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ABSTRACT 
One of the important objectives in mass spectrometry-based 
proteomics is the identification of post-translationally modified 
sites in cellular and extracellular proteomes. Proteomics 
techniques have been particularly effective in studying protein 
phosphorylation, where tens of thousands of new sites have been 
recently discovered in all domains of life. Such massive 
discovery of new sites has been facilitated by progress in affinity 
enrichment techniques, high-throughput analytical platforms that 
couple liquid chromatography (LC) and tandem mass 
spectrometry (MS/MS), and also powerful computational tools 
that assign peptides to tandem mass spectra. In this work we 
focus on computational protocols for identifying phosphopro-
teins, phosphopeptides, and phosphosites. Although the current 
tools already provide solid results, most methods have not been 
tuned to exploit particular sequence and physicochemical 
properties of phosphopeptides or the peculiarities of their 
fragment spectra. Therefore, novel algorithms can be designed 
to increase the sensitivity of phosphosite identification. Here we 
describe a machine learning-based method that improves the 
identification of phosphopeptides in LC-MS/MS experiments. 
Our algorithm is applied as a post-processing step to a standard 
database search. It assigns a probability score to each peptide-
spectrum match (PSM) corresponding to a phosphopeptide, 
based on the sequence and spectral features of the peptide and 
its assigned fragment spectra as well as the biological propensity 
of particular residues in the peptide to be phosphorylated. The 
algorithm is based on a simple but robust logistic regression 
model and is used together with a conventional search engine 
(here, MASCOT) to filter out the PSMs with the lowest 
probability of being correctly identified. Our protocol was tested 
on two large phosphoproteomics data sets on which it increased 
the number of identified phosphopeptides by 10-15% compared 
to the conventional scoring algorithms at the same false 
discovery rate threshold of 1%. 

Categories and Subject Descriptors 
I.5.0 [Pattern Recognition]: General; J.2 [Life and Medical 
Sciences]: Biology and genetics. 
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1. INTRODUCTION 
As one of the major and most common protein post-translational 
modifications (PTMs), phosphorylation has been studied 
extensively [1]. Numerous efforts have been made to understand 
the structural [2-6], evolutionary [7, 8], and functional aspects of 
phosphorylation [9, 10]. Several major repositories have been 
created to store and characterize phosphorylation sites across 
multiple organisms [11, 12], and a number of computational 
models dedicated to predicting phosphorylation sites have been 
developed [13]. Due to its importance in cellular signal 
transduction and functional regulation, links between dysregula-
tion of phosphorylation and disease have been established both 
experimentally and computationally. Examples include a num-
ber of monogenic disorders [14, 15], but also complex diseases 
such as cancer [3, 16, 17], heart disease [18], and neurodegene-
rative disorders [19].  

Tandem mass spectrometry (MS/MS) has been the most popular 
high-throughput experimental approach for identifying phospho-
peptides and advancing the understanding of the function and 
dynamics of protein phosphorylation [20-22]. In these studies, 
MS/MS spectrum data are often analyzed by database search 
engines such as MASCOT [23] and SEQUEST [24]. Although 
these tools yield reasonably good performance in phosphopep-
tide identification, they were originally designed for the 
identification of non-modified peptides and thus do not 
necessarily exploit specific sequence characteristics of 
phosphopeptides [25] and their fragmentation patterns in tandem 
mass spectrometers [26]. Thus, advanced computational 
methods are highly desirable to improve phosphopeptide 
identification from the massive MS/MS data sets. 

To date, significant efforts have been made to improve the 
identification of phosphopeptides and phosphosites. For 
instance, Lu et al. [27] developed a machine-learning method to 
filter MS/MS spectra corresponding to phosphopeptides prior to 
database searching. Novel scoring methods optimized 
specifically for phosphopeptide-spectrum matching were also 
developed. Payne et al. [28], for example, used a Bayesian 
network to incorporate fragmentation rules learned from the 
MS/MS spectra of phosphopeptides. Other methods also em-
ployed machine-learning algorithms to increase the number of 
identified phosphopeptides in the post-processing of phospho-
peptide-spectrum matches (pPSMs) reported by search engines 
[29, 30]. In addition to phosphopeptide identification, various 
groups have focused on accurate identification of phosphory-
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Figure 1. Illustration of the workflow for phosphopeptide identification.
rPSMs represent regular (non-phosphorylation) PSMs, while pPSMs 
represent phosphopeptide-spectrum matches. 

lation sites. While this process is trivial for the peptides 
containing one phosphorylatable residue, it is far more difficult 
in a general case. Computational methods that differentiate 
between several potential phosphorylation sites based on the 
identified MS/MS spectra have also been developed [20, 31-33]. 
Among those, the A-score [32] algorithm, a simple yet powerful 
method for the probabilistic assignment of phosphorylation sites 
has been commonly used.  

