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Abstract

Whole‐genome sequencing (WGS) holds great potential as a diagnostic test.

However, the majority of patients currently undergoing WGS lack a molecular

diagnosis, largely due to the vast number of undiscovered disease genes and our

inability to assess the pathogenicity of most genomic variants. The CAGI

SickKids challenges attempted to address this knowledge gap by assessing

state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4

and CAGI5 participants were provided with WGS data and clinical descriptions

of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project,

respectively. Predictors were asked to identify primary and secondary causal

variants. In addition, for CAGI5, groups had to match each genome to one of

three disorder categories (neurologic, ophthalmologic, and connective), and

separately to each patient. The performance of matching genomes to categories

was no better than random but two groups performed significantly better than

chance in matching genomes to patients. Two of the ten variants proposed by

two groups in CAGI4 were deemed to be diagnostic, and several proposed

pathogenic variants in CAGI5 are good candidates for phenotype expansion. We

discuss implications for improving in silico assessment of genomic variants and

identifying new disease genes.
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CAGI, pediatric rare disease, phenotype prediction, SickKids, variant interpretation,
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1 | INTRODUCTION

Next‐generation sequencing (NGS) is a disruptive technology that

provides more comprehensive tests and several‐fold higher diagnostic

yields than conventional methods for diagnosing genetic disorders.

Looking to the future, deploying NGS‐based whole‐genome sequencing

(WGS) as a first tier diagnostic test has the potential to revolutionize the

diagnosis of genetic disorders, given that the diagnostic yield of WGS for

children suspected of a Mendelian disorder currently averages over 40%

and continues to increase with time (Clark et al., 2018; Scocchia et al.,

2019). Nonetheless, the majority of patients who now undergo WGS

after first‐line genomic testing failed to yield an answer remain without a

molecular diagnosis. This gap between the current performance of WGS

and its ultimate potential as a diagnostic test is primarily due to a large

number of undiscovered disease genes and our inability to assess the

pathogenicity of most genomic variants.

WGS identifies ~3.8 million variants in the average individual

(Shen et al., 2013) with over 650 million variants already

cataloged in a small proportion of the world’s population (dbSNP

Build 151, April 2018 release). Correctly assigning one or a few of

these variants as the cause of disease in an individual suspected

of a genetic disorder is a herculean task, in large part because the

majority of rare and low‐frequency variants are of unknown

clinical significance and noncoding variants are rarely classifiable

(Giral, Landmesser, & Kratzer, 2018; Gloss & Dinger, 2018; Zhu,

Tazearslan, & Suh, 2017). Beyond the sheer numbers of variants,

the complexity of this endeavor is compounded by locus

heterogeneity, in which pathogenic variants in multiple genes

can yield overlapping phenotypes. Furthermore, many genetic

disorders are likely oligogenic or polygenic in nature (Jordan &

Do, 2018; Kousi & Katsanis, 2015).

Bioinformatics‐guided analysis of clinical WGS data is essential to

overcome these challenges. While there have been significant

improvements in the detection and classification of single nucleotide

variants, copy number variants, and other structural variation from

WGS data, there is a critical need to substantially improve the

accuracy and efficiency of computer algorithms designed to predict a

patient's phenotype from their genotype and distinguish a pheno-

type's causal variant(s) from millions of others. Overcoming the

current limitations of WGS variant interpretation will not only

improve clinical diagnosis, it also will advance our understanding of

the etiology of genetic disorders and facilitate the development of

better therapeutics, which will ultimately lessen the burden of

genetic disease.

The Hospital for Sick Children's (SickKids) Genome Clinic Project

was designed to pilot the diagnostic and predictive use of whole‐
genome sequencing (WGS) in children (Bowdin, Hayeems, Monfared,

Cohn, & Meyn, 2016). The Project's first cohort involved testing the
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performance of WGS versus diagnostic chromosomal microarray in

100 children referred to clinical geneticists for suspected genetic

disease. The second cohort compared WGS against targeted panel

sequencing in 103 children seen in pediatric specialty clinics. The

initial diagnostic rates for WGS were 38% for the microarray cohort

and 43% for the targeted panel cohort.

Genome Clinic patients that remained undiagnosed after clinical

assessment of their WGS data form useful cohorts for trialing novel

approaches to molecular diagnosis and gene discovery. In that

regard, The Genome Clinic Project collaborated with the Critical

Assessment of Genome Interpretation (CAGI) to create open

bioinformatics challenges for CAGI4 and CAGI5. The challenge

cohorts consisted of patients for whom a previous diagnostic

assessment of their WGS data had yielded no causal variants. The

bioinformatics teams who participated were provided with demo-

graphic information and clinical descriptions for each patient, as well

as assembled WGS data with variant calling for each genome.

The SickKids CAGI4 challenge involved 25 undiagnosed patients

from the Genome Clinic microarray cohort (Stavropoulos et al.,

2016). Bioinformatics teams were provided with linkedWGS data and

HPO‐based clinical descriptions for each patient. The primary

challenge task was to identify the causal genomic variant(s)

responsible for the patient's phenotype.

