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Abstract

Accurate prediction of the impact of genomic variation on phenotype is a major goal

of computational biology and an important contributor to personalized medicine.
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Computational predictions can lead to a better understanding of the mechanisms

underlying genetic diseases, including cancer, but their adoption requires thorough

and unbiased assessment. Cystathionine‐beta‐synthase (CBS) is an enzyme that

catalyzes the first step of the transsulfuration pathway, from homocysteine to

cystathionine, and in which variations are associated with human hyperhomocystei-

nemia and homocystinuria. We have created a computational challenge under the

CAGI framework to evaluate how well different methods can predict the phenotypic

effect(s) of CBS single amino acid substitutions using a blinded experimental data set.

CAGI participants were asked to predict yeast growth based on the identity of the

mutations. The performance of the methods was evaluated using several metrics. The

CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo

system in a model organism when classification models were trained on human

disease data. We also discuss the variations in difficulty of prediction for known

benign and deleterious variants, as well as identify methodological and experimental

constraints with lessons to be learned for future challenges.

K E YWORD S

CAGI challenge, critical assessment, cystathionine‐beta‐synthase, machine learning, phenotype

prediction, single amino acid substitution

1 | INTRODUCTION

One of the central challenges in biology is to determine the impact of

genomic variation on the phenotype(s) of an organism. As the amount

of genomic data increases and accumulates at an exponential rate,

comprehensive, and accurate prediction algorithms are needed when

biological experiments are expensive or difficult to execute (Fernald,

Capriotti, Daneshjou, Karczewski, & Altman, 2011). Missense

mutations are the most studied class of protein‐altering variants;

however, even today the algorithms often disagree on the patho-

genicity prediction of the variants (Ioannidis et al., 2016). To

determine the optimal use of each algorithm in different tasks, a

thorough and unbiased methodological assessment is required. The

ultimate aim is to attain a better understanding of the complex
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genotype–phenotype relationship, and, most importantly, provide

the basis for clinical application to improve human health

(Rost, Radivojac, & Bromberg, 2016). Since 2010, the Critical

Assessment of Genome Interpretation (CAGI) experiment has been

seeking to address these needs by evaluating bioinformatics tools

developed for phenotype prediction from genomic variation data

(Hoskins et al., 2017).

Cystathionine‐beta‐synthase (CBS, MIM# 613381) is an extensively

studied vitamin‐dependent enzyme involved in cysteine biosynthesis

via the transsulfuration pathway. The molecular architecture of human

CBS comprises an N‐terminal heme‐binding domain (residues 1–70),

followed by the catalytic domain (residues 71–381), and a C‐terminal

regulatory domain (residues 412–551; Majtan et al., 2018). The heme

domain, which is found only in mammalian forms of CBS, lacks any

significant structural elements and exhibits significant sequence

diversity. Changes in the heme's coordination environment can be

transmitted to the active site ~20Å away, leading to inhibition of CBS

activity (Weeks, Singh, Madzelan, Banerjee, & Spiro, 2009). The central

domain belongs to the family of pyridoxal‐5′‐phosphate (PLP)‐
dependent enzymes, with the PLP cofactor bound via a Schiff base to

K119 in the CBS active site. The C‐terminal domain, also known as the

Bateman module, contains two consecutive CBS‐motifs (residues

412–471 and 477–551) that form distinct binding sites for S‐
adenosyl‐methionine (AdoMet) and enable CBS homotetramerization.

Two high‐affinity and four low‐affinity AdoMet binding sites have been

identified per CBS tetramer, with distinct roles proposed in the

regulation and activation (Pey, Majtan, Sanchez‐Ruiz, & Kraus, 2013).

Catalytic and regulatory domains are joined by a flexible linker

(residues 382–411) that is sensitive to proteolysis. Targeted proteolysis

of CBS results in a truncated, dimeric, and more active form of the

enzyme, adding another layer of CBS regulation (Skovby, Kraus, &

Rosenberg, 1984; Zou & Banerjee, 2003).

Homocystinuria due to CBS deficiency (MIM# 236200) is an

autosomal recessive inborn error of sulfur amino acid metabolism,

characterized by increased levels of homocysteine in the urine (Mudd,

Levy, & Kraus, 2001), myopia, osteoporosis, or other skeletal

abnormalities. The estimated worldwide prevalence of homocystinuria

is approximately 1 in 100,000 (Moorthie, Cameron, Sagoo, Bonham, &

Burton, 2014). More than 160 different disease‐associated variants

have been identified in the CBS gene (http://cbs.lf1.cuni.cz/index.php).

The majority of these are substitutions that do not involve catalytic

residues, suggesting that their effect resides in structural or conforma-

tional perturbations leading to a misfolded protein (Majtan et al., 2018).

About one‐half of homocystinuric patients respond to high doses of

pyridoxine, the soluble form of PLP (Mudd et al., 2001) and several

mutations are clearly pyridoxine remediable (B6‐responsive homo-

cystinuria): p.A114V, p.R266K, p.R369H, p.K384E, p.L539S, and the

most common substitution p.I278T, which accounts for ~20% of all

homocystinuric alleles (Dimster‐Denk, Tripp, Marini, Marqusee, & Rine,

2013; Moat et al., 2004; Skovby, Gaustadnes, & Mudd, 2010).