One drawback of all existing phosphopeptide identification 
algorithms is that they do not consider an important and 
prominent feature of phosphorylation. They treat all 
phosphorylatable residues (i.e., Ser, Thr, or Tyr) equally, yet it 
has been shown that consensus peptide sequence patterns or 
patterns of physicochemical properties around phosphorylation 
sites can be observed [25, 34]. Although these patterns are 
highly diverse when regulated by different kinases [35] or in 
different species, successful bioinformatics approaches have 
been developed to predict the propensity of a residue to be 
phosphorylated [36, 37]. These predictors have been applied to a 
number of interesting biological problems [38-40]; however, to 
our knowledge, their application to mass spectrometry-based 
proteomics data analysis has not been previously explored. 

In this study we present a new algorithm that incorporates 
sequence, spectral, and biological signatures of pPSM and a 
phosphorylation site into the post-processing of the results from 
database search engines. Our method, named PhosART, 
employs a supervised learning algorithm (logistic regression) to 
estimate the probability that a pPSM is correct in a MS/MS 
experiment. By testing PhosART on two large phosphoproteo-
mics data sets and comparing its performance to that of standard 
database search, we show that it increases the number of 
identified phosphopeptides at the same false discovery rate 
(FDR) thresholds. 
 

2. METHODS 
2.1 Data sets 
In this work we used two data sets in which affinity enrichment 
was used for improving phosphopeptide identification. 

Data set I contains proteomics data obtained from Iliuk et al. 
[41], who devised a method called polymer-based metal-ion 
affinity capture (PolyMAC) using water-soluble dendrimers 
covered with phosphopeptide-binding titanium molecules for 
phosphopeptide analysis. The human proteomic samples were 
enriched for phosphopeptides by their in-house PolyMAC 
reagents and then analyzed with MS/MS by coupling high-
performance liquid chromatography (HPLC) with a high-
resolution hybrid linear ion trap Orbitrap mass spectrometer 
(LTQ-Orbitrap XL, Thermo Fisher Scientific). The mass 
spectrometer was operated in the data-dependent mode in which 
a full MS scan was followed by four MS/MS scans of the most 
abundant ions. Ions with the charge state of +1 were excluded.   

Data set II was acquired from the analysis of human samples by 
Kim et al. [42]. Here, a phosphopeptide mixture was extracted 
from pancreatic cancer cell line followed by a trypsin digestion. 
The digested sample was subsequently fractionated on the 
Strong Cation Exchange (SCX) column, and the phospho-
peptides were enriched using TiO2. The mass spectrometry 
experiments were performed on an LTQ-Orbitrap XL ETD, a 

hybrid instrument combining collision-induced dissociation 
(CID), electron-transfer dissociation (ETD), and pulsed-Q 
dissociation (PQD). The data set was downloaded from the 
Tranche network at http://proteomecommons.org. Detailed 
description of the experimental protocol can be obtained from 
the original study [42]. In this work we only utilized CID data.  

Both data sets were searched against all human proteins from the 
UniProtKB database (release 2013_04) using MASCOT v.2.4. 
The search database contained a combined forward and reverse 
human proteome with the following search criteria: (i) tryptic 
enzyme specificity with at most one missed cleavage; (ii) 
carbamidomethylation at cysteine residues as a fixed modi-
fication; (iii) phosphorylation at serine, threonine, and tyrosine, 
and oxidation at methionine residues as variable modifications; 
(iv) 1.0 Da for precursor ion tolerance and 0.5 Da for fragment 
ion tolerance. Peptide mass calculation was performed using 
monoisotopic values.  