The SickKids CAGI5 challenge involved 24 undiagnosed patients

from the Genome Clinic panel test cohort who were being evaluated

for one of three disease categories: ophthalmologic disorders,

neurologic disorders, or connective tissue disorders (Lionel et al.,

2018). Importantly, unlike CAGI4, the WGS data were not linked to

specific patients. Teams had three primary tasks: (a) match each

genome to one of the three broad disease categories (ophthalmolo-

gic, neurologic, or connective tissue disease); (b) match each genome

to a specific patient's clinical phenotype; and (c) propose one or more

causal variants that would explain the selected patient's disease

phenotype. In addition, teams were encouraged to submit variants

they considered secondary findings (pathogenic disease‐causing
variants not related to the patient's current phenotype). Variants

from genomes assigned by the teams to the correct patient as

potentially causative of the phenotype were assessed and classified

according to the American College of Medical Genetics (ACMG)

guidelines (Richards et al., 2015). The results of the CAGI4 and

CAGI5 challenges are presented here.

2 | METHODS

2.1 | Patient data

For CAGI5, the SickKids Genome Clinic project provided deidentified

clinical phenotypic information and whole‐genome sequencing data

for 24 cases that were selected from the SickKids Genome Clinic

panel sequencing cohort. The 24 patients consisted of 13 girls and 11

boys, ranging from 3 to 18 years in age. Sequencing and data analysis

were performed as described in Lionel et al. (2018). These 24 cases

remained unsolved after initial screening by the project's clinical

molecular geneticists for plausible coding, splicing, noncoding, and

structural variants. The challenge cohort consisted of six patients

with ophthalmologic disorders, seven with neurologic disorders, and

11 with connective tissue disorders (Supporting Information).

Predictors were provided with the phenotypic descriptions as shared

with the diagnostic laboratory.

In CAGI4, the SickKids challenge involved 25 children with a wide

range of suspected genetic disorders who were referred for clinical

genome sequencing but remained unsolved after initial screening.

Phenotypic data were provided by the referring physicians and

entered into Phenotips, a Human Phenotype Ontology‐based
database (Girdea et al., 2013). Detailed information and description

of these cases is provided in Stavropoulos et al. (2016) and Pal,

Kundu, Yin, and Moult (2017).

To model the clinical testing environment, phenotypic informa-

tion was limited to that routinely obtained from clinicians before

molecular testing, rather than from an iterative, genotype‐driven
assessment of the patient. The diversity of phenotypes in the data set

represents the range of clinical presentations typically seen in

children referred for diagnostic evaluations in subspecialty clinics at

SickKids. All patients in the CAGI cohorts consented for sharing of

deidentified genomic and phenotypic data with external research

projects. The original Genome Clinic project and data sharing with

CAGI were approved by the Research Ethics Board at The Hospital

for Sick Children (REB Protocol #1000037726).

2.2 | CAGI5 SickKids challenge format

The CAGI5 SickKids challenge was divided into several tasks. First,

teams had to match genomes to a broad phenotype category

(ophthalmologic, neurologic, or connective tissue disorder). Second,

genomes had to be matched to individual patients based on their

clinical phenotype descriptions. In addition, teams could report

primary variant(s) underlying each prediction (i.e., diagnostic var-

iants) and secondary variants predicted to confer a high risk of other

disorders not present in the clinical phenotypic description.

Groups were required to provide a probability (0–1; 0 = no match,

and 1 =match) that a genome sequence matched a broad phenotype

class as well as a probability that it belonged to a specific patient.

Each predicted probability of a match included a standard deviation

indicating confidence in the prediction. Organizers provided a

template file, which had to be used for submission. Up to six distinct

submissions were allowed from each group.

2.3 | Bioinformatics groups

The CAGI5 SickKids challenge went live on the genomeinterpreta-

tion.org web site in December 2017 and submissions closed in April

2018. Seven bioinformatics groups provided a single submission,

while one team (Group 6) provided two separate submissions. The

CAGI4 SickKids challenge went live in December 2015 and

submissions closed in February 2016. Four groups participated in

this challenge.
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2.4 | Assessment for CAGI5 challenge

Predicted broad phenotype categories and specific phenotype–gen-

otype matches in each submission were assessed against the SickKids

answer key. First, assessors calculated the number of correct

predictions for broad phenotype categories. Only the highest probability

predictions were included in the assessment. If probabilities for two

categories were equal and one of them was correct, it was scored as

correct (giving full credit to ties). The number of matches with no credit

to ties are also shown. For probability‐based assessment, probabilities

were normalized in each submission for each genome to sum to 1.0. The

mean probability assigned by the submissions to the correct disease

category provides an assessment of assigned probabilities not

dependent on whether the highest probability predictions were correct.

