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ABSTRACT: We estimated the reproducibility of tandem mass spectra
for the widely used collision-induced dissociation (CID) of peptide ions.
Using the Pearson correlation coefficient as a measure of spectral
similarity, we found that the within-experiment reproducibility of frag-
ment ion intensities is very high (about 0.85). However, across different
experiments and instrument types/setups, the correlation decreases by
more than 15% (to about 0.70). We further investigated the accuracy of
current predictors of peptide fragmentation spectra and found that they
are more accurate than the ad-hoc models generally used by search engines
(e.g., SEQUEST) and, surprisingly, approaching the empirical upper
limit set by the average across-experiment spectral reproducibility
(especially for charge þ1 and charge þ2 precursor ions). These results
provide evidence that, in terms of accuracy of modeling, predicted peptide
fragmentation spectra provide a viable alternative to spectral libraries for
peptide identification, with a higher coverage of peptides and lower storage
requirements. Furthermore, using five data sets of proteome digests by two
different proteases, we find that PeptideART (a data-driven machine
learning approach) is generally more accurate than MassAnalyzer (an approach based on a kinetic model for peptide fragmentation)
in predicting fragmentation spectra but that both models are significantly more accurate than the ad-hoc models.

Tandem mass spectrum interpretation has been challenging
from the early days of shotgun proteomics.1 Original tools

such as SEQUEST2,3 and MASCOT,4 which adopted a database
search strategy that matches experimental tandem mass (MS/
MS) spectra to the theoretical spectra of peptides in a protein
database, are still widely used. However, even with the best tools
available, a large fraction of MS/MS spectra are not identified.5

To increase the fraction of identified spectra, the recent
development of database search tools has largely focused on two
strategies. The first strategy attempts to incorporate additional
experimental information into the peptide identification, e.g., to
compare the reversed-phase retention time associated with theMS/
MS spectra with the predicted retention time of the peptides,6 to
use accuratemass and time analysis in spectralmatching,7 to generate
the consensus spectrum for multiple preclustered MS/MS spectra
of the same peptide for database searching,8 and to combine results
frommultipleMS/MS search engines.9 The second strategy attempts
to improve the scoring scheme for the spectral matching, e.g., to
assess not only the number of matched peaks but also their
intensities10,11 or to design matching scores based on the amino
acid-specific biases in peptide fragmentation.12-15 A recent review
by Barton and Whittaker provides an excellent discussion of the
second group of algorithms as well as the physicochemical
factors that are known to affect peptide fragmentation.16

For the peptides that fragment well, the database search or, in
particular, the peptide-spectrum matching (PSM) problem be-
comes straightforward if the MS/MS spectra are available for all
peptide sequences in the database, since it has been observed that
the spectra were reproducible and distinct from one peptide to
another. As a result, a new approach to peptide identification, based
on the experience with small molecule identification,17,18 was
proposed. It matches experimental MS/MS spectra to the pre-
viously identified peptide spectra stored in peptide libraries.19-23

It was shown that the peptide library approach can identify more
spectra than the conventional database searching methods.21,22

However, the estimates of the amount of increase in sensitivity
and the number of identified peptides are still preliminary. In
addition, the relative importance of searching smaller databases
vs the use of peak intensities has not been quantified. In any case,
the spectral library approach is practical only when the spectra
have been characterized for all peptides in the sample (or at least
all detectable24 or proteotypic25 peptides) and can be applied for
the well-studied samples (e.g., blood samples) or relatively simple
model organisms (e.g., yeast). As a result, hybrid approaches and
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workflows that combine conventional database searches with
spectral library searches have emerged.26,27

The spectral library approach can be eliminated if the relative
intensities, not only the occurrences of the fragment ions in
the experimental spectrum, can be accurately predicted from a pep-
tide sequence alone. Indeed, several computational methods have
been developed using either physicochemical models of peptide
fragmentation28,29 or machine learning.30-33 From limited
benchmarking tests, these predictors, as well as those predicting
the order of peak intensities,34 have shown good accuracy and
can potentially be used to assist peptide identification.