2.2 Data processing workflow 
Peptide identification was performed in several steps, as shown 
in Figure 1. All top-scoring peptide-spectrum matches (PSMs) 
from the database search were grouped into unmodified PSMs 
and phosphorylated PSMs. The PSMs corresponding to the 
unmodified peptides were subsequently removed, and the 
remaining PSMs were considered for the further analysis of 
phosphopeptide-spectrum matches (pPSMs). 

The next step consisted of a procedure that filters out a subset of 
top-scoring pPSMs that were least likely to be correct identifi-
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cations. This step was carried out via a 10-fold cross-validation, 
prior to the FDR-based identification of confident PSMs (i.e. 
those with FDR below a particular stringent threshold). First, the 
entire set of pPSMs was partitioned into 10 equal-sized non-
overlapping sets. In each of the 10 iterations of cross-validation, 
a classification model was then trained on 9/10-ths of the data 
and applied to the remaining 1/10-th. Once a score for each of 
the pPSMs (in the entire data set) was provided, those with the 
lowest scores were simply removed from the list. 

To train a classifier, all pPSMs with a MASCOT ion score �40 
were used in the positive set, whereas the remaining pPSMs 
from the forward (target) database were considered as the 
negative set. The resulting training data was highly imbalanced 
in both data sets; there were 2225 positive pPSMs and 14283 
negative pPSMs in data set I along with 1953 positive and 
13161 negative pPSMs in data set II. In order to balance positive 
and negative sets and still exploit all negatives, we trained a 
logistic regression model found through maximization of the 
weighted likelihood function. In particular, given a data set 
ሼሺܠ௜ǡ ௜ሻሽ௜ୀଵ௡ݕ , where ܠ௜ is a column vector of features (describing 
peptides) and ݕ௜ א ሼͲǡͳሽ  is the class variable, the weighted 
likelihood function can be expressed as 

݈ሺܟሻ ൌෑ ௜݌
௖೔௬೔ሺͳ െ ௜ሻ௖೔ሺଵି௬೔ሻ݌

௡

௜ୀଵ
 

where ܟ is a set of weights of the logistic regression model, 
௜݌ ൌ ܲሺݕ௜ ൌ ͳȁܠ௜ሻ ൌ ͳ ൫ͳ ൅ ೔൯Τܠ೅ܟି݁  is the output of the 
logistic regression classifier for data point ܠ௜, and Ͳ ൑ ܿ௜ ൑ ͳ is 
a cost (weight) assigned to data point  ܠ௜. 

The weight update rule for this classifier can be derived using 
the standard Netwton-Raphson technique in maximizing the log-
likelihood function ݈݈ሺܟሻ ൌ ��� ݈ሺܟሻ as 

ܟ ՚ ሻିଵܟ௟௟ሺܪ൅ܟ ڄ  ሻܟሺ݈݈׏

where ݈݈׏ሺܟሻ is the gradient and ܪ௟௟ሺܟሻ is the Hessian matrix of 
݈݈ሺܟሻ. It is relatively straightforward to derive that 

ሻܟሺ݈݈׏ ൌ ܡ۱ሺ்܆ െ  ሻܘ

and 

ሻܟ௟௟ሺܪ ൌ െ۱்܆ሺ۷ െ  ܆ሻ۾

where ܆ is the data matrix (augmented by a column of ones to 
prevent the separating hyperplane from passing through the 
origin of the coordinate system), ܡ and ܘ are the column vectors 
of class variables and their predictions on the training set, ܋ is 
the column vector of costs, ۾ ൌ ����ሼܘሽ, ۱ ൌ ����ሼ܋ሽ, and ۷ is 
the identity matrix. Because all values in ܘ  and ܋  are non-
negative and less than or equal to one, the Hessian matrix is 
negative semi-definite. This means that the set of weights ܟ 
found through this procedure globally maximizes the weighted 
likelihood function. The initial set of weights can be found using 
a weighted ordinary least-squares regression [43] as 

ܟ ൌ ሺ܆۱܆ሻିଵܡ۱்܆. 

To ensure that the total costs for positive and negative data sets 
were balanced, the costs for all positive data points were set to 
one and the costs for negative points were set to the ratio of 

positive and negative data points in the training set. Note that 
before learning the weights of the logistic regression model, we 
normalized the data using the z-score normalization and 
subsequently performed principal component analysis, with 99% 
of the variance retained, to remove (nearly) co-linear features 
and ensure invertibility of the Hessian. Both operations were 
performed on the training set only and then applied on the test 
set.  