For each disease category, recall and precision were defined as TP/

(TP+ FN) and TP/(TP + FP), respectively. Of note, SID#1, 2, and 7 did

not provide predictions for all genomes (8, 8, and 6 genomes not

predicted, respectively; Table S1).

To assess the statistical significance of the submissions, random

predictions were simulated 10,000 times (Figure 1a,c). Each

time, disease categories were assigned for 6 “ophthalmologic,” 7

“neurologic,” and 11 “connective” purely based on their composition,

that is, the probabilities we assign a genome “ophthalmologic,”

“neurologic,” and “connective” are 6/24, 7/24, and 11/24, respec-

tively; then the numbers of both overall correct assignments and

correct assignments for each category were calculated. Moreover, to

evaluate all the submitted predictions as a community, we also

simulated the random predictions from a community containing nine

independent predictions (to match the number of submissions in this

challenge; Figure 1b). Specifically, each time we simulated the highest

match number of nine random predictions (as described above) and

this process was conducted 10,000 times.

The second part of the challenge was to match the phenotype

information given for each patient to the correct genome. Probabilities

were normalized in each submission for each genome to sum to 1.0.

Only the highest probabilities were considered in the assessment. If

probabilities for two phenotype descriptions were equal and one of

them was correct, it was scored as correct. This only affected SID#3,

which had 1 match instead of 2 if ties were not taken into account.

Equal probability for ≥ 5 phenotype descriptions including the correct

one was not considered as a match. SID#2, 5, and 7 did not provide

predictions for 12, 12, and 3 genomes, respectively. Similar to the broad

F IGURE 1 The expected number of
genome‐disease category matches inferred
by in silico simulation based on
composition of disease categories.
(a) Distribution of overall number of
matches. (b) Distribution of the highest
match number observed in nine
predictions (to simulate nine submissi
ons of this challenge). (c) Distribution of
the number of matches for each disease
category
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disease category matching, the random number of genome–phenotype

matches was inferred by in silico simulation. The distribution was

calculated from 10,000 simulation runs. Each time, we assumed that the

24 genomes were ordered as G=G1, G2,..,G24; a prediction can be

treated as a random rearrangement of the above orders: P =Ga1,

Ga2,..,Ga24, a1,a2,..,a24∈{1,2,…,24}; then the number of matched genomes

was recorded. As sex information, which can be accurately inferred

from genomes, was listed in the phenotypes (11 males and 13 females),

we simulated the number of genome–phenotype matches considering

sex. This was conducted by summing the match numbers of two

independent simulations, which were similar to the process described

above, while 11 and 13 genomes were included in each simulation,

respectively. In addition, to evaluate all the submissions as a community,

we also simulated the highest number of matches from nine

independent predictions.

Phenotypic informational content scores for each patient were

generated by PhenoTips from Monarch Initiative phenotypic profile

analyses of the HPO terms contained in their supplied clinical

description (Girdea et al., 2013). Correct genome–patient match scores

were based on the number of highest probability matches for the

correct genome with one match receiving one point.

2.4.1 | Clinical assessment and classification of
predicted variants

The proposed primary diagnostic and secondary variant(s) submitted by

each group with correct genome patient matches were evaluated.

Variants were classified as pathogenic, likely pathogenic, uncertain,

likely benign, or benign according to ACMG diagnostic guidelines

(Richards et al., 2015) by trained clinical genomic scientists. ACMG

guidelines provide a framework for determining the level of evidence

that a particular variant is a clinically actionable finding. The majority of

information for variant classification was gleaned from VarSome

(Kopanos et al., 2019). VarSome has links and information from the

clinical variant curation database ClinVar (Landrum et al., 2018), the

population database gnomAD (Karczewski et al., 2019), and references

to relevant publications. The 17 in silico predictions available in

VarSome were also taken into consideration. The ACMG classification

information in VarSome was not used to classify variants as they are

generally not curated. Human Splicing Finder (Desmet et al., 2009) was

used to determine the impact of variants on splicing.

2.5 | Prediction methods

A detailed description of the methods used for the challenge

accompanied each submission file. A brief summary of each

CAGI5 prediction method is provided here, and detailed descrip-

tions, as well as CAGI4 methods, are included in Supporting

Information.

Group 1: For phenotype matching, text mining for HPO terms (TPX

software) was used, followed by manual QC. Gene prioritization

was done by querying HANRD (Heterogeneous Association

Network for Rare Diseases) and TPXRD (PubMed text mining)

that give a set of ranked genes based on the input phenotype.

Variant prioritization was achieved by using an in‐house method

(VPR). MAF (minor allele frequency), evolutionary conservation, in

silico predictions, and ClinVar data were considered. Matching of

genotypic to the phenotypic case was done manually using the

best possible intermediary disease.

Group 2: Group 2 used eDGAR (Babbi et al., 2017) that collects

known associations among genes and diseases, and PhenPath

(Babbi, Martelli, & Casadio, 2019), which groups diseases in

terms of HPO terms and OMIM classifications and provides

associations among phenotypes and genes, were used. For

variant prioritization, SNPs&GO and UniProt were utilized. Sex

of patients was also used to guide and validate the matching.