Peptide fragmentation is inherently stochastic. Combined
with other random events such as fluctuations of the ionization
source and ion detection, it can result in differences between
fragment spectra of the same peptide even in the same experi-
ment. When different instruments, experimental setups, or PSM
algorithms are applied, the spectra matched to the same peptide
can be significantly different. For example, Venable and Yates
studied the variance of PSM scores and found that the distribu-
tion of scores depends not only on peptide sequence but
also on its quantity.35 Thus, methods relying on grouping of
experimental spectra have been shown to improve peptide
identifications.8,36,37 Similarly, spectrum averaging over different
experimental setups plays an important role in building spectral
libraries.22 As a result, it is necessary to further understand and
quantify the variability of experimental fragmentation spectra
corresponding to the same peptide. In light of the advent of more
sophisticated algorithms for predicting fragmentation spectra,
this can also help in determining the usefulness of such computa-
tional tools because their accuracy cannot be larger than the
experimental reproducibility of the fragmentation spectra.

In this paper, we report a systematic assessment of the
reproducibility of peptide fragmentation spectra as well as the
accuracy of the current peptide MS/MS spectrum predictors for
the most commonly used collision-induced dissociation (CID)
instruments. We find that an average correlation between two
MS/MS spectra repeatedly identified as the same peptide in the
same experiment is very high over all precursor ion charge states.
However, across different experiments, instrument types, or
experimental setups, we find that this correlation decreases by
15% or even more (see Results) but is still substantially higher
than the correlation of the ad-hoc models used in peptide search
engines. We also computed the correlation coefficients between the
experimental and predicted spectra for two predictors: Mass-
Analyzer, which uses a kineticmodel of peptide fragmentation,28,29

and PeptideART, which adopts a data-driven approach.31 Both
computational tools achieve considerable performance improve-
ment over the ad-hoc models, although correlation coefficients
are still somewhat lower, depending on the precursor ion charge
state, than the across-experiment spectral reproducibility. Overall,
this work supports the use of spectral libraries to most accurately
model peptide fragmentation spectra. It also provides evidence
that computational models such as MassAnalyzer and PeptideART
are viable alternatives to spectral libraries in terms of accuracy but
offer several advantages with respect to proteome coverage and
storage requirements.

’RESULTS

Reproducibility of CID-MS/MSSpectra of Identical Peptides.
In the first experiment, we estimated the empirical upper limit for
the reproducibility of experimental MS/MS spectra within and

across proteomics experiments. For the within-experiment anal-
ysis, we used a subset of identified peptides with spectral counts
greater than 1 from HUMAN, MOUSE, and YEAST data sets (see
Materials and Methods). For each identified unique peptide, we
calculated the average Pearson correlation coefficient over all
pairs of spectra. Finally, the average correlation coefficient over
all unique peptides is reported.
In Figure 1A-C, the distributions of correlation coefficients

corresponding to the within-experiment replicated MS/MS spectra
are shown. Only unique peptides were considered; thus, all pairs
of experimental spectra that were identified as the same peptide
were averaged and counted as one. The bars in Figure 1A-C
represent the distribution of correlation coefficients for replicates
of tandem mass spectra for þ1, þ2, and þ3 precursor ions in
three data sets. Overall, the average correlation coefficients for
þ1,þ2, andþ3 peptides were estimated to be 0.868 (precursor
charge state þ1; 825 unique peptides), 0.821 (þ2; 8513), and
0.826 (þ3; 2264) in data set HUMAN, 0.882 (þ1; 56), 0.808 (þ2;
2500), and 0.816 (þ3; 595) in data set MOUSE, and 0.925 (þ1;
27), 0.809 (þ2; 439), and 0.762 (þ3; 84) in data set YEAST. These
results are also shown in Table 1 (column reproducibilityW).
For the cross-experiment analysis, we used identical peptides

identified across HUMAN and MOUSE data sets, as well as SHEWANELLA

and DEINOCOCCUS data sets (Figure 1D,E; Table 1). Here,
the average correlation coefficients were estimated to be 0.404
(precursor charge state þ1; 5 unique peptide pairs), 0.658 (þ2;
306), and0.693 (þ3; 50) across HUMAN andMOUSE data sets, whereas
the average correlation across SHEWANELLA and DEINOCOCCUS data
setswas estimated to be 0.692 (þ1; 29), 0.713 (þ2; 488), and 0.674
(þ3; 57). Although the number of identical peptides across the
pairs of data setswas smaller, these results show a significant decrease
in spectrum reproducibility of 15% or more compared to a within-
experiment spectral reproducibility (P < 10-3; Wilcoxon test).
With respect to the specific fragment ion types, we observed