It is important to mention that the rationale for choosing a 
relatively high MASCOT score threshold to construct positive 
examples was to ensure that the positives almost entirely 
consisted of correct pPSMs, while the set of negatives was 
allowed to be noisy. A linear classifier such as logistic 
regression is well suited to be trained from such data.   

Once low-scoring pPSMs are eliminated from the database, the 
final step of the data processing was a standard target-decoy 
procedure that was applied to output a set of confidently 
identified spectra. The prediction threshold that provided the 
most confident phosphopeptide identifications at a particular 
FDR was selected. Target-decoy-based FDR estimation was 
based on MASCOT scores only. 

2.3 Feature representation 
The features used to represent each PSM can be categorized into 
three groups: (i) sequence-based features, (ii) spectral features, 
and (iii) biochemical features. The sequence-based features 
generated for each peptide sequence contained amino acid 
compositions, peptide length, peptide mass, and the counts of 
putative phosphorylation sites (serine, threonine, and tyrosine 
residues) in the peptide. In total, 25 sequence-based features 
were generated for each peptide sequence. The spectral features 
included: the number of fragment ion pairs with an m/z 
difference of 98, 80, and 49 (doubly charged); the intensity ratio 
between the precursor ion with 98 Da neutral loss and the base 
peak; intensity ratio between the precursor ion with a neutral 
loss of 18 Da and the base peak; the percentage of peaks with 
intensity above 1% of the total intensity; and the intensity 
difference between the highest and second highest peak. Finally, 
the biochemical features used in the machine-learning model 
included the predicted phosphorylation propensity by using the 
DisPhos phosphorylation site predictor [3]. DisPhos is a multi-
species, kinase-independent predictor of phosphorylation sites 
that exploits local amino acid sequence profiles as well as 
predicted structural properties of the residue neighborhood (e.g. 
intrinsically disordered regions). These features included the 
mean and maximum DisPhos scores in the peptide among 
multiple S/T/Y sites. It is worth noting that the DisPhos features 
were generated when the entire protein sequence was used for 
the prediction of phosphorylation sites (residues outside of the 
tryptic peptide sequence were also exploited). Thus, the same 
peptide can contain different phosphorylation scores if present in 
different proteins or species, depending upon its flanking 
regions. 

 

3. EXPERIMENTS AND RESULTS 
3.2 Accuracy of classification models 
To characterize the accuracy and thoroughly evaluate 
classification models, we estimated the area under the Receiver 
Operating Characteristic (ROC) curve for the logistic regression 
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Figure 2. ROC curve for the trained classifiers. The areas under the
ROC curve were estimated to be 0.86 and 0.80 for data set I and data set
II, respectively. The straight gray line shows the accuracy of a random
classifier. 

 

classifiers on each of the data sets. The ROC curve displays true 
positive rate of classification as a function of false positive rate 
and was calculated over a set of decision thresholds. For data set 
I, we estimated the area under the ROC curve (AUC) to be 0.86. 
Similarly, for data set II we estimated an AUC of 0.80. Both 
ROC curves are shown in Figure 2. It is important to mention 
that while the set of positive data points can be considered to be 
of high quality, there may be a significant fraction of negative 
data points that were incorrectly assigned class in our data set 
construction. Therefore, the true accuracy of the classifier is 
likely to be higher than estimated. 
 

3.1 Target-decoy search of the filtered PSMs 
In order to report the result of phosphopeptide identification at a 
given FDR, PhosART combines the predicted probability of 
correct identification and MASCOT ion scores. The integration 
method simply removes the pPSMs with low scores by the 
machine-learning classifier. Based on the retained subset of 
pPSMs, the target-decoy approach was subsequently applied to 
the original MASCOT scores to report the actual identification 
result at a given false discovery rate. 

