictor, with the exception of N-linked
glycosylation, was constructed in a supervised learning scenario, whereas
the changes of N-linked glycosylation were modeled by simply counting
whether a binding motif NX[ST] had been introduced or removed by the
amino acid substitution (all structural and functional properties are listed in
Table 2). Evolutionary attributes were generated from PSI-BLAST and also
included a SIFT score, Pfam profile score (Finn et al., 2008), and transition
frequencies. The transition frequencies, as proposed by Bromberg and Rost
(2007), measure the likelihood of observing a given mutation in the UniRef80
database and Protein Data Bank.

Most of the computational models used in this study estimate the posterior
probability that a residue has a given structural or functional property p,
for example that a residue has high helical propensity or that it is post-
translationally modified. Then, we can calculate the probability of loss or gain
of such a property, i.e. mutant proteins can be predicted to either introduce
or eliminate structural or functional properties. More specifically, given a
protein sequence s, the probability of the loss of a particular property p at
residue s; can be expressed as:

P(loss of property p at s;)=P(p|s})- (1—P(p|si")), (1)

where P(p|s}’) is the probability of the presence of property p at residue
s; in the wild-type protein and (1—P(p|s!")) is the probability of absence
of p at residue s; in the mutant. The two events, corresponding to two
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Table 2. Structural and functional properties used by MutPred

Structural properties Functional properties

Secondary structure
Solvent accessibility

DNA-binding residues
Catalytic residues

Stability MoRFs
Intrinsic disorder Phosphorylation sites
B-factor Methylation sites

Transmembrane helix
Coiled-coil structure

Glycosylation sites
Ubiquitination sites

physically separate molecules, are considered independent. Similarly, the
gain of structural or functional property p can be expressed as:

P(gain of property p at s;)=(1—P(p|s;"))-P(p|s]"). 2)

It is clear from Equations (1) and (2) that the greater the difference between
P(pls!") and P(p|s’"), the greater the probability of gain or loss of the property.
However, note that a reduction of score from 1.0 to 0.9 corresponds to the
probability of loss of 0.1, whilst the reduction of score from 0.5 to 0.4
corresponds to the probability of the loss of property of 0.3.

The gain and loss of a property at residue s; does not necessarily suggest
that the amino acid substitution occurred at position i. This situation is
particularly interesting for single-residue functional sites such as post-
translational modifications, because impacts of substitutions of neighboring
residues cannot be easily detected even if the functional site is known. We
refer to such cases as functional neighborhood mutations, whereas the direct
changes of functional sites are referred to as functional site mutations. In
general, we expect that the probability of gain or loss of function at s; will
be inversely correlated with the distance of the substitution site from s; (here
we consider residues between positions —5 and +5 from the substitution site).
Thus, the largest impact on protein function is likely to be for the functional
site mutations. In the case of a loss of property, this results in P(p|s{")=0
and therefore the probability that the wild-type sequence is functional at s;
equals the probability that the function will be lost. An example of such a
situation is when a phosphorylatable serine residue is substituted by a non-
phosphorylatable residue such as alanine. Similarly, in the case of a gain of
function, the probability that s; is non-functional in the wild-type equals 1,
i.e. P(p\s}“) =0. Hence, for functional site mutations, the prediction of protein
property in the mutated and wild-type protein also predicts the gain or loss
of that property, respectively. In total, seven structural and seven functional
properties were used in this study (Table 2).

2.3 Classification models

To discriminate between disease-associated mutations and neutral
polymorphisms, we applied and compared support vector machine (SVM)
and random forest (RF) classifiers. SVM is a machine learning model
that maximizes the margin of separation between examples of two classes
projected into high-dimensional space (Vapnik, 1998), and have previously
been applied successfully to mutation data (Karchin et al., 2005; Krishnan
and Westhead, 2003; Yue and Moult, 2006). In the current study, we used
SVMPe v2.50 (Joachims, 2005) with linear and non-linear kernels and kept
the capacity parameter at its default value. SVMP®"f was trained to maximize
the area under the ROC curve. Another machine learning technique used here
was random forests (Breiman, 2001), which became popular and has been
extensively used in bioinformatics applications in part due to its simplicity
and interpretability (Bao and Cui, 2005; Kaminker et al., 2007a). In the
training stage, an RF builds a committee of decision trees and in the test
stage it averages the results from all trees as the final output. In the tree-
growing procedure, a random subset of attributes is selected at each node
and the best one is used for splitting. The R package randomForest v4.5-30
was used for this purpose.