Since CBS is well studied and its ex‐vivo mutation effects are easily

quantified, it is a tractable system for investigating phenotype–

genotype relationships, making it an attractive target for the CAGI

challenges. Here we present an assessment of computational predic-

tions on the effects of single amino acid substitutions in the function of

CBS. In the CAGI1 (2010), CBS challenge, participants were asked to

predict yeast growth rates when compared with wild‐type yeast based

on amino acid substitution information. This data set comprised 51

synthetic single amino acid substitutions within the human CBS coding

region. In the CAGI2 (2010), CBS challenge, a larger set of variants (78

amino acid substitutions) that had been observed in patients with

homocystinuria was provided for the predictors. In both challenges,

participants were asked to submit predictions on the effect of the

variants in the function of CBS at high (400 ng/ml) and low (2 ng/ml)

cofactor (pyridoxine) concentration. Both CBS predictions were

blinded experiments. At the time these challenges took place, the

experimental effects of the mutations had not yet been published.

Altogether 38 predictions from CAGI1 and CAGI2 were assessed.

Methods employed varied from the purely structural to ones

combining both structural and sequence conservation information or

annotation, and from meta‐predictors (models that use the predictions

of other methods as features) to methods driven mainly by sequence,

while one submission was a set of random predictions.

In general, deleterious mutations were better predicted than variants

with minor or no effects on phenotype, with the hardest to predict effects

often involving variants with weak sequence and structural signals. The

use of distinct assessment criteria revealed differences in performance

between methods, with methods integrating sequence, structure, and

functional features performing best overall.

2 | METHODS

2.1 | Dataset

The CAGI1 CBS challenge included 51 synthetic single amino acid

substitutions within the human CBS (Table 1), while the CAGI2 CBS

challenge included 78 single amino acid variants that had been

observed in patients with homocystinuria. The experimental data

used in CAGI1 and CAGI2 were published after the challenges were

closed by Dimster‐Denk et al. (2013) and Mayfield et al. (2012),

respectively. Only one variant, p.N228K, overlapped between CAGI1

and CAGI2. In addition, four positions (p.H65, p.L154, p.V354, and

p.V371) overlap between the two challenges but the amino acid

substitutions are different. The variant nomenclature refers to the

human CBS cDNA (Refseq NM_000071.2).

The functionality of the variants was tested in an in vivo yeast

complementation assay, where the human CBS allele is expressed in yeast

and functionally complements the yeast ortholog, CYS4, which was

removed from the chromosome. In this assay, growth is dependent upon

the level of mutant human CBS function, and growth rates are expressed

as a percentage relative to wild‐type grown with the same amount of

exogenous pyridoxine supplementation. An experimental standard

deviation is also available based on 3–4 repeated assays. The assay

was performed in the presence of high (400 ng/ml) and low (2 ng/ml)

pyridoxine concentrations. For a detailed description of this assay, see

Mayfield et al. (2012) and Dimster‐Denk et al. (2013). Participants were
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TABLE 1 CAGI1 prediction data set: 51 single amino acid substitutions within the human CBS coding region. CAGI2 prediction data set: 78
single amino acid variants that had been observed in patients with homocystinuria. Current (2019) ClinVar pathogenic (P) or likely pathogenic
(LP) status of the CAGI2 variants in relation to homocystinuria are shown

CAGI1 CAGI2

Nucleotide variant Protein variant Nucleotide variant Protein variant ClinVar (2019)

c.194A>T p.H65L c.194A>G p.H65R

c.250A>G p.I84V c.205G>C p.A69P

c.353T>G p.V118G c.209C>T p.P70L U

c.370C>G p.L124V c.233C>G p.P78R LP

c.370C>G, c.371T>C p.L124A c.253G>C p.G85R

c.379A>G p.I127V c.260C>A p.T87N

c.424A>G p.I142V c.262C>T p.P88S

c.424A>G,c.425T>C p.I142A c.302T>C p.L101P P/LP

c.425 T>A p.I142N c.304A>C p.K102Q

c.460C>G, c.461T>C p.L154A c.306G>C p.K102N LP

c.461T>C p.L154P c.325T>C p.C109R P/LP

c.529A>G p.K177E c.341C>T p.A114V P/LP

c.541C>G, c.542T>C p.L181A c.346G>A p.G116R LP

c.562A>G p.I188V c.361C>T p.R121C C

c.566T>C p.V189A c.362G>A p.R121H LP

c.629T>A p.L210Q c.362G>T p.R121L

c.640A>G p.I214V c.376A>G p.M126V

c.659T>G p.L220R c.384G>T p.E128D

c.684C>A p.N228K c.393G>C p.E131D U

c.718A>G p.I240V c.415G>A p.G139R P

c.718A>G, c.719T>C p.I240A c.429C>G p.I143M

c.721C>G p.L241V c.430G>A p.E144K P/LP

c.742C>G, c.743T>C p.L248A c.434C>T p.P145L P

c.755T>C p.V252A c.442G>C p.G148R LP

c.772G>C p.G258R c.451G>A p.G151R

c.800A>T p.K267M c.457G>C p.G153R U

c.799A>G p.K267E c.461T>A p.L154Q

c.811A>G p.K271E c.463G>A p.A155T

c.829A>C, c.830T>C p.I277P c.473C>T p.A158V

c.839T>C p.V280A c.494G>A p.C165Y P

c.856A>G, c.857T>C p.I286A c.502G>A p.V168M C

c.877C>G p.L293V c.539T>C p.V180A U

c.931A>G p.I311V c.572C>T p.T191M P

c.1012C>G, c.1013T>C p.L338A c.593A>T p.D198V

c.1023A>T p.Q341H c.671G>A p.R224H

c.1034T>C p.L345P c.676G>A p.A226T LP

c.1061T>G p.V354G c.683A>G p.N228S U

c.1067T>C p.V356A c.684C>A p.N228K

c.1073T>C p.V358A c.700G>A p.D234N P

c.1112T>C p.V371A c.715G>A p.E239K

c.1115T>C p.V372A c.770C>T p.T257M P/LP

c.1120C>G, c.1121T>C p.L374A c.775G>A p.G259S U

(Continues)
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asked to submit predictions on the effect of the variants on the function

of CBS both in high and low‐pyridoxine concentrations. The submitted

prediction was requested as the percent of growth when compared with

wild‐type yeast, with a standard deviation. The predictions were then

assessed against the percent of growth values actually measured for each

substitution in the yeast assay.