that the neutral loss ions (e.g., b-H2O, y
þþ-NH3) are generally

less reproducible than the regular fragment ions (e.g., b, yþþ).
Detailed per-ion results are shown in Tables S1-S2 (Supporting
Information).
Prediction Accuracy of ComputationalModels. Prediction

accuracy was estimated for two predictors of peptide fragmenta-
tion spectra, MassAnalyzer28,29 and PeptideART.31 In addition,
we estimated the performance of three ad-hoc predictors, referred to
as baseline 1, baseline 2, baseline 3; see Materials and Methods.
Compared to its original version, PaptideART was retrained
using similar features as in its original version but using multi-
output neural networks in order to account for the dependencies
between fragment ions. Each output corresponds to a specific
type of fragment ion (27 types, compared to 11 in the earlier
work31). PeptideART was trained in two modes: (i) on a specific
data set, and (ii) on a set of unique peptides over HUMAN, MOUSE,
SHEWANELLA, and YEAST data sets. In each situation, the model was
evaluated using 5-fold cross validation; thus, no peptide was used
both for training and testing in the same iteration. Peptides
present in more than one data set were removed prior to training.
The correlation coefficients over the entire set of spectrum

pairs are shown in Table 1. Somewhat surprisingly, the results
indicate that the current predictors of peptide fragmentation spectra
are within reach of the across-experiment spectral reproducibility
(Table 1). In addition, both MassAnalyzer and PeptideART
present significant improvements to any of the ad-hoc methods.
Interestingly, data set-specific PeptideART was either less accu-
rate or only marginally more accurate than the model trained
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over all data sets, and this accuracy was significantly lower than
the within-experiment spectral reproducibility. This indicates
that data-drivenmodels were not able to capture idiosyncrasies of
each particular experiment, even if trained for this purpose.
Rather, they seem to have learned data set independent rules

of peptide fragmentation. Several examples of predicted spectra
for MassAnalyzer and PeptideART are shown in Figure S1
(Supporting Information). In addition, the Receiver Operating
Characteristic (ROC) curve-based comparisons betweenmodels
are provided in Tables S3 and S4 (Supporting Information).

Figure 1. Histograms of spectral reproducibility over peptides identified multiple times in the same experiment (A: HUMAN; B: MOUSE; C: YEAST), as well
as the histograms of reproducibility for the unique peptides identified in two different experiments (D: HUMAN vs MOUSE; E: SHEWANELLA vs DEINOCOCCUS).
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Influence of Training Data on PeptideART. The accuracy
of PeptideART was also estimated as a function of size of the
training data. For a given data set size n, n tryptic peptides were
selected uniformly randomly as training and evaluated on the remain-
ing peptides from the combined HUMAN, MOUSE, and SHEWANELLA

data sets. To obtainmore stable estimates, this strategy was repeated
10 times for each data set size and the accuracy was averaged.
In Figure 2, the Pearson correlation coefficient between

predicted and experimental spectra with different number of
peptides (n) chosen as training data is shown. In addition to the
standard correlation coefficient described in Materials and
Methods (white boxes), here, we also estimated the correlation
coefficient on the 27 ion types only between annotated ions of
experimental and predicted spectra (shaded boxes). The results
show that PeptideART is reasonably accurate when trained on as
few as 100-200 peptides. This accuracy steadily increases with
progressively larger data sets and plateaus at about 1000 peptides.
Running Time of PeptideART. The running time of Peptide-

ART was estimated on a set of 10 000 randomly selected tryptic
peptides from human. With about 0.04 s per peptide, creating
a library for the entire human genome (∼0.5 million tryptic
peptides) would take roughly 5 h using a 2.66-3GHzCPU and a
single-threaded process.