2.4 Performance evaluation

To measure the ability of classifiers to discriminate between disease and
neutral substitutions, we plotted receiver operating characteristic (ROC)
curves and calculated the area under the ROC curve (AUC). ROC curve
shows the true positive rate (or sensitivity, sn) as a function of the false
positive rate. The false positive rate is typically denoted as 1—sp, where
specificity (sp) is the accuracy on the negative data points. In this study,
disease-associated mutations were considered to be positive examples,
whereas the neutral polymorphisms were negative. For the classification
using CANCER data set, the set of neutral polymorphisms was constructed
by retaining only those substitutions found in cancer-associated proteins,
as provided by the Cancer Gene Census (Futreal et al., 2004). Similarly,
only kinases from the BRENDA database (Chang et al., 2009) were used
to select a subset of neutral polymorphisms in evaluating the performance
on KINASE. In total, the number of neutral polymorphisms from the CANCER
and KINASE data sets was 1625 (480 proteins) and 1803 (394 proteins),
respectively. Classification models were evaluated using per-protein 10-fold
cross-validation.

2.5 Predicting molecular mechanism of disease

Owing to unknown class priors, it is not possible to estimate the precision
of most structural and functional predictors accurately. Thus, our predictions
of molecular mechanisms of disease are based upon the assumption that
the majority of phenotypically neutral polymorphisms are unlikely to affect
protein structure or function significantly. In such a situation, a distribution
of scores can be created for each gain and loss of property using the data set
SPp (or its filtered versions in the cases of CANCER and KINASE data). Then,
each gain or loss score sc from Equations (1) and (2) of a disease mutation
can be assigned a P-value P, i.e. the probability that a randomly selected
neutral polymorphism will have the same score sc or higher. We refer to
such P-values as property scores.

3 RESULTS

3.1 Discrimination between disease and neutral
mutations using machine learning

The performance of individual classifiers is summarized in Table 3.
For each classifier, we report sensitivity, specificity, accuracy
and the area under the ROC curve. To alleviate the potential
negative influence of unbalanced data between disease and neutral
polymorphisms on classification performance, we also trained
classifiers on equal-sized disease and neutral sets. We found that
balancing the training data had almost no effect on the area under the
ROC curve, but that it slightly impacted the classification accuracy.
Since SIFT is an established method for distinguishing deleterious
from putatively neutral polymorphisms and is easily portable, we
used it for benchmarking. Thus, the AUC of SIFT scores provide
our baseline measure.

Unsurprisingly, SIFT scores alone worked well on the HG™MD,
and SPD data sets (Table 3). The relatively inferior performance
of SIFT on CANCER and KINASE data suggests large differences
in evolutionary conservation between the amino acid residues
harboring inherited and somatic mutations. The performance of other
classifiers also resulted in a relatively low accuracy on the CANCER
and KINASE data sets; this may be due to the fact that somatic
mutations in cancer are likely to contain a large number of so-called
passenger mutations (Futreal et al., 2005).

The AUCs of the SVM across all data sets, were 3.0 percentage
points greater than those of SIFT, suggesting that a linear SVM had a
limited ability to extract useful information from additional features.
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Table 3. Performance accuracy of different classification models on four data sets containing disease-associated amino acid substitutions versus the data set

of inherited polymorphisms

Data set Sensitivity (%) Specificity (%) Accuracy (%) AUC (%)

SIFT SVM RF SIFT SVM RF SIFT SVM RF SIFT SVM RF
CANCER 50.8 43.1 57.5 67.1 77.1 70.1 62.4 67.4 63.8 61.4 62.0 68.6
KINASE 51.7 37.6 55.1 61.8 80.1 69.8 59.9 72.1 62.4 58.3 59.3 66.1
HGmD 70.8 75.6 72.6 73.9 76.2 80.9 72.3 75.9 76.5 77.6 82.4 83.5
SPD 74.1 77.6 76.5 73.9 78.7 81.4 74.0 78.4 80.3 79.1 84.6 85.3

Compared are SIFT, a linear SVM and a RF approach using 1000 trees. Bold fonts indicate the best performing models (P <0.001 in each pairwise comparison with SIFT; t-test

based on 10 repeats).
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Fig. 1. ROC curves for HGMD data set. (A) full curves and (B) curves in
the false positive rate range of [0, 0.1]. The solid black curve represents
the MutPred general score, the dashed gray curve represents SIFT, and the
dotted line is the random model.