2.2 | Prediction assessment

The correlation between the predicted effects of the mutations and

the actual effects serves as an initially simple but powerful measure

to assess the accuracy of the prediction methods. Because the

mutation data are not derived from a normal distribution, nonpara-

metric tests were used to assess the methods. Both Spearman's rank

TABLE 1 (Continued)

CAGI1 CAGI2

Nucleotide variant Protein variant Nucleotide variant Protein variant ClinVar (2019)

c.1147A>T p.T383S c.785C>T p.T262M P/LP

c.1153T>C, c.1154T>A, c.1155C>A p.F385Q c.796A>G p.R266G

c.1153T>C p.F385L c.797G>A p.R266K P/LP

c.1223G>T p.W408L c.824G>A p.C275Y

c.1268T>C p.L423P c.833T>C p.I278T P

c.1298A>T p.H433L c.862G>A p.A288T U

c.1370G>A p.G457E c.862G>C p.A288P

c.1468A>C p.I490L c.904G>A p.E302K LP

c.1646A>G p.D549G c.919G>A p.G307S P

c.959T>C p.V320A LP

c.992C>A p.A331E LP

c.992C>T p.A331V

c.1007G>A p.R336H LP

c.1039G>A p.G347S LP

c.1046G>A p.S349N

c.1055G>A p.S352N

c.1058C>T p.T353M P/LP

c.1060G>A p.V354M

c.1063G>C p.A355P

c.1081G>A p.A361T

c.1105C>T p.R369C U

c.1106G>A p.R369H U

c.1106G>C p.R369P

c.1109G>A p.C370Y LP

c.1111G>A p.V371M LP

c.1126G>A p.D376N

c.1150A>G p.K384E P

c.1173G>A p.M391I

c.1265C>T p.P422L U

c.1301C>A p.T434N U

c.1304T>C p.I435T U

c.1316G>A p.R439Q C

c.1330G>A p.D444N P/LP

c.1367T>C p.L456P

c.1397C>T p.S466L U

c.1572C>A p.Q526K

Note: Positions are based on Refseq NM_000071.2. C denotes conflicting interpretations of pathogenicity, U uncertain significance.
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correlation and Kendall's Tau correlation (KCC) were used to assess

each algorithm's predictions against the observed growth rates. The

root‐mean‐square deviation (RMSD) was also calculated to estimate

the difference between experimental and predicted values. To assess

the accuracy of the algorithms in a clinical sense, evaluation was also

conducted against a binary version of the experimental growth rates.

A threshold of 0 was chosen for the binary version and the

performance was evaluated in terms of area under the ROC curve

(AUC), sensitivity, specificity, accuracy, and positive/negative pre-

dictive value (Lever, Krzywinski, & Altman, 2016). For experimental

data, the total number of negatives (no growth substitutions) were

defined as N =TN+FP and the total number of experimental positives

(growth detected) as P =TP+FN. All the performance indices are

shown in Table S1. An overall ranking of the methods was defined as

a mean ranking of three different measures (KCC, AUC, and RMSD)

shown in Table S2. These three measures were chosen since they

assess complementary aspects of prediction performance.

2.3 | Bootstrapping

To assess the robustness of our comparison of different prediction

models, and to identify any possible performance bias generated by

outliers, we performed bootstrap simulation on measurements.

10,000 random samples were generated using sampling with

replacement of the experimental data. The resulting evaluation

metrics (KUC, AUC, and RMSD) were plotted as bar plots with error

bars representing one standard deviation below and above the mean

value for each metric generated through iterations of bootstrap

sampling of data‐points.
To estimate the statistical significance of pairwise prediction

comparisons, we applied bootstrap simulation (as described above) to

the metrics of interest (KCC, AUC, and RMSD). We then performed

an all‐vs‐all comparison recording the p‐values, and corrected for

multiple hypothesis errors using the Bonferroni method.

2.4 | Characterization of easy and hard to predict
variants

We examined the mutation effects that were easiest and hardest to

predict to determine whether they shared any common features. We

first identified these mutations by summing the binary predictions (0

for no growth, > 0 for growth) at low‐pyridoxine conditions across all

methods for each variant. The variants with the lowest and highest

summed scores were individually examined in terms of sequence,

solvent‐accessibility, and location within the CBS structure.

To determine the likelihood of a variant being benign or deleterious

through sequence analysis, scores for amino acid substitutions were

taken from the BLOSUM90 substitution matrix (Henikoff & Henikoff,

1992). Scores of −1, 0, or 1 were classified as moderate substitutions,

that is, substitutions with a likelihood of arising by chance in terms of

evolution and therefore of unknown effect on CBS function. Scores > 1

were classified as conservative substitutions with a projected benign

effect on CBS, while scores < −1 were classified as nonconservative,

indicating a potentially deleterious effect on CBS function. Solvent

accessible surface area (SASA) was calculated for the human CBS

monomer (PDB id 4COO) using GetArea (Fraczkiewicz & Braun, 1998)

and when different, dimer SASA results were noted. Secondary

structure assignments and analysis were according to PDB id 4COO

and visual inspection of the structure.