Group 3: VCF files were analyzed using standard parameters,

including variant quality, allele frequency, functional damage

prediction, and gene–phenotype associations, using a variety

of tools and databases. Gender was considered in phenoty-

pe–genotype matches, but ethnic origin was not taken into

account.

Group 4: Group 4 used a phenotype‐weighted subjective scoring

of phenotypic profile (HPO and dbNSFP databases) together

with gender information to guide matching. African ethnicity

was also checked. The reasoning for choosing the strategy of

phenotype‐weighted scoring was to extract the pathogenic

genetic information relevant to a particular profile out from

each of the genomes. MAF, reported and predicted pathogeni-

city were considered.

Group 5: Group 5 used an evolutionary action approach. To predict

the disorder class for each individual, the predictors calculated the

effect of the genetic variants on the fitness of each gene

(evolutionary action). This fitness effect was used as the input of

a diffusion process over a network of genes and diseases. The

diffusion signal on each of the three disorder classes was used to

calculate the probability of each genome to be linked to each

disease. To match each individual's genome to a clinical report, the

predictors used again the diffusion process, and manual matching.

Sex and ethnic origin information were also used.

Group 6: Group 6 provided two separate submissions based on two

different approaches. Clinical notes were searched against a

gene–phenotype database (Monarch initiative for submission 6.1

and eRAM for submission 6.2), and the genes were sorted by the

highest number of matching terms. Prediction of sex and ethnic

origin was implemented. For variant prioritization, MAF filtering

of protein altering variants was performed.

Group 7: Group 7 utilized Ingenuity Variant Analysis (QIAGEN), which

utilizes curated content from the literature as well as external

databases. Genes known to be associated with patients’ phenotypes

were selected. Phred score, MAF, and ACMG classification

(pathogenic and likely pathogenic) were taken into account.

Group 8: To predict correspondence between phenotypes and

genomes, group 8 used calculated scores for all genome‐phenotype
pairs and assigned the most likely connections using a bipartite
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matching algorithm. FunctionalFlow (Nabieva, Jim, Agarwal, Cha-

zelle, & Singh, 2005) was used to predict risk genes with scores

calibration based on the proportion of disease genes estimated by

the AlphaMax algorithm (Jain, White, & Radivojac, 2016; Jain,

White, Trosset, & Radivojac, 2016). MutPred2 (Pejaver et al., 2017)

and MutPred‐LOF (Pagel et al., 2017) were used to assign

pathogenicity scores to variants. The final scores were assigned

by combining gene scores and variant scores. Sex and ethnic origin

information were also considered.

3 | RESULTS

3.1 | CAGI5 SickKids challenge

The CAGI5 SickKids challenge was primarily designed to test how

well bioinformatics algorithms are able (a) to match 24 genomes to

three broad phenotype categories, and (b) to match each of the 24

genomes to a specific patient based on typical phenotype informa-

tion. Groups could also identify diagnostic variants that underlie the

predictions as well as secondary variants conferring high risk of other

diseases. VCF files containing WGS data (SNVs and indels) from 24

patients and 24 unlinked phenotype descriptions were provided.

Eight teams submitted predictions to this challenge (Table 1), with

two distinct predictions from the group 6.

3.2 | Broad phenotype category matching

The first part of the CAGI5 SickKids challenge was to match 24

genomes to three broad phenotype categories: ophthalmologic

(n = 6), neurologic (n = 7), or connective (n = 11). Groups were allowed

to give probabilities for one, two, or all three categories for a given

genome; however, it was noted in the challenge description that

every genome sequence matches exactly one clinical phenotypic

category. Table 2 shows which submissions provided the highest

category probability to the correct genome. The highest probability

was assigned to the correct genome only by 3.3 out of 9 submissions

on average. Genome 81 had the correct category predicted in 8 out

of 9 submission files, while genome 71 had the correct prediction in

only one, SID#3 (Table 2). Intriguingly, connective tissue disorder was

the correct category for both of these genomes.

The nine submissions reached an average accuracy of 37% when

the category with the highest probability was considered (giving ties

full credit). This accuracy weighted by the submitted probabilities

was even lower (25%). SID#4 performed the best by assigning the

correct category to 50% of the genomes (Tables 2 and 3), whereas

SID#5, 6.2 and 8 did not lag far behind by correctly predicting the

broad phenotype category for 11 of the 24 (45.8%) genomes. SID#8

predicted the correct matches with a higher probability among the

best‐performing groups and overall had the highest mean probability

(0.49) assigned to the correct disease category (Table 3). When giving

no credit to ties, SID#4 and 8 both ranked first with 11 matches

(Table 3) and the mean accuracy of all submissions was 33%. These

aforementioned five submissions all considered gender and ethnic

information to guide matching; however, the strategies used were

rather different, from evolutionary action to phenotype‐weighed

subjective scoring of phenotypic profile (see Methods for details).