Figure 3A shows the number of retained pPSMs at different 
probability thresholds for both data sets. Similarly, Figure 3B 
shows the number of phosphopeptide identifications at given 
FDR thresholds (1% and 5%). To obtain stable estimates, the 
numbers in each figure were averaged over 10 different 10-fold 
cross-validation runs, each with a different partitioning. 
Interestingly, the number of confidently identified pPSMs was 
not reduced with the decreasing pool of available pPSMs. 
Specifically, the number of phosphopeptide identifications 
exhibits a unique distribution pattern. For data set I, at the 
prediction threshold of W = 0.2 (i.e. when pPSMs with scores 
below 0.2 were permanently removed from the pPSM pool), 
approximately 30% of pPSMs were removed from the pool, yet 
the number of identified peptides increased by 14.6% (4745 vs. 
4142). Similarly, the removal of pPSMs with scores below W = 
0.3 increased the number of identified phosphopeptides in data 
set II by 10.3% (3815 vs. 3460). The threshold providing the 

most identifications was relatively consistent across the two data 
sets.  

These results are also summarized in Table 1 and analyzed for 
statistical significance. Given a particular range of scores 
(defined by the threshold value W), the number of identified 
peptides can be considered to follow a Gaussian distribution 
with mean P and standard deviation V (e.g. for W = 0.1 and data 
set I, PI(0.1) = 4512.1 and VI(0.1) = 66.7). Therefore, the 
probability that the number of identified peptides is less than or 
equal to 4142 (for data set I) or 3460 (for data set II) 
corresponds to the value of the cumulative distribution function 
of the Gaussian distribution with parameters P and V at point 
4142 (data set I) or 3460 (data set II). This probability 
corresponds to the P-value that the proposed algorithm provides 
an increase in the number of identified phosphopeptides.  

 

 
Figure 3. A. The number of retained pPSMs for different probability 
thresholds. The x-axis shows the interval of scores used to retain pPSMs. 
B. The number of identified phosphopeptides as a function of the score 
threshold used to retain pPSMs, at 1% and 5% FDR levels. 

 

3.3 Impact of different types of features 
To evaluate the impact of each category of features, we 
constructed five predictors, each based on a different feature set. 
Namely, we separately evaluated sequence features, spectral 
features, and the features derived from the predicted propensity 
of phosphorylation sites. Strictly for comparison purposes, we 
also implemented a model that assigned probability scores from 
a uniformly random distribution. Top-scoring pPSMs were 
selected at the FDR cutoffs of 1% and 5%, using the same 
protocol described above.  

The results corresponding to each of the above-mentioned 
predictors are shown in Figure 4. The baseline model identified 
4142 (1% FDR) and 5561 (5% FDR) pPSMs in data set I. In 
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Figure 4. Phosphopeptide identification from different predictors based
on individual features in A) data set I and B) data set II. The x-axis
represents the probabilities assigned by different predictors, whereas the
y-axis represents the number of identified phosphopeptides at 1% FDR
or 5% FDR. C. The Venn diagram showing the number of identified
phosphopeptides according to the baseline model and PhosART. 

data set II, it identified 3460 (1% FDR) and 5308 (5% FDR) 
pPSMs, respectively. The random model identified 3715 (1% 
FDR) and 4998 (5% FDR) pPSMs in data set I as well as 3132 
(1% FDR) and 4811 (5% FDR) pPSMs in data set II. As 
expected, the reduction in performance of a random model was 
approximately 10%, which matches the percentage of peptides 
removed when they are assigned prediction scores from a 
uniformly random distribution. 

 
Table 1. The number of identified phosphopeptides (and standard error) 
averaged over ten different 10-fold cross-validation runs, each with a 
different partitioning. The threshold column (Thr) indicates the interval 
of PhosART scores for the retention of pPSMs in the data set (i.e. the 
pPSMs with scores below the lower limit were removed). The * marks 
in the table correspond to the situations with significant P-values, in 
each case below 10�13). The remaining entries resulted in P-values 
between 0.02 and 1. 
 