2.5 | Method uniqueness in prediction results

For CAGI2, evaluation of the specific contribution of each prediction to

the variance with experimental results was addressed using a multiple

linear regression model. First, a multiple linear regression model was

built with the best methods from each group. The top method from each

group was chosen based on the highest adjusted R2 values of every

single method, to exclude predictions using modified versions of the

same methods. The final methods included in the model were SID#16,

23, 26, 27, 29, 34, 36, and 41. Subsequently, methods were removed one

at a time, and the linear regression equation was recalculated. The

contribution of each method to the model was estimated from the delta

adjusted R2 values. SID#25 was excluded from the model as it lacked

predictions for 10 substitutions.

3 | RESULTS

3.1 | CAGI1 challenge

In the CAGI1 CBS challenge, participants were asked to submit

predictions to assess the impact of 51 single amino acid substitutions

upon the function of the human CBS enzyme in both high (400 ng/ml)

and low (2 ng/ml) pyridoxine concentrations. The function of the

variants had been experimentally tested in an in vivo yeast comple-

mentation assay (Dimster‐Denk et al., 2013). Twenty predictions from

13 groups were submitted to this challenge (Table 2), which were

assessed blindly. A summary of each method is described in Supporting

Information. Of the 13 participating groups, nine submitted one

prediction, two contributed two, one submitted three and one provided

four different submissions. Some methods used sequence‐only or

structure‐only information, some employed meta‐predictors, and others

combined sequence, structural and annotation data. SID#17 (submission

identification number) submitted only raw data without predictions and

was excluded from the assessment. Most participants (18/19) provided

predictions for both high and low‐pyridoxine concentration; however,

seven predictions did not distinguish between the different cofactor

levels. The majority of the predictions did not include standard

deviations (13/19), and most of the methods that included estimates

of reliability for each prediction appeared to be arbitrary (constant

values like σ= 5, 10, and 15; n =5/7).

3.1.1 | Assessment across different performance
metrics

No single evaluation measure can capture a method's performance;

thus, various measures were used to assess the phenotype prediction
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TABLE 2 Overview of the phenotype prediction programs used to generate predictions for the CAGI1 and CAGI2 CBS challenges

Submission ID Group ID Program name Program features Reference

CAGI1

SID#1 Lichtarge lab Evolutionary action working
version

Sequence and structure

SID#2 Bromberg lab SNAP Sequence, structure, and
annotation

Bromberg and Rost (2007)

SID#3 Wei lab SAPRED Structure Ye et al. (2007)

SID#4 Switch lab FoldX Structure Schymkowitz et al. (2005)

SID#5 Vihinen lab PON‐P Meta‐predictor Olatubosun, Valiaho, Harkonen, Thusberg, and
Vihinen (2012)

SID#6 Vihinen lab PolyPhen2 Sequence, structure Adzhubei et al. (2010)

SID#7 Vihinen lab SNPanalyzer Sequence Yoo, Lee, Kim, Rha, and Kim (2008)

SID#8 Vihinen lab Panther Sequence Thomas et al. (2006)

SID#9 Casadio lab IMutant3 Structure and thermal
stability

Capriotti, Fariselli, Rossi, and Casadio (2008)

SID#10 Casadio lab IMutant4 Structure and thermal
stability

SID#11 Casadio lab IMutant baseline Structure and thermal
stability

SID#12 Forman lab SDM Sequence and structure

SID#13 BioFolD Unit IMutant3 Sequence and structure Capriotti et al. (2008)

SID#14 Karchin lab Sequence and structure

SID#16 Mooney lab Meta‐predictor

SID#18 Forman lab SDM Sequence and structure

SID#19 Tavtigian lab AlignGVGD Sequence Tavtigian, Byrnes, Goldgar, and Thomas (2008)

SID#20 Tavtigian lab AlignGVGD Meta‐predictor

CAGI2

SID#16 Bromberg lab SNAP Sequence and structure Bromberg and Rost (2007)

SID#19 Tosatto lab Structure

SID#20 Tosatto lab Structure

SID#21 Tosatto lab Structure

SID#22 Tosatto lab Structure

SID#23 Tosatto lab Structure

SID#24 Tosatto lab D100 roll Random

SID#25 Switch lab Structure

SID#26 Lichtarge Lab Evolutionary Action Sequence and structure Katsonis and Lichtarge (2014)

SID#27 Vihinen lab PON‐P Meta‐predictor Olatubosun et al. (2012)

SID#28 Vihinen lab PON‐P Meta‐predictor Olatubosun et al. (2012)

SID#29 Shatsky lab Meta‐predictor

SID#30 Shatsky lab Meta‐predictor

SID#32 Shatsky lab Meta‐predictor

SID#33 Mooney lab Meta‐predictor

SID#34 Sunyayev lab Sequence and structure

SID#35 Moult lab SNPs3D SVM Sequence and structure Yue and Moult (2006)