To evaluate the statistical significance of the submissions, we

simulated 10,000 random predictions based solely on the composi-

tion of disease categories (Figure 1a). A random prediction, on

average, can correctly match 9 genomes (9/24 = 37.5%) to the

corresponding category, and a submission would have to match at

least 13 genomes to perform significantly better than random

chance, as indicated by a p‐value cutoff of .05. These results indicate

that the submitted methods did not perform better than expected for

random chance, as the average accuracy of the nine submissions was

equal to the expected accuracy of a random prediction. There were

equal numbers of submissions with accuracy higher or lower than 9,

the median matches of random predictions, with none of the

individual submissions performing significantly better than chance.

Moreover, the simulation results showed that, the expected highest

match number of nine random predictions was 12 (Figure 1b), the

same as we observed here. Another strategy of a random prediction

would be to give the highest prediction to the largest disease

category (connective tissue), which would always result in an

accuracy of 11 out of 24 (46%). Based on this, the average

performance of the submissions was even lower than random chance.

Looking at the different disease categories, genomes belonging to

the connective tissue category were the easiest to match with 47% of

the genomes correctly assigned by all groups on average (Table 2).

For ophthalmologic and neurologic disease categories, none of the

groups performed significantly better than random. Only matching 4,

5, and >8 genomes for ophthalmologic, neurologic, and connective

tissue category, respectively would achieve a p‐value <.05 (Figure 1c).

SID#6.2 achieved the highest recall (0.91) in the connective tissue

category by matching 10 out of 11 genomes correctly (Figure 2). This

result is statistically significant compared with random prediction

TABLE 1 A list of participating teams

ID Submission ID PI

CAGI5

Group 1 SID#1 Aditya Rao

Group 2 SID#2 Rita Casadio

Group 3 SID#3 Rehovot group

Group 4 SID#4 Lipika R. Pal/John Moult

Group 5 SID#5 Olivier Lichtarge

Group 6 SID#6.1, SID#6.2 Aashish Adhikari

Group 7 SID#7 Jennifer Poitras

Group 8 SID#8 Sean Mooney/Predrag Radivojac

CAGI4

Group 9 SID#9 Chris Mungall

Group 10 SID#10 Julian Gough

Group 11 SID#11 Aditya Rao

Group 12 SID#12 Lipika R. Pal/John Moult
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(Figure 1c); however, the submission had rather low precision (0.43)

for the same category and failed to match any eye category genomes.

Overall, most submissions achieved low true positive rates as well as

low positive predictive values in this part of the challenge (Figure 2).

3.3 | Matching specific genomes to specific
patients using phenotypic descriptions

The second part of the CAGI5 SickKids challenge was to use each

patient's phenotypic information to match the child to the correct

genome. Groups provided as many probabilities as they wished, but

only the highest probabilities were considered in the assessment

(described in Methods). Table 4 shows which submissions provided

the highest probability phenotype descriptions to the correct

genome. On average only 1 out of 9 submissions made the correct

genome to patient match (Table 2). Three genomes (7, 68, and 95) all

had the most matches with the highest probability from three

submissions, while 11 genomes (9, 18, 30, 39, 57, 76, 79, 81, 91, 92,

and 97) were not matched by any group. Contrary to the broad

phenotype matching, the ophthalmologic category was the easiest to

predict correctly here: 83% of genomes were matched by at least one

submission, compared with 43–45% for other categories.

The nine submissions achieved a mean accuracy of 11%

considering the highest probability predictions. If weighted by the

submitted probabilities, the accuracy dropped to 7%. Groups 1, 3, 4,

6, and 8 each predicted the phenotype description correctly for one

genome that no other submission predicted (Table 2). The matches

TABLE 2 Summary of the performance of all groups of matching the broad phenotype category to each genome and predicting which specific
clinical description corresponds to which genome for CAGI5 challenge

Genome code Patient code
Correct
category SID# with correct disease category match SID# with correct genome–patient match

7 X Ophthalmologic 7, 8 5, 7, 8

9 W Ophthalmologic 4, 5

17 H Ophthalmologic 4, 5 4

18 U Neurologic 1, 3

21 G Neurologic 5, 7 6.1

30 R Neurologic 1, 6.2

39 P Neurologic 1, 4, 5, 6.1, 7

42 O Ophthalmologic 3, 7 3

56 N Connective 3, 4, 5, 6.1, 6.2, 8 4, 8

57 T Connective 6.1, 6.2, 8

67 M Ophthalmologic 1, 5, 8 1

68 J Neurologic 3, 8 3, 5, 8

71 L Connective 3 1, 5

76 Q Connective 3, 4, 5, 6.1, 6.2

78 V Connective 1, 2, 3, 4, 6.2, 7, 8 6.2

79 K Connective 4, 5, 6.2

81 I Connective 1, 2, 3, 5, 6.1, 6.2, 7, 8

91 E Neurologic 4, 5, 7

92 S Connective 1, 3, 4, 6.1, 6.2

93 F Connective 4, 6.2, 7, 8 4, 8

95 C Ophthalmologic 1, 2, 4, 8 2, 4, 5

97 D Connective 5, 6.1, 6.2

99 B Neurologic 4, 8 4, 8

102 A Connective 6.2, 8 8

TABLE 3 Summary of the performance of each group's submission
(s) in broad disease category matching for CAGI5 challenge