� Data set I Data set II 

Thr No. identified peptides No. identified peptides 

[0,1] 4142.0 3460.0 
[0.1,1] 4512.1 ± 21.1 * 3658.1 ± 1.7 * 
[0.2,1] 4745.1 ± 9.5 * 3714.1 ± 2.8 * 
[0.3,1] 4466.7 ± 9.9 * 3814.6 ± 15.4 * 
[0.4,1] 4211.2 ± 10.9 3448.6 ± 10.3 
[0.5,1] 3743.4 ± 11.5 3074.8 ± 8.2 
[0.6,1] 3301.4 ± 16.5 2339.3 ± 9.7 
[0.7,1] 2493.5 ± 18.7 1704.2 ± 10.4 
[0.8,1] 1587.4 ± 6.5 851.7 ± 4.7 
[0.9,1] 720.4 ± 9.9 188.7 ± 1.5 

 
 

Figure 4 also shows that the PhosART predictor significantly 
increases the number of identified pPSMs. As specified, when 
using multiple categories of features, PhosART identified more 
pPSMs than by using only individual categories of features. 
However, the contribution of each category of features varies. 
When only spectral features or sequence features were used to 
train the predictor, fewer peptides were identified at the same 
FDR level than by both sequence and spectral features or all 
three categories of features together (Figure 4).  

While the features derived from the predicted propensity of 
phosphorylation have not improved performance when applied 
in isolation, they had a positive effect when combined with 
sequence and spectral features. For example, in data set I, at 1% 
FDR level, 4142 phosphopeptides were identified by the 
baseline model, 4129 were identified when using sequence 
features, 4185 using spectral features, 4599 using sequence and 
spectral features, and 4745 by using all features. In data set II, at 
1% FDR level, 3460 phosphopeptides were identified by the 
baseline model, 3629 when using sequence features, 3506 when 
using spectral features, 3796 using sequence and spectral 
features, and 3815 by using all features. 

We also compared the phosphopeptides identified by the 
baseline and the PhosART approach and found that a large 
fraction of identified phosphopeptides between these two 
methods is common, ranging between 75% and 82%. The 
peptides identified by PhosART covered 91% and 93% of those 
identified by the baseline model. At the level of unique peptides, 
in data set I 251 (21.4%) more unique peptides were identified, 
while 150 (10.7%) more unique peptides were identified in data 
set II. 

 

3.3 Impact of phosphorylation prediction 
To further demonstrate the effect of the phosphorylation 
propensity predicted by DisPhos, we investigated the 
distribution of DisPhos scores amongst different subsets of 
pPSMs, as shown in Figure 5. Six subsets were constructed, 
including phos-all, phos-fdr1, phos-other, nophos-all, nophos-
fdr1, and nophos-other. The phos-all data set included all 
pPSMs reported by MASCOT (Figure 1). The phos-fdr1 data set 
was the set of confidently identified pPSMs from phos-all, at the 
FDR cutoff of 1%. The phos-other data set contained the 
remaining pPSMs in phos-all excluding the ones in phos-fdr1. 
Similarly, the nophos-all set included all PSMs of the non-
modified peptides. The nophos-fdr1 was a subset of nophos-all 
PSMs that included those identified at 1% FDR cutoff. The 
nophos-other subset contained the remaining PSMs in nophos-
all. We note that only peptides with S/T/Y residues were used in 
the nophos data set. The mean and maximum DisPhos scores 
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over all phosphorylatable sites were calculated for each peptide 
in these six data sets.  

Figure 5 shows the box plots of the maximum DisPhos scores in 
data set I (A) and data set II (B). Compared to the other subsets, 
phos-fdr1 set exhibits the highest average of maximum DisPhos 
scores. The mean and maximum of DisPhos scores follow the 
same trend. The significant difference between the confidently 
identified phosphopeptides and non-phosphopeptides (P = 
8.1�10�49 and P = 5.0�10�29; t-test) in both data sets indicates that 
the sequence pattern around the phosphorylation sites could be 
utilized here to discriminate phosphopeptides with high 
propensity to be phosphorylated from other phosphopeptides 
and thus to reduce the probability that pPSMs are incorrect. 

 

 
Figure 5. Box plot of DisPhos scores in different subsets of pPSMs: (A) 
for data set I and (B) for data set II. The x-axis shows the data subset. 
The y-axis represents the distribution of maximum scores over all 
phosphorylatable residues.  