SID#36 Moult lab SNPs3D SVM Sequence, structure, and
annotation

SID#41 Mooney lab Meta‐predictor
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programs, including Kendall's Tau correlation coefficient (KCC),

precision/recall, accuracy, and root‐mean‐square deviation (RMSD),

inter alia (Table S1). For KCC, most of the prediction methods display

statistically significant correlation with experimental data at both

pyridoxine concentrations (Figure 1). Methods SID#2, SID#5, and

SID#20 showed strong correlation at both high and low cofactor

concentrations. SID#7 was the second best at high pyridoxine

concentration (τ = 0.50, p = 4.87 x 10−6); however, it showed little

correlation at low cofactor concentration (τ = 0.25, p = .034). For

RMSD, SID#5, which is a meta‐predictor, was the best and second

best at low and high cofactor concentration, respectively. The highest

accuracy of 82.4% was achieved by three methods: SID#1, 6, and 20

(Table S1). The first two combined sequence and structure informa-

tion, while SID#20 is a meta‐predictor, integrating several prediction

methods. SID#2, 3, 9, and 11 achieved 100% sensitivity, whereas

other methods had the highest specificity (94–100%, SID#7 and

SID#14) at both cofactor concentrations. The most sensitive models

were mostly structure‐based. The majority of the methods had good

results for PPV, where the values varied from 65% to 100%;

however, for NPV, the values displayed a much wider range (0–90%),

meaning that the methods are better at predicting benign than

deleterious variants.

3.1.2 | Overall ranking

To carry out an overall performance assessment, ranks of the

prediction methods based on KCC, AUC, and RMSD were averaged

to obtain the overall ranks of the methods (Table S2). This revealed

SID#2 as the best performing method, having a mean rank of 2.2

across all measures, with SID#5 close behind (mean rank of 2.3). The

first method is based on sequence information integrated with

functional and structural annotations, while the other is a meta‐
predictor. One of the methods that did not perform as well, SID#16,

was biased toward the prediction of low growth variants, whereas

SID#13 was more conservative, with moderate to high growth

predicted for most of the substitutions.

To estimate the robustness of the rankings, bootstrapping was

performed (see Methods). Error bars for each metric were obtained

by random resampling of the 51 variants 10,000 times. The rankings

of the KCC, AUC, and RMSD for both high and low concentrations

have only minor fluctuations, indicating that the prediction models

are relatively robust (Figure 1). More than half of the predictions did

better than the baseline method, SIFT (SID#15), which ranked 11th

overall. Statistical significance estimation was performed for the

metrics of interest (KCC, AUC, and RMSD) also using bootstrap

simulation. None of the methods were significantly better than SIFT

for KCC and AUC after Bonferroni correction (Figure S1 and S2).

However for RMSD, SID#5, 11, and 20 outperformed SIFT at both

cofactor concentrations even after Bonferroni correction (Figure S3).

3.1.3 | Easy and hard to predict variants

We examined variants that were the easiest or hardest to predict

based on the consensus output of all methods to determine whether

they shared any common features (Figure 2b, Figure S7). At low

cofactor concentration, there were overall 12% (2/17) deleterious

variants and 18% (6/34) benign variants whose effects were

predicted incorrectly by more than half of the methods, our

definition of consensus.

The deleterious mutations that were easiest to predict at a low

cofactor concentration were p.L154P, p.N228K, p.G258R, and p.G457E.

The majority of these are nonconservative substitutions and are located

F IGURE 1 Kendall's Tau correlation coefficient (KCC), area under the ROC curve (AUC), and root‐mean‐square deviation (RMSD) for the
phenotype prediction programs at high (black) and low (gray) cofactor concentration in the CAGI1 CBS challenge. Statistical significance of
correlation scores is indicated with asterisks (*p ≤ .05, **p ≤ .01, ***p ≤ .001). Error bars represent one standard deviation below and above the
mean value for each metric generated through iterations of bootstrap sampling of data‐points
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within helices in the CBS structure (Table S3). The easiest to predict

benign variants (low pyridoxine) were p.K271E, p.V356A, and p.T383S,

with moderate conservation scores and were again mostly located

within helices. Among the better predicted benign variants, the majority

were partially or fully exposed to the solvent.

The hardest to predict deleterious variants at both high and low‐
pyridoxine concentrations were p.H65L and p.F385Q. p.H65 is

located in the H1–H2 loop and axially coordinates the iron atom

on one side of the heme plane, with C52 on the other, and mutation

of either of these residues results in low‐catalytic activity (Ojha, Wu,

LoBrutto, & Banerjee, 2002). Interestingly, the functional impact of

these variants was not easy to assess from sequence and structure

comparisons. Although p.H65 and the sequence flanking it are locally

conserved, the heme‐binding domain itself (comprising approxi-

mately the first 70 N‐terminal residues), with the exception of a

short 5‐residue helix, has no secondary structure elements and does

not resemble other heme proteins in either primary sequence or

tertiary structure (Kumar et al., 2018). p.F385Q is located in the

H17–H18 loop that forms part of the linker connecting the N‐
terminal catalytic domain with the C‐terminal regulatory domain, and

lies within an aromatic cluster of residues p.Y381, p.F332, p.F334,

p.F385, p.W390, and p.F396 enclosed by salt bridges p.R336‐D388,

p.K394‐E302, and p.K384‐E302 connecting helices H12–H14, H17,

and H18. Erroneous coordination between aromatic residues can

disrupt the extended pi‐pi networks formed by aromatic clusters,

thereby affecting protein stability and folding (Madhusudan Makwa-

na & Mahalakshmi, 2015). In addition, both these variants involve

nonconservative substitutions, and thus could be expected to have a

deleterious effect on CBS function.