’DISCUSSION

In this study, we aimed to estimate the reproducibility of
low-energy CID-MS/MS fragmentation spectra, within and
across different samples and platforms, as well as to evaluate the

predictors currently available in the public domain. We found
that the reproducibility of peptide fragmentation spectra from
the same experiment is consistently very high (Pearson correla-
tion coefficient around 0.85) and is consistent for each protease
type. On the other hand, reproducibility across different experi-
ments that use similar ion trap instruments was significantly
lower, although still high (around 0.70). This high reproduc-
ibility of mass spectra supports peptide identification approaches
that utilize spectral libraries19,21,22,38,39 over the generic strategies
of modeling peptide fragmentation spectra.

We also evaluated two predictors of peptide fragment spectra,
MassAnalyzer and PeptideART (with PeptideART retrained for
this purpose). We found that their prediction accuracy is gen-
erally good but dependent on the charge state of the precursor
peptide. The best prediction performance was achieved for singly
and doubly charged precursor ions, followed by the triply charged
precursors. This may be expected, since higher charge state spectra
have more possible product ions, including multiply charged
ones that may be formed from fragmentation events. Importantly,
we estimated that the accuracy of the predicted spectra is relatively
similar, with few exceptions, to the spectrum reproducibility
across experiments. This strongly suggests that, in terms of accuracy
of peptide identification, fragment spectrum predictors are good
alternatives to spectral libraries, even with relatively small training
data. We note that we used Pearson correlation coefficient as a
primary measure of spectral similarity, but similar results were
obtained when we applied a square root operation on raw peak
intensities (Table S5, Supporting Information). Application of the

Table 1. Spectral Similarity (( StandardDeviation) between Experimental and Predicted Peptide Fragmentation Spectra on Four
Different Data Setsa

HUMAN

charge MA ARTHUMAN ART MA þ ART baseline 1 baseline 2 baseline 3 reproducibilityW reproducibilityA

þ1 0.380 ( 0.244 0.554 ( 0.213 0.481 ( 0.213 0.552 ( 0.210 0.179 ( 0.081 0.217 ( 0.104 0.444 ( 0.210 0.868 ( 0.178 0.404 ( 0.161

þ2 0.602 ( 0.217 0.654 ( 0.182 0.644 ( 0.187 0.658 ( 0.169 0.226 ( 0.077 0.323 ( 0.112 0.444 ( 0.149 0.821 ( 0.147 0.658 ( 0.148

þ3 0.509 ( 0.222 0.561 ( 0.164 0.553 ( 0.163 0.574 ( 0.152 0.197 ( 0.072 0.209 ( 0.099 0.329 ( 0.101 0.826 ( 0.152 0.693 ( 0.120

MOUSE

charge MA ARTMOUSE ART MA þ ART baseline 1 baseline 2 baseline 3 reproducibilityW reproducibilityA

þ1 0.663 ( 0.212 0.662 ( 0.156 0.676 ( 0.157 0.698 ( 0.161 0.271 ( 0.099 0.374 ( 0.121 0.504 ( 0.180 0.882 ( 0.106 0.404 ( 0.161

þ2 0.582 ( 0.222 0.596 ( 0.199 0580 ( 0.195 0.625 ( 0.199 0.198 ( 0.077 0.358 ( 0.131 0.411 ( 0.159 0.808 ( 0.116 0.658 ( 0.148

þ3 0.515 ( 0.153 0.516 ( 0.184 0.487 ( 0.163 0.565 ( 0.187 0.169 ( 0.065 0.192 ( 0.093 0.293 ( 0.104 0.816 ( 0.105 0.693 ( 0.120

SHEWANELLA

charge MA ARTSHEWANELLA ART MA þ ART baseline 1 baseline 2 baseline 3 reproducibilityW reproducibilityA

þ1 0.565 ( 0.222 0.627 ( 0.149 0.627 ( 0.148 0.634 ( 0.147 0.258 ( 0.102 0.314 ( 0.122 0.440 ( 0.153 N/A 0.692 ( 0.227

þ2 0.663 ( 0.187 0.662 ( 0.154 0.666 ( 0.153 0.671 ( 0.140 0.216 ( 0.066 0.327 ( 0.092 0.450 ( 0.132 N/A 0.713 ( 0.210

þ3 0.517 ( 0.179 0.571 ( 0.128 0.571 ( 0.131 0.591 ( 0.114 0.177 ( 0.047 0.194 ( 0.073 0.330 ( 0.073 N/A 0.674 ( 0.183