With limited parameter variation, non-linear SVMs were even less
successful (data not shown). RFs outperformed SIFT on all data
sets by 6.8 percentage points and SVMs by 3.8 percentage points.
The full ROC curves for data set HGMD are shown in Figure 1A.
Figure 1B presents the same curve in the range of false positive
rates from O to 0.1. Note that for the specificity level of 0.95, the
sensitivity of MutPred and SIFT were 0.414 and 0.172, respectively.
Similarly, sensitivities on CANCER were 0.193 versus 0.087 and on
KiNase were 0.160 versus 0.076. Thus, MutPred appears to be well
suited to prioritization of those amino acid substitutions which are
most likely to be involved in disease.

It is noteworthy that the classification performance using RF
models with more than 1000 trees was rather stable. Thus, 1000
trees were sufficient for the purpose of the current study. Since
RFs performed better than the SVMs, further analyses and our final
predictive model, MutPred, are based on these classifiers. We refer
to the output of the RF classifier as the MutPred general score.

3.2 Assessing the molecular mechanism of disease

Since there are relatively few amino acid substitutions for which
the molecular mechanism of disease is known, it is not currently
possible to directly evaluate the accuracy of approaches designed to
predict such mechanisms. Thus, our approach relies on the postulate
that inherited polymorphic sites have little or no influence on the
structure and function of proteins. Under this assumption, one can
generate a distribution of scores for each gain or loss of property
over neutral polymorphisms and output the P-value as a quantitative
score for each property prediction.
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Fig. 2. The percentage and number of amino acid substitutions for (A)
functional properties and (B) structural properties, that represent actionable
(dark gray) and confident (light gray) hypotheses on the molecular cause of
disease on three data sets (SPD is omitted due to large overlap with HGMD).
White line indicates the number of mutations predicted to be influencing
more than one functional or structural property.

We consider a prediction of the underlying mechanism of disease
to be an actionable hypothesis if the MutPred general score is >0.5
and the property score P <0.05. The prediction is considered a
confident hypothesis if the MutPred general score corresponds to
a specificity of 0.95 (false positive rate of 0.05) as estimated during
the performance evaluation on the HGMD data and the individual
property score P < 0.05. Finally, a prediction is considered to be
very confident if the general score corresponds to a specificity of
0.95 and the gain/loss property score P < 0.01. Note that a separate
null hypothesis distribution was created for each individual gain/loss
of property attribute. Ideally, one should use a false discovery rate
to control for the number of false predictions [fdr=ng- (1 —sp)/
(ng - (1 —sp)+ny -sn), where ng is the number of negative data
points and n1 is the number of positive data points]. However, since
the number of truly positive sites (r1) in the human proteome is
unknown, an accurate estimate of the false discovery rate is not
currently possible.

In Figure 2, we show the percentage and number of human
amino acid substitutions with a predicted mechanism of disease
as a consequence of gain or loss of functional (Fig. 2A) and
structural (Fig. 2B) properties. We show the number of mutations
for which actionable and confident hypotheses can be generated for
all data sets, except SPD which contained 79% of mutations already
available in HGMD. Our results indicate that some explanation of
the mechanism of disease may be created in as many as 41.1% of
mutations in HGMD, while confident hypotheses may be generated
in 11.2% of cases (111 confident predictions overlapped between
gain/loss of structure and function). Confident hypotheses can be
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Fig. 3. The percentage of actionable hypotheses on HGMD, KINASE, and
CANCER data sets. P-values are calculated between HGMD versus KINASE
and HGMD versus CANCER: gain of disorder (3.4 x 1079; 2.7x 10’22), loss
of stability (1.0x1071%; 3.4x10719), loss of post-translationally modified
(PTM) target sites (3.8x10%; 1.0x10~%).

generated for 11.6% of disease-causing mutations in Swiss-Prot, as
well as 10.2 and 12.1% of somatic mutations in KINASE and CANCER
data sets. Finally, we note that very confident hypotheses can be
generated for 5.5% of mutations in both HGMD and Swiss-Prot,
and for 1.2% of substitutions in somatic mutation data sets.