The hardest to predict benign variants (low pyridoxine) were

surprising in that they involved nonconserved substitutions, so they

could be expected to disrupt CBS function. In addition, within the

structure, some were implicated in functionally relevant regions of

CBS, such as the dimer interface (p.L345P) and the active site

(p.V118G, adjacent to the PLP‐ligating p.K119). All inaccurate

consensus predictions of benign variants at low pyridoxine were

for variants that confer sensitivity to reduced pyridoxine levels

relative to the major allele (Dimster‐Denk et al., 2013). The methods

that correctly predicted all of these variants (SID#2, SID#3, and

SID#9) displayed a broad spread both in features used (sequence,

structure, and thermodynamics, respectively) and in overall perfor-

mance (Table 2). In addition, SID#2 and SID#9 did not distinguish

between high and low pyridoxine.

3.2 | CAGI2 challenge

In the CAGI2 CBS challenge, 84 single amino acid variants that had

been observed in patients with homocystinuria were collected and

(a)

(b)

(c)

F IGURE 2 Consensus predictions for CBS. (a) CBS domain diagram, (b) CAGI1, (c) CAGI2. The percentage of correct predictions for
deleterious (red) and benign (blue) variants is shown for each experimentally determined variant at low‐pyridoxine concentration. Residues are
shaded in the color of the corresponding domain, with the linker region highlighted in orange
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functionally tested in an in vivo yeast complementation assay

(Mayfield et al., 2012). Seventy‐eight had experimental values for

both pyridoxine concentrations; 6 “hem1 rescue” variants were left

out from the assessment due to absent/conflicting data (Table 1).

Participants were again asked to submit predictions of the effect of

the variants on the function of CBS both in high and low cofactor

concentration. This challenge attracted 20 submissions from nine

groups (Table 2) that were assessed without knowledge of the

identity of the predictors. An overview of the methods is provided in

Supporting Information. Four groups submitted one submission each,

three groups submitted two each, and one group each contributed

four and six predictions, respectively. Four groups participated in

both CAGI1 and CAGI2 CBS challenges. As in CAGI1, features used

to generate the predictions ranged from sequence‐ or structure‐only
information to meta‐predictors and methods combining sequence,

structural, and functional annotation data. SID#31 was excluded

from the assessment due to its constant growth rate prediction of

100 for all substitutions. Almost all groups (17/19) provided distinct

values for high/low cofactor concentrations. For this challenge, most

submitters also provided standard deviations (13/19). Only one of

the methods had arbitrary standard deviation values for all

predictions (SID#26, σ = 10). In addition to prediction programs,

reference results were obtained by submitting the mutations to the

SNAP (SID#50) and SIFT (SID#51) public servers (Bromberg,

Yachdav, & Rost, 2008; P. Kumar, Henikoff, & Ng, 2009).

3.2.1 | Assessment across different performance
metrics

The same assessment measures as in CAGI1 were used in CAGI2

(Methods). Looking at KCC, over half of the predictions were highly

significant (Figure 3); however, even the best deviated substantially

from experimental values. At both high and low‐pyridoxine concentra-

tions, methods SID#16 and SID#26 showed the strongest correlation

with the experimental data and had also high AUC values (Figure 3).

The latter was also the top predictor in terms of RMSD. In terms of

accuracy, a structure‐based method (SID#25) had the highest value

(72%) at high and low‐pyridoxine concentration (Table S2). At both

cofactor concentrations, methods SID#16, 26, 34, and 41 had the

highest sensitivity (100%). Most of these methods employed integrated

sequence and structure information. SID#23 was the top method (high

pyridoxine) with a 75% specificity, SID#27 and SID#28 scored 83%

(low pyridoxine). SID#23 used structural data, whereas the other two

are meta‐predictors. In contrast to the CAGI1 CBS challenge, NPV

showed higher median values than PPV (65 vs. 57%), implying that the

probability of loss of function was slightly better predicted than the

probability of having no or minor effects on the phenotype.

3.2.2 | Overall ranking

As in the CAGI1 CBS challenge, we computed the overall ranks

representing the performance of the submissions. Based on this

criterion, the top methods in the CAGI2 CBS challenge were SID#26

and SID#16 with overall ranks of 1.8 and 2.3, respectively. Both

methods utilized combined evolutionary information and structural

features and ranked higher than the best baseline method (SID#50).

For CAGI2, random resampling of the 78 variants 10,000 times

generated error bars for each metric. As in CAGI1, the overall

performance ranking remained unchanged. Methods that performed

well generally resulted in smaller error bars, whereas methods that

had only a few correct predictions exhibited a larger variance in

performance as assessed by resampling (Figure 3).

F IGURE 3 Kendall's Tau correlation coefficient (KCC), area under the ROC curve (AUC) and root‐mean‐square deviation (RMSD) for
the phenotype predictions at high (black) and low (gray) cofactor concentration in the CAGI2 CBS challenge. Statistical significance of
correlation scores is indicated with asterisks (*p ≤ .05, **p ≤ .01, ***p ≤ .001). Error bars represent one standard deviation below and above
the mean value for each metric generated through iterations of bootstrap sampling of data‐points

KASAK ET AL. | 1539



Almost all of the methods performed better than the random

predictor (SID#24), with the exception of SID#32 that ranked lower

according to all assessment measures at both cofactor concentra-

tions (Table S2). SID#32 is a random forest classifier that provided

only binary outputs for both concentrations (no growth or growth,

with values of 0 or 100, respectively). According to the bootstrap

simulation, SID#16 and 26 performed significantly better than

random at high pyridoxine concentration for all metrics (Figure

S4–6). Two of the baseline methods, SNAP (SID#50) and SIFT

(SID#51), had an overall ranking of third and sixth, respectively. None

of the methods outperformed the baseline methods for KCC and

AUC after Bonferroni correction (Figure S4, 5). For RMSD on the

other hand, SID#26 did significantly better than SIFT at high cofactor

concentration and SID#16 outperformed SNAP at low cofactor

concentration.