 

3.4 Quality of site localization  
In PhosART we used logistic regression to assign a probability 
score to each pPSM. Through combining this probability score 
and MASCOT ion score, 10-15% more phosphopeptides were 
identified. To investigate the quality of novel sites identified by 
PhosART, we utilized the A-score algorithm to determine site 
localization, i.e. to identify those peptides/sites with A-scores 
greater than or equal to 19 [32] in the set of pPSMs that were 
identified by PhosART. Peptides with a single phosphorylatable 
site were ignored in this analysis. 
As shown in Figure 6A, by using the baseline model (at 1% 
FDR), 66.2% of peptides in data set I and 58.3% in data set II 
had A-scores of at least 19. This percentage stayed roughly 
unchanged in the PhosART results where 64.3% of 
phosphopeptides in data set I and 57.0% in data set II had A-
scores of 19 and above. In comparison, running the A-score 
algorithm on the randomly selected pPSMs from data set I 
returned only around 40% pPSMs with score 19 and higher. 
This implies that the low quality pPSMs may have a low chance 

of receiving high A-scores. We further investigated the fraction 
of predicted S/T/Y sites in the identified phosphopeptides as 
reported by two different models, baseline and PhosART. The 
results indicate that the change is minimal (Figure 6B) which 
suggests that PhosART model equally captured the sequence 
and spectral patterns for each different residue and did not alter 
the biologically innate S/T/Y distribution. 

 
 
Figure 6. A. The comparison of the percentage of confidently localized 
phosphorylation sites (i.e., with A-score �19) in the selected pPSMs 
based on the PhosART probability scores (red), the baseline scores 
(gray) and randomly selected PSMs (blue) in data sets I and II.  B. The 
percentage of S/T/Y residues in the baseline and PhosART 
identifications. 

 

4. DISCUSSION 
In this paper we describe a post-processing method developed to 
improve phosphopeptide identification in shotgun proteomics. 
The method employs diverse feature sets to construct a logistic 
regression predictor that assigns a probability score to each 
pPSM. The rationale for this method is that it simply exploits 
signatures of pPSMs that current database searching engines do 
not incorporate into the matching algorithm. By utilizing a range 
of sequence, spectral, and biological features, our method 
identified 10-15% more phosphopeptides at the same false 
discovery rate (FDR) as common search engines such as 
MASCOT.  
PhosART conducts online training and prediction of pPSMs on 
a set of pPSMs that were identified by any peptide search engine, 
and thus does not rely on any prior training. In addition, the 
training data used by PhosART does not contain pPSMs from 
decoy peptides. As a result, the same target-decoy search can be 
used to estimate FDR in phosphopeptide identification. Thus, 
PhosART is ready to be used to improve phosphopeptide 
identification without a significant computational overhead. At 
this stage, PhosART exploits the fact that current search engines 
do not incorporate all relevant features for identification of 
phosphopeptides. As those search engines improve, the need for 
this post-processing technique is expected to diminish. 
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In training our model we decided to use simple linear 
classification. While, in principle, non-linear models such as 
neural networks or support vector machines could be employed 
in this step, linear classification with weighted likelihood has 
many desirable properties, such as applicability to small data 
sets or data sets with much higher class imbalance than observed 
in this work. The weighted likelihood function improved the 
area under the ROC curve of the logistic regression classifier by 
1-2% in our experiments (data not shown). While this is a small 
improvement in its ranking ability, this method provides more 
meaningful scores from the classifier and naturally addresses the 
class imbalance problem. To ensure invertibility of the Hessian, 
we applied normalization and principal component analysis to 
the original data set. Although we have not tried it in this work, 
a better effect on classifier performance could be achieved using 
regularization in the optimization step. 
In order to provide stable FDR estimates, we only utilized data 
sets where phosphopeptide affinity enrichment was applied. 
However, this method can also be used for any proteomic search 
in order to explore the existence or quantity of phosphopeptides. 
In one of such preliminary analyses we found that the predicted 
biological features (by DisPhos) provided more substantial 
improvements (data not shown). Therefore, we believe that there 
exist differences between enriched and non-enriched data sets 
and that all features used in this work are useful. In principle, 
there are no obstacles in exploiting the knowledge that a 
particular site has already been observed to be phosphorylated 
(instead of predicting the propensity for phosphorylation); 
however, we decided to only explore prediction of phosphory-
lation sites. 
Finally, although this work only provides a proof of concept in 
several aspects of phosphopeptide identification, it is significant 
because it suggests that similar techniques can be applied to 
other post-translational modifications. Such studies will be more 
realistic as the databases of identified post-translationally 
modified sites become larger and their fragmentation spectrum 
patterns better understood.  
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