YEAST (Glu-C)
charge MA ARTYEAST ART MA þ ART baseline 1 baseline 2 baseline 3 reproducibilityW reproducibilityA

þ1 0.637 ( 0.167 0.638 ( 0.171 0.638 ( 0.171 0.647 ( 0.109 0.254 ( 0.069 0.376 ( 0.098 0.431 ( 0.138 0.925 ( 0.101 N/A

þ2 0.500 ( 0.203 0.601 ( 0.175 0.601 ( 0.175 0.597 ( 0.161 0.202 ( 0.071 0.274 ( 0.123 0.318 ( 0.128 0.809 ( 0.120 N/A

þ3 0.407 ( 0.239 0.423 ( 0.161 0.423 ( 0.161 0.461 ( 0.161 0.150 ( 0.056 0.117 ( 0.060 0.242 ( 0.096 0.762 ( 0.108 N/A
a Spectral similarity was measured using the Pearson correlation coefficient. MA = MassAnalyzer, ART = PeptideART, ART(D) = PeptideART trained
only on data set D,MAþART= predictor constructed as an average ofMassAnalyzer and PeptideART, baseline 1-3 = three baseline methods referred
to in the Materials and Methods section, ReproducibilityW = reproducibility within the same sample, ReproducibilityA = reproducibility across different
experiments (HUMAN vs. MOUSE; SHEWANELLA vs. DEINOCOCCUS). The values in bold indicate that the differences between PeptideART and MassAnalyzer
are statistically significant with P < 0.004 (Wilcoxon test; Bonferroni-corrected value of 0.05).
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square root function was previously shown to be a good pre-
processing step for PSM algorithms.21,26

Computational models also offer several advantages over spec-
tral libraries. Once trained, they require significantly less storage
space than libraries of annotated spectra (e.g., there are >0.5
million human peptides only in the Swiss-Prot database;40 if
stored, their spectra would require more space than almost any
trained machine learning model). In the context of database search,
computational models provide theoretical spectra of complete
proteomes (with decoy) and may impact the number and
confidence of identified proteins and potentially even the estima-
tion of false discovery rates. Finally, computational models can be
trained for platforms where spectral libraries have low coverage.
For example, even for the commonly used platforms such as CID,
only 15% of human tryptic peptides (based on Swiss-Prot) have
currently been stored in the NIST library of peptide fragmenta-
tion spectra (detailed data not shown).

Compared to MassAnalyzer that was developed based on the
current understanding of peptide fragmentation pathways, Pep-
tideART exploited large data sets of annotated spectra to achieve
generally higher accuracy. Not only is this useful for accurate
peptide identification but also it suggests that the chemistry of
peptide fragmentation is difficult tomodel and not fully understood.

’MATERIALS AND METHODS

Data Sets. Five data sets were used in this study. Mouse liver
samples in data set MOUSE were digested with trypsin and analyzed
by 2D-LC-MS/MS using a ThermoFinnigan LTQ linear ion trap
instrument. MASCOT was adopted to search against the IPI
mouse v3.71 forward database combined with the reverse database.
Peptides with MASCOT scores higher than 40 were selected:
18 107 peptide-spectrum matches (PSMs) were retained, of which
20 PSMs were identified from the reverse database (false discovery
rate FDR = 0.22%, peptide level FDR = 0.64%). The final data set
contained 67 unique peptides with charge þ1, 3218 peptides
with charge þ2, and 883 peptides with charge þ3 (Table 2).

The second data set, referred to as SHEWANELLA, originally
included a total of 28 311 identified spectra (7175 þ1, 17 647 þ2,
and 3489 þ3) from the Shewanella oneidensis and Deinococcus
radiodurans proteomes13 collected using HPLC with LCQ ion
trap instruments. The peptides were identified using SEQUEST.
In order to ensure a high quality of identified spectra (FDR not
provided in the original paper), we applied new cutoffs to the set
of peptide-spectrum matches (Xcorr = 2.0 for þ1, Xcorr = 3.0
forþ2, Xcorr = 4.0 forþ3 peptides). The new data set contained
6010 þ1, 11 155 þ2, and 1941 þ3 peptides.
Data set HUMAN comes from a human cell line.41 The MS/MS