3.3 Importance of gain/loss of properties on inherited
and somatic amino acid substitutions

To investigate the influence of individual attributes on the sets of
inherited and somatic mutations, we compared the most common
actionable hypotheses of the molecular mechanism of disease in
the HoMD, CANCER, and KINASE data sets. We selected HGMD as a
representative of the set of inherited mutations owing to its large
size and the fact that most of the mutations from SPD are already
listed in HGMD (79%).

The most common actionable hypotheses that characterized
inherited, but not somatic mutations, were order-to-disorder
transition (10.2% of all actionable hypotheses in HGMD, 2.7%
in CANCER, 3.7% in KINASE) and loss of stability (7.1% in
Hombp, 2.5% in CANCER, 1.3% in KINASE), thereby emphasizing
the disruption of structure in monogenic disease. By contrast,
CANCER and KINASE data were enriched in the disruption of post-
translational modifications (25.0% in HGMD, 31.1% in CANCER,
39.0% in KINASE). Using a complete set of 30 categories, we
determined that the differences between the HGMD and CANCER
(P=5.0x 1075; x2 test) and KINASE (P =5.0 x 1073, x2 test) data
sets were statistically significant. Figure 3 shows the most significant
differences among the three sets.

To additionally validate the strength of gain and loss of
structural/functional properties, we trained a prediction model based
only on these attributes with the goal of discriminating between
amino acid substitutions on which the overall model had score
>0.5 and neutral substitutions. The area under the ROC curve
using these attributes ranged between 71.0% (SPp) and 79.1%
(Homp), indicating, somewhat surprisingly, that the gain and loss
of structural/functional properties alone have good discriminatory
power and are suitable for the purpose of assessing the mechanism
of disease.

In Figure 4, we show the relative ranking of various attributes
on different training data, using the gini index. Loss and gain of
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Fig. 4. Relative ranking of attributes across the HGMD and KINASE (A) and
Hcmp and CANCER (B) data sets. Gain and loss of structural and functional
properties are represented by x’s. SIFT is represented by a black triangle.

structural and functional properties are indicated by x’s, whereas
SIFT is represented by a black triangle. As expected, the SIFT
score was the single highest-ranking attribute in HGmD. However,
there were significant differences between the inherited and somatic
amino acid substitutions. In the somatic mutations data sets, the
gain/loss of most structural/functional properties were higher ranked
in CANCER and KINASE than in HGMD (presented as x’s below the
diagonal line).

3.4 Case studies

We searched the literature and found direct experimental evidence
for several disease-causing mutations with a high score for a gain
or loss of structural or functional properties. The first example
is phosphatase and tensin homolog (gene name: PTEN), a tumor
suppressor gene that negatively regulates the AKT/PKB signaling
pathway. PTEN acts as both dual-specificity protein phosphatase and
lipid phosphatase that is considered to be critical for its suppressor
function. Many PTEN gene mutations were identified and associated
with classical Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba
syndrome, Proteus syndrome and Proteus-like syndrome (Eng,
2003). PTEN mutations, especially those located in exons 5, 7 and
8, have been found in 80% of CS patients (Marsh et al., 1998,
1999). Exon 5, which encodes the phosphatase core motif, accounts
for 40% all PTEN mutations (Eng, 2003) and includes catalytic
residues C124 and D92 (Lee et al., 1999). Substitutions C124R
and D92E, listed in HGMD, are associated with Cowden syndrome
and are known to affect PTEN’s phosphatase function (Eng, 2003).
The MutPred general score for C124R was 0.61 (SIFT score was
0; SIFT predictions below 0.05 are considered positive) and the
catalytic residue predictor yielded a loss of property prediction of
0.57, which resulted in the property score P =0.048 for the loss of
catalytic residue propensity. Substitution D92E, on the other hand,
was attributed a MutPred score of 0.98 (SIFT score 0) and a loss
of catalytic residue score of 0.42 (P =0.18). Although D92E is not
considered an actionable hypothesis by our criteria, its strong score
may serve as an indicator that the thresholds selected in Section 3.3
are stringent.