Submission
ID

Number
of
matches

Sum of
probabilities
for matches

Number
of
matches,
no credit
to ties

Mean
probability
assigned to
the correct
class

SID#1 8 7.0 7 0.44

SID#2 3 3.0 3 0.25

SID#3 9 4.7 9 0.34

SID#4 12 7.6 11 0.42

SID#5 11 5.2 9 0.36

SID#6.1 7 2.7 7 0.35

SID#6.2 11 7.8 9 0.40

SID#7 8 6.0 6 0.39

SID#8 11 9.9 11 0.49
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that groups 2, 5, and 7 predicted correctly were also assigned

correctly by at least one other submission. Most of the groups

considered gender based on their method descriptions; however,

only three submissions (SID#3, 4, and 8) made the accurate sex

prediction for all 24 genomes (Table S2).

SID#8 ranked the first in this part of the challenge, having the

highest number of matches to correct phenotype descriptions (6

genomes out of 24). As for the broad disease category predictions,

this submission also assigned the highest mean probability (0.26) to

the correct phenotype descriptions among the best‐performing

groups (Table 4). As noted previously, the groups did not perform

better than chance for broad disease category matching, however,

two teams performed significantly better than chance for matching

patients to genomes. About 10,000 random predictions were again

simulated purely based on the number of genomes (Figure 3) to

assess the significance of the submitted predictions. Sex of the

patients was also included in the simulation. A random prediction was

found on average to correctly match 2 genomes (2/24 = 8.3%) to the

corresponding patient, which is slightly lower than the average of all

groups (2.6 genomes) (Figure 3a). If a submission matched at least 5

genomes, the performance would be significantly better than random

chance (p‐value ≤ .05). The assessment shows that SID#4 and 8

performed significantly better than expected for random chance by

matching 5 and 6 genomes to correct phenotype descriptions,

respectively. In addition, the simulation results revealed that, the

expected highest match number of nine random predictions was 4,

which is lower than the predictors achieved, although not statistically

significant (Figure 3b).

3.4 | Effect of phenotype informational content on
genome–patient matching

Diagnostic laboratories routinely use phenotypic descriptions pro-

vided by clinicians to guide their assessment of variants in patients

undergoing exome and genome sequencing. In this regard, there is a

general assumption that the more detailed the clinical description,

the more useful it is in aiding molecular diagnosis. To see if this

applied to the CAGI5 SickKids assessments, we examined the

relationship between the informational content of a patient's

phenotypic description and the number of times they were matched

to the correct genome. We found that there was a modest

correlation (R2 = 0.478, p>.05) between the informational content

of the clinical descriptions and number of correct matches of genome

to ophthalmologic patients (Figure 4). In contrast, for both neurologic

and connective tissue patients, there was almost no correlation

between the informational content of the phenotypic descriptions

and the number of correct genome–patient matches (R2 = 0.042 and

R2 = 0.029, respectively). Although the numbers of patients were

small, these results suggest that rich phenotypic descriptions may aid

genome–patient matching for specific categories of disease.

3.5 | Classification and evaluation of predicted
diagnostic variants

The third part of the CAGI5 challenge was to submit variants

predicted to be causative of the patient's phenotype. The variants

associated with the highest probability for the correct genome were

evaluated and classified by trained clinical geneticists using the 2015

ACMG clinical interpretation guidelines (Richards et al., 2015).

Consistent with these patients already having gone through a

diagnostic laboratory assessment of their genomes (described in

Methods) without finding any clearly causal variants, none of the

variants proposed by the groups were deemed to meet clinical

criteria for being returnable to the clinicians as the causal variants

for the patients’ disorders. However, predicted variants classified as

likely pathogenic and certain variants of unknown significance (VUS)

could be included in a clinical report. These variants are discussed

F IGURE 2 (a) Recall and (b) precision values shown for each
broad phenotype category by submissions

TABLE 4 Summary of the performance of each group's submission
(s) in the specific genome to patient matching

Submission
ID

Number of
matches

Sum of
probabilities for
matches

Mean probability
assigned to the
correct class

SID#1 2 2.00 0.08

SID#2 1 1.00 0.10

SID#3 2 0.38 0.08

SID#4 5 2.32 0.14

SID#5 4 3.59 0.34

SID#6.1 1 0.06 0.06

SID#6.2 1 0.36 0.07

SID#7 1 1.00 0.05

SID#8 6 4.52 0.26
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below with regard to the plausibility of their contributing to the

patients’ phenotypes (Table 5). Predicted variants that were clinically

classified as benign or likely benign are listed in Table S3.