3.2.3 | Easy and hard to predict variants

The hardest and easiest to predict variants (Figure 2c, Figure S8)

showed similar trends to those observed in the CAGI1 CBS challenge.

As observed before, the inaccurately predicted benign variants (low

pyridoxine) involved nonconservative substitutions and were located

in loop regions of the CBS structure (Table S3). The most accurately

predicted deleterious variants (low pyridoxine) involved a majority of

nonconservative mutations of residues located within stable second-

ary structure elements (helices), while the hardest to predict

deleterious predictions involved residues with moderate conserva-

tion scores mostly located within loops.

Within this last group, a number of mutants have been indirectly

implicated in CBS function through involvement in homooligomeriza-

tion, redox sensing, and regulation. p.A355 lies within helix H15,

which is in turn sandwiched between H4 and strand beta3 at the CBS

homodimerization interface. By introducing a kink in H15, the

p.A355P mutant could potentially disrupt the folding in this region of

the protein thereby impacting CBS function. Similarly, p.V168 is

positioned at the homodimer interface while p.M391 is located

within helix H18, a region of putative involvement in CBS

homotetramer formation (Ereno‐Orbea, Majtan, Oyenarte, Kraus, &

Martinez‐Cruz, 2013). p.A288 packs against p.W323 on strand beta6,

and next to it, p.F324 packs against p.A360 in helix H15. p.A361 lies

within interacting distance of p.C370, a residue that has been

implicated in homocystinuria (Kraus et al., 1999) and proposed to

modulate CBS function through interaction with an endogenous

regulator such as nitric oxide (Eto & Kimura, 2002). The p.A361T

mutant could therefore potentially interfere with a functionally

relevant modification (e.g., S‐nitrosylation) of p.C370. Similarly,

modification of p.A288 could disrupt the pairing or orientation

between beta5 and beta6, thereby potentially impacting the 272‐
CxxC‐275 oxygen sensing motif of CBS, a redox active disulfide bond

that allosterically controls CBS activity (Niu et al., 2018).

The most inaccurately predicted deleterious mutant, p.E302K,

lies within interacting distance of one of the two active site loops

(situated between helices H6 and H7). Recent studies have

highlighted the importance of conformational flexibility of the loops

defining the entrance to the catalytic site (Majtan et al., 2018).

3.2.4 | Correlation between methods and unique
contribution of different methods

To have a better understanding of the strengths and weaknesses of

the different methods, we investigated the correlation between their

predictions (Figure 4). Correlation heatmaps for high and low‐
pyridoxine concentration had negligible differences. The strongest

predictor for method correlation appeared to be the relation to a

single group (Table 2). For example, SID#27–28, SID#33&41, and all

(SID#19–22) except one method (SID#23) were highly correlated

among each other. However, SID#29–32 and 35–36 had higher

correlations with other methods than among their own group.

SID#29–32 were the only predictors that used simply two states

(growth rates of 0 or 100). Interestingly, two of the best ranking

methods (SID#16 and SID#26) were strongly correlated. In addition,

SID# 27, 28, and 34 showed a strong correlation with the top

prediction methods, although were based on different features.

Baseline methods SNAP (SID#50) and SIFT (SID#51) showed

strong correlation with the best performing predictions, which is partly

expected as SID#16 was based on a version of the SNAP algorithm.

To assess the specific contribution of each method to the variance

with experimental results in CAGI2, we applied a multiple linear

regression model as described in Methods above. For high pyridoxine

concentration, this revealed SID#16 and SID#36 as the most significant

contributors (Δ adjusted R2 values of 0.053 and 0.041, respectively). At

the same time, for low‐pyridoxine concentration, SID#36 and SID#27

contributed the most (0.054 and 0.053, respectively). SID#36 is based

on protein structure, sequence homology, and included functional

information, whereas SID#16 combined evolutionary information with

structural features, and SID#27 is a meta‐predictor (Figure 5).

4 | DISCUSSION

4.1 | Prediction features in relation to performance

In terms of prediction features, different methods performed well in

distinct assessment measures. We observed that methods integrating

sequence and structural information performed the best overall,

ranking first or second (SID#2 in CAGI1 and SID#16 and SID#26 in

CAGI2). Methods that used only structural information (SID#9 and

11 in CAGI1 and SID#19–20 in CAGI2) did not perform as well as

those combining additional features. However, in terms of individual

evaluation metrics, a structure‐based method showed the highest

accuracy of 72% (SID#25) in CAGI2. In CAGI1, SID#1 and 20 were

the best at both cofactor concentrations, reaching accuracy of 82%.

The first one combined structure and sequence data while SID#20 is

a meta‐predictor. In terms of sensitivity, most of the top‐performing

methods were structure‐based in CAGI1 (SID#3, SID#9, and SID#11),

while in CAGI2, the most sensitive algorithms combined structure

with sequence data (SID#16, SID#26, and SID#34). At the same time,
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F IGURE 4 Spearman's rank correlation among methods and with experimental data (Exp) for high and low cofactor concentration. Each
cell shows the correlation between two methods, with a color scale ranging from red (perfect correlation) to white (no correlation) and blue
(perfect anti‐correlation)
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for specificity, almost all of the top methods were meta‐predictors in
CAGI2 (SID#27–28). These observations suggest that combining

different features and methods would yield the best results, as has

been indicated previously (Grimm et al., 2015; Tang & Thomas,

2016). Some methods are tailored to predict whether a variant

affects the function of the protein in hand and others are optimized

to determine whether a variant is pathogenic or benign in the clinical

sense (Grimm et al., 2015; Katsonis et al., 2014; Pejaver, Mooney, &

Radivojac, 2017).