proteomics analyses were carried out on an extract of the
erythroleukemia cell line K562 grown in suspension. After
trypsin digestion, a multistage gradient delivered by an Agilent
1100 Series HPLC (Agilent Technologies, Santa Clara, CA) was
used to elute peptides into the electrospray ionization source of
an LCQ ion trap mass spectrometer (ThermoElectron, San Jose,
CA). In this work, we used InsPecT42 to search against a database
(IPI human v3.57 forward and reversed databases combined)
which resulted in 84 471 PSMs with P-values below 0.01. Among
them, 63 PSMs were from the reversed database (FDR = 0.15%,
peptide level FDR = 0.73%). The final data set included a total of
1259 þ1 peptides, 11 234 þ2 peptides, and 3323 þ3 peptides.
Data set DEINOCOCCUS, was created from 20 replicate analyses

of the D. radiodurans proteome in our previous work.43 The D.
radiodurans samples were digested using trypsin, and the peptides
were separated using nano-LC. The eluting peptides were electro-
sprayed into a ThermoFinigan LCQ Deca XP ion-trap mass
spectrometer. The peptides were identified using MASCOT that

Figure 2. Box plots showing the influence of data set size on PeptideARTmodel for three charges of precursor ions (A:þ1; B:þ2; C:þ3).White boxes
represent correlation coefficient as described inMaterials andMethods. Shaded boxes represent correlation coefficients over 27 fragment ion types only.

Table 2. Number of Unique Identified Peptides in Each of the
Data Sets

charge HUMAN MOUSE SHEWANELLA DINOCOCCUS YEAST

þ1 1259 67 6010 31 39

þ2 11234 3218 11155 796 707

þ3 3323 883 1941 183 208
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searched forward and reverse D. radiodurans databases (FDR =
0.05%, peptide level FDR = 0.65%). This data set was used only
to compare spectra of peptides identified both in DEINOCOCCUS

and in SHEWANELLA in order to estimate reproducibility of
fragment spectra across different experiments.
The last data set, YEAST, was constructed from the Saccharomyces

cerevisiae mutant strain samples. The samples were digested using
Glu-C to produce peptides terminated by aspartic or glutamic acid
residues. The peptides in the digested sample were separated using a
MudPIT experiment.44 The released peptides were electrosprayed
into a ThermoFinnigan LTQ mass spectrometer. The PSMs were
generated using SEQUEST followed by PeptideProphet45 with a
probability cutoff of 0.95. The resulting number of unique peptides
consisted of 39þ1peptides, 707þ2peptides, and 208þ3peptides.
Computational Approaches to Predicting CID-MS/MS

Spectra of Peptides. Two previously published methods were
used to compare experimental and predicted spectra: (i) Mass-
Analyzer, an algorithm, introduced by Zhang,28,29 which explic-
itly models the understood model of peptide fragmentation
with parameter optimization based on the training CID spectra;
(ii) PeptideART, a neural network-based model designed to
predict the probability that a particular fragment ion will be
observed.31 PeptideART uses the outputted probabilities as
estimates of the fragment ion intensities. For the purposes of this
study, we retrained PeptideART using ensembles of 30 multioutput
feed-forward neural networks, whereas the original version com-
bined ensembles of single output networks. Thus, the retrained
model better accounts for the dependencies between fragment ions.
Additionally, we reduced the overall number of features (for speed),
increased the number of predicted fragment ion types, and
accommodated for the isotopic peaks using themethod by Zhang.28

Features used to train PeptideART can be categorized in the
following five groups: (i) peptide length and mass for the whole
peptide as well as left and right fragment ions for a specific
cleavage site; (ii) amino acid compositions for both fragments
given the position of the cleavage site; (iii) physicochemical proper-
ties (basicity, helicity, hydrophobicity, pI) for both fragments;31

(iv) distances from the termini to the nearest residues P, H, K,
and R in both fragments; and (v) N-terminal and C-terminal
amino acid for both fragments. The total number of features is
158. We considered the following 27 fragment ions: precursor,
precursor-H2O, precursor-NH3, b, b-H2O, b-NH3, b-H2O-
NH3, bþH2O, a, a-H2O, a-NH3, y, y-H2O, y-NH3, y-H2O-
NH3, b