The second example involves human PTP synthase (gene name:
PTS), a carbon-oxygen lyase that catalyzes triphosphate elimination
yielding 6-pyruvoyltetrahydrobiopterin. PTP synthase has 19
documented amino acid substitutions in Swiss-Prot release 56.6
and defects in PTP synthase are known to be associated with
hyperphenylalaninemia (HPA). HPA is an autosomal recessive
disorder with serious neurological symptoms that represents a mild
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form of phenylketonuria. The mutation R16C is documented to
diminish phosphorylation of S19 by PKG and also to cause HPA
(Oppliger et al., 1995; Scherer-Oppliger et al., 1999; Thony et al.,
1994). The MutPred general score for this mutation is 0.87 (SIFT
score 0.01) whereas the phosphorylation score for S19 decreased
from 0.85 to 0.49 (loss of phosphorylation score of 0.43; P=0.006
over all functional neighborhood mutations; P =0.058 over all
functional site and neighborhood mutations) upon introducing
mutation R16C, as predicted by DisPhos (Iakoucheva et al., 2004).
Probabilistically quantifying such a reduction in phosphorylation
likelihood is difficult even if it is known that S19 is a phosphorylation
site. Therefore, the use of computational models is highly important.

4 DISCUSSION

Here we introduced and evaluated a new computational model
that builds upon SIFT by explicitly estimating probabilities of
affecting various structural and functional properties, such as the
loss of helical propensity, catalytic activity or post-translational
modifications. Over the last decade, several methods have been
proposed and tested to predict whether a particular amino acid
substitution affects protein function leading to an altered phenotype.
These approaches are reasonably accurate and useful. However,
they do not generate hypotheses relating to the biochemical cause
of disease. In our model, the loss and gain of each structural and
functional property was directly modeled via posterior probabilities,
thereby enabling us to directly estimate the contribution of a
gain/loss of a given property in order to deduce the underlying
mechanism of disease. In this way, our method indirectly exploits
the structural and functional data available for functional prediction,
effectively enlarging the training data sets beyond the characterized
disease-causing events.

Attributes representing predictions of gain/loss of structural and
functional properties also contributed to an improved classification
performance over SIFT. The increase in classification performance
ranged between 5.9 (HGMD) and 7.8 (KINASE) percentage points.
Homp was eventually used to train the final model, MutPred. The
performance of random forest algorithms was better than that of
support vector machines, probably due to the explicit modeling of
the gain/loss of structural and functional properties which can be
more easily exploited by decision trees.

The good prediction accuracy of MutPred on CANCER and KINASE
data indicates that somatic sites can be predicted when compared to
inherited polymorphisms, even when the final model was trained on
Hamb data alone (data not shown). This was not surprising since the
amino acid residues which harbor somatic mutations are expected
to be under a different set of evolutionary constraints than those
harboring inherited polymorphisms. However, we believe that using
molecular features to identify causative somatic mutations (drivers)
may be more difficult than for inherited mutations because passenger
mutations can introduce or disrupt functional sites even although
they may not exert an effect within the context of a particular cell
or tissue type. For example, amino acid substitutions in a kinase
catalytic domain that is not expressed could be predicted to be
damaging, but would in practice have no observable phenotypic
effect since the protein product would not be present in the cell.
To allow for tissue differences and particular predicted molecular
events, future improvements in the classification models should

incorporate more detailed information on the particular context of
disease.

Based on sample data from the Protein Data Bank, Wang and
Moult (2001) developed a rule-based approach to characterize
molecular causes of disease. They also provided first assessments
of the ways in which disease-causing mutations might affect
protein function: >80% of inherited mutations were estimated to
disrupt protein stability as a proxy to changed function, whereas
<10% could be attributed to direct changes of functional residues.
Interestingly, using a very different approach, we arrived at similar
conclusions, with the advantage of being able to predict such
events from sequence. Our results are also in agreement with the
study of Torkamani and Schork (2007), who achieved improved
prediction accuracy on a kinase-specific data set compared to SIFT.
Furthermore, we find that somatic mutations, although predictable,
may affect cellular functions in ways that are subtler and more
diverse than for inherited disease mutations.

In conclusion, we used the most comprehensive data set of
disease-associated mutations and incorporated new attributes for
classification that directly model the gain/loss of structural and
functional properties. We believe that this type of probabilistic
evidence is informative and complements evidence that a conserved
residue is disrupted.
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