The importance of integrating information from different sources

is reflected in the most inaccurately predicted mutants that tended

towards nonconserved substitutions, structural uncertainty, or both.

The power of combining structural, sequence, and functional

information was visible in CAGI2, where the overall performance

of a structure and sequence combined method (SID#35) was

improved significantly (by five ranks) with the inclusion of functional

annotation data (SID#36). The latter was also the method that

uniquely contributed the most predictive power of all methods at

low‐pyridoxine concentration. Another structure‐based method

(SID#25) that incorporated functional information (trained on the

CAGI1 data set) also performed strongly. Methods trained on HGMD

(Human Gene Mutation Database) mutations (SID#35–36) would be

expected to perform well (Dong et al., 2015; Ioannidis et al., 2016;

Pejaver et al., 2017). Interestingly, however, the best methods in

CAGI2 CBS challenge showed variable training data, from no training

to training on PMD (the Protein Mutant Database), HGMD, and

CAGI1 CBS variant data (Supporting Information).

4.2 | Limitations of the challenges

In terms of methodological limitations, most methods were devel-

oped to predict pathogenicity in humans or enzyme activity, not

yeast growth or the effect of cofactor concentration on growth rate,

something that could at least in part explain the difficulties they

encountered in identifying the remediable class of variants (Support-

ing Information). So, while a meaningful distinction could be made in

these challenges between growth and no growth under low‐
pyridoxine conditions, this was not the case for distinguishing

between rescue (high pyridoxine) and no rescue (low pyridoxine)

variants (Figure S9‐12). Similarly, only qualitative comparisons could

be made between CAGI1 and CAGI2, since the data sets differed in

size and type, and only four groups participated in both challenges.

Among these, one group used different versions of their method

(SID#1 in CAGI1 and SID#26 in CAGI2), while two others did not

make use of the CBS training data.

Another limitation of the assessment involved requesting

standard deviation as estimates of reliability from predictors, as

opposed to the more commonly employed confidence levels that

most prediction methods provide. Consequently, some predictors did

not provide these values, chose them arbitrarily, or provided large

values with the result that they could not be reasonably used in these

assessments.

These challenges also revealed a number of experimental limitations.

Yeast CBS lacks the heme domain and is not regulated by AdoMet (Jhee,

McPhie, & Miles, 2000), thereby engaging different pathways in the

enzyme's regulation and physiological roles. In addition, overexpression

can result in nonphysiological effects, including protein aggregation.

These differences could help explain some of the inconsistencies

observed in the experimental study in which yeast growth phenotypes

did not match the clinical data (Mayfield et al., 2012). Although, only

three positions from the heme domain were part of these two CBS

challenges, with merely one position being problematic for the

predictors (Figure 2). In a similar study, several variants identical to

the ones used in these experiments resulted in contrasting yeast growth

phenotypes (Wei, Wang, Wang, Kruger, & Dunbrack, 2010).

In addition, the clinical assessment of the majority of variants

explored in this study has since changed. Of the 78 alleles described

in CAGI2 as having been observed in patients with homocystinuria,

only 30 are currently classified as pathogenic or likely pathogenic in

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/, accessed March 25,

2019), with an additional 16 annotated as being of uncertain

significance or with conflicting interpretations of pathogenicity

(Table 1). Eight substitutions (p.P78R, p.K102N, p.D234N, p.R266K,

p.V320A, p.T353M, p.V371M, and p.D444N) out of 22 that showed

experimental growth rates of ≥ 85% in CAGI2 are currently

annotated as pathogenic or likely pathogenic. Most of the partici-

pants made accurate predictions for these “benign” variants (Figure

2). It is important to mention here that ClinVar had not yet been

launched during the first two CAGI challenges. Also, not all the

(likely) pathogenic CBS variants currently present in ClinVar have

been collected from clinical testing, some are based on literature with

no assertion criteria provided. Ideally, different functional assays

should be applied, to increase the confidence in the observed

phenotypic effect of the studied variant, because the function of a

gene can differ in distinct organisms. Finally, mutations in cis with the

ability to either suppress other pathogenic missense mutations or

increase the severity of the clinical phenotype continue to be

reported (de Franchis, Kraus, Kozich, Sebastio, & Kraus, 1999; Shan,

Dunbrack, Christopher, & Kruger, 2001), raising the possibility that

the incidence of double mutant alleles may be underestimated in

homocystinuric patients.

F IGURE 5 Δ adjusted R2 values of the methods from the linear
regression model for high and low cofactor concentration,
quantifying the contribution of each method to the proportion of
total variance explained

1542 | KASAK ET AL.



5 | CONCLUSION

CBS is a multifunctional enzyme with complex biology and intricate

regulation that remains the object of much study. Our assessment of

the CAGI1 and CAGI2 CBS challenges highlighted the strengths and

weaknesses of different prediction features and approaches, as well as

the need to address issues of methodological and experimental

limitations. Both computational and experimental methods need to be

tailored to the particular biological question under investigation to

improve the predictive potential of the variant effect. It is hoped that

future iterations of CAGI will see improvements on all these fronts.
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