Importantly, while one or more groups identified potential

variant(s) in 13 out of 24 genomes, none of the groups identified

the same variant or gene as disease‐causing in the same genome

(Table 5 and Table S3). In addition, while several candidate causal

variants were associated with recessive disease, all proposed variants

were heterozygous and no additional variants, excluding likely benign

and benign variants, were nominated in the same genes. Of note,

Group 5 did not participate in this part of the challenge and Group 2

did not predict a variant for its correct patient–genome match

(genome 95/patient C). The performance of each group based on the

laboratory geneticist evaluation (Methods) is described below.

Group 1: Group 1 proposed the highest probability matches of

patients and genomes for 71 (L) and 67(M). The variant predicted

for genome 71 could not be evaluated clinically as it is an intergenic

variant that is not associated with any known gene or disease state.

Group 1 correctly classified genome 67 as having an ophthalmologic

disorder and nominated a missense variant (c.776T>G, p.Pro406-

Leu) in the TYR gene as a potential causal variant. Pathogenic

variants in this gene are known to be associated with a form of

autosomal recessive oculocutaneous albinism (OCA type 1). The

p.Pro406Leu variant has been reported in at least 5 homozygous

and 7 compound heterozygous individuals with clinical features

of OCA type 1 (ClinVar). In addition, while this variant has

been identified in ~1% of the Finnish population (gnomAD,

http://gnomAD.broadinstitute.org), it has been reported as

pathogenic/likely pathogenic by multiple submissions in ClinVar

(Variation ID: 3777). In vitro functional studies provide evidence

that the p.Pro406Leu variant may impact protein function (Giebel

et al., 1991; Spritz et al., 1997; Toyofuku, Wada, Spritz, & Hearing,

F IGURE 3 The expected number of
genome‐phenotype matches inferred by
10,000 times in silico simulation.
(a) Distribution of overall number of
matches. (b) Distribution of the highest
match number observed in nine
predictions (to simulate nine submissions
of this challenge). In the simulation, we
assume that sex for all genomes can be
predicted correctly

F IGURE 4 Correlation between the informational content of the patient's clinical description and the number of correct genome–patient
matches by all submissions
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2001). Based on the above evidence, the laboratory geneticists

classified this TYR variant as likely pathogenic.

However, while this variant is associated with an ophthalmologic

phenotype, patient M's phenotype of retinitis pigmentosa is not

consistent with the current known phenotype spectrum of OCA type

1 or the biological function of gene product, tyrosinase. In addition,

as TYR‐associated OCA is autosomal recessive, a single pathogenic

TYR variant would not, by itself, be predicted to result in a disorder.

Hence, this variant would not be included in a clinical report as a

causative variant but could be considered reportable as a carrier

variant. Of note, this gene has a pseudogene complicating accurate

variant calling and requiring orthogonal testing modalities.

Group 3: Probability scores obtained by the group 3's method

also yielded two genome–patient matches: 68 (J), and 42 (O). The

IFT140 gene proposed for patient O was a good fit for the patient's

phenotype of retinal dysfunction. However, the variant has a

relatively high MAF (1.57% in the Finnish gnomAD cohort) yet is

not a major cause of retinal disease in the Finns (Avela et al., 2018). It

was classified therefore as benign.

The missense variant (c.887G>T, p.Arg296Leu) in LMNA identi-

fied for the neurologic patient J is very rare as it is not found in the

gnomAD database nor described in the literature. It is predicted by

multiple in silico algorithms to be damaging, but no functional

evidence is available for this particular variant. Based on this, the

variant was clinically classified as a VUS.

A structural analysis of the Arg296Leu variant, locates it in the

coil 2 region of LMNA (residues 243–383). This substitution could

potentially disrupt the intra‐helical ion pair formation observed in

intermediate filament coiled‐coils, thereby leading to protein

destabilization (Letai & Fuchs, 1995) and aggregation (Sylvius et al.,

2008). Abnormal processing of LMNA can cause mitochondrial

dysfunction (Bereziat et al., 2011), which was the working clinical

hypothesis for patient J, and is thought to contribute to the variety of

disease phenotypes observed in laminopathies (Sieprath et al., 2015).

In addition, lamin‐A/C is required for osteoblastogenesis and bone

formation in vivo, organ development and tissue differentiation

(Zuela, Bar, & Gruenbaum, 2012), and has emerged as a regulator of

the immune response (Gonzalez‐Granado et al., 2014). These

observations support additional clinical assessment of this variant,

and encourage further investigations in a research setting.