þþ, bþþ-H2O, b
þþþH2O, b

þþ-NH3, a
þþ, aþþ-H2O,

aþþ-NH3, y
þþ, yþþ-H2O, y

þþ-NH3, y
þþþ, bþþþ. The

doubly charged fragment ions were used for þ2 and þ3
precursor ions, while the triply charged fragment ions were used
only for the þ3 precursor ions.
In addition to MassAnalyzer and PeptideART, we also used

three ad-hoc models. Baseline 1 model is the simplest scheme in
which every possible fragment ion is assigned intensity of 1.
Baseline 2model outputs intensity of 1 for b- and y-ions, intensity
of 0.5 for a-ions, intensity of 0.5 for ions with single neutral loss
(e.g., b-H2O or y-NH3), intensity of 0.25 for double neutral
loss ions (e.g., b-H2O-NH3), and intensity of 0.25 for doubly
charged fragment ions bþþ and yþþ. Finally, baseline 3 model
outputs the prior probabilities of occurrence for each ion type
(see Table S6, Supporting Information, for details), thus outputting
different values depending on the fragment ions under consid-
eration. For example, in the MOUSE data set, the b ions with
intensity g1% of the total intensity were observed in 18.1% of
cases, thus, in the theoretical spectrum, every b ion was assigned

intensity of 0.181. For evaluation purposes, we used a publicly
available version of MassAnalyzer, while PeptideART predictor
was retrained using the data sets above and evaluated using
5-fold cross-validation on a set of unique peptides across different
data sets.
Measuring Similarity of Fragment Spectra. Two perfor-

mance measures were used to assess the reproducibility of
experimental spectra and the quality of predicting experimental
spectra: (i) the Pearson correlation coefficient and (ii) the area
under the ROC curve (AUC). In the case of reproducibility
estimation, for each confidently identified peptide, the spectra
matched to this peptide were selected, with all identifications
being above the score threshold (based on false discovery rate,
Xcorr, or PeptideProphet probability value). The reproducibility
was estimated by averaging the correlation coefficients over all
spectrum pairs for a particular peptide and then further averaged
over all unique peptides. Peptides identified based on a single
matched spectrum, regardless of the score, were omitted. There-
fore, data set SHEWANELLA was not used for within-experiment
reproducibility analysis because the authors included only the
highest scoring spectrum for each peptide (i.e., spectral count for
each peptide in SHEWANELLA was 1). In the case of assessing the
quality of prediction of fragment ions, we selected the highest
scoring experimental spectrum for each peptide and then com-
pared it with the predicted spectrum.
Correlation Coefficient. Given two spectra, Sa and Sb, each

spectrum was binned using 1200 bins in them/z range from 200 to
2000 (the size of the bin was selected to correspond to the tolerance
used tomatch fragment ions,(0.8). The highest peak in each bin
was selected to represent the bin; thus, each spectrum was encoded
into a 1200-dimensional vector. The Pearson correlation coeffi-
cientwas calculated between such pairs of 1200-dimensional vectors.
Areaunder theROCCurve. AUCwas computedby assuming that

spectrum Sa was the “correct” spectrum and spectrum Sb was its
“prediction”. Each fragment ion in Sa whose intensity wasg1%of the
total intensity of the spectrumwas considered to be positive, while all
other fragment ions were considered to be negative. A sliding
threshold t, ranging from 0 to the maximum intensity (all spectra
were normalized to 0-1 interval), was then applied to spectrum Sb to
calculate sensitivity (sn, true positive rate) and specificity (sp, true
negative rate). AUCwasobtained as an area under the observed curve
with (1- sp) as the x-axis and sn as the y-axis, over the entire set of n
pairs.While this approach givesmore weight to longer peptides, it is a
more stable estimate than an average of pairwise AUCs, given that a
relatively small number of fragment ions comprise most of the total
intensity of the spectrum.

’ASSOCIATED CONTENT

bS Supporting Information. Additional information as noted
in the text: (1) examples of predicted spectra for MassAnalyzer
and PeptideART; (2) ion reproducibility analysis of experimental
spectra; (3) ROC tables for PeptideART and MassAnalyzer;
(4) correlation coefficients for PeptideART andMassAnalyzer when
square root was applied to peak intensities; (5) prior probability
tables in different data sets. This material is available free of
charge via the Internet at http://pubs.acs.org.
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