Of note, the nominated gene is associated with at least 10, mostly

dominant, genetic disorders affecting multiple organ systems and the

patient has a complex phenotype that includes retinal/corneal

dystrophies, extreme short stature with normal BMI, myopathy with

abnormal mitochondria, chronic renal failure, cerebellar abnormal-

ities, and type 1 diabetes. While the patient's phenotype does

not directly overlap with one of the known LMNA syndromes, the

phenotypic heterogeneity of LMNA variants suggests further re-

search investigation might be fruitful. For example, the parents and

the patient's similarly affected identical twin could be assessed to

determine if the variant is de novo in the affected twins. If true, then

the twins could undergo careful reverse phenotyping to more fully

assess the potential involvement of this LMNA variant in the patient'sT
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clinical presentation and the possible delineation of a novel

LMNA‐related syndrome.

Group 4 (Pal, Kundu, Yin, & Moult, 2019): The bioinformatics

approach used by the group 4 resulted in five correct genome to

patient matches: 17 (H), 56(N), 93(F), 95(C), and 99(B), and yielded

candidate variants for each (Table 5, Table S3). Of note, ethnicity was

stated for three of the five cases. In all five cases, the correct

phenotypic category was also selected and in four of five instances

the variant was in a gene that could possibly fit that category at the

root level overlap of HPO terms. Two of the proposed variants were

assessed as benign/likely benign and two were considered VUS.

Patient F was classified as having a connective tissue disorder and

a novel missense variant (c.7028A>G, p.Gln2343Arg) in EP300 was

identified as a potential disease‐causing variant. The amino acid

glutamine at codon 2343 is conserved among species and the variant

has not been previously reported in the general population (gnomAD).

In silico analyses provide conflicting predictions of pathogenicity.

While the rarity of the variant and its evolutionary conservation

suggested possible pathogenicity, the variant was clinically classified as

a VUS due to limited information and a lack of functional evidence. In

addition, pathogenic variants in EP300 are usually associated with

Rubinstein–Taybi syndrome 1 (RSTS1, MIM# 180849). While several

of the root level HPO terms of the Rubinstein–Taybi phenotype

overlap with the patient's described phenotype, the patient lacks

the intellectual disability seen in RSTS1 as well as its distinctive

dysmorphic features (e.g., broad thumbs/toes, arched eyebrows, down‐
slanting palpebral fissures, and a convex nasal ridge with low hanging

columella). Neither does the patient's phenotype fit the other known

EP300‐associated syndrome: Menke–Hennekam syndrome 2 (Menke

et al., 2018). Hence, it is unlikely that this variant would be considered

as clinically reportable based on the current knowledge.

As this is a novel variant, it is possible that this patient represents

a new EP300‐related syndrome. While the evidence for this

hypothesis is currently lacking, a plausible molecular argument can

be made. The p.Gln2343Arg residue change in histone acetyltrans-

ferase p300 (p300 HAT), the product of EP300, resides in the

glutamine‐rich (Q‐rich) region of the C‐terminal transactivation

domain of the molecule. This region shares similarities with the

Q‐rich transcriptional activation domains found in a number of

transcriptional activators (Kraus, Manning, & Kadonaga, 1999).

Variable Q‐rich repeats modulate transcription activity (Gemayel

et al., 2015), so this variant may affect the transcriptional function of

p300 HAT. Furthermore, recent research indicates strong support for

a role of p300 HAT in autophagy regulation in connective tissue

(Kang, Sun, & Zhang, 2019; Leung et al., 2017; Sacitharan, Lwin,

Gharios, & Edwards, 2018), so mutations in this gene could be

implicated in connective tissue disorders. This variant is therefore

another potential candidate for further research.

Group 4 also identified an intronic variant in PIGT c.‐8C>T as

potentially disease causing for patient B. Splicing algorithms (Human

Splice Finder, http://www.umd.be/HSF) predict that this alteration may

disrupt splicing. The variant's MAF is low enough to be plausibly

pathogenic (0.0015% in gnomAD) but no additional information could

be found for this variant. Consequently, due to insufficient evidence,

this variant was clinically classified as a VUS. Again, this is a VUS in a

gene that fits the correct phenotype category. In this regard, germ line

sequence variants in this gene are associated with an autosomal

recessive multiple congenital anomalies‐hypotonia‐seizures syndrome

(MIM# 615398). However, like the EP300 case above, the patient's

described phenotype lacks many of the HPO terms associated with

the known disorder, making it an unlikely clinical diagnosis. In addition,

the lack of a second pathogenic PIGT variant further diminishes the

likelihood of being causative of this recessive disorder.

Group 6, SID#6.1 and 6.2: Both of group 6's submissions matched

one genome to the correct patient. However, the predicted disease‐
causing variant for SID#6.1 was clinically classified as benign due to a

2.57% MAF. SID#6.2 correctly matched genome 78(V) and proposed

candidate variants in four genes (MYO1E, COL9A2, COL9A1, and

GATA4) for this patient, who had a clinical diagnosis of hypermobility

type Ehlers–Danlos syndrome. One of the diseases associated with

COL9A1 and COL9A2, Stickler syndrome, has a phenotype that

includes both ophthalmologic and connective tissue components,

while the other disease, epiphyseal dysplasia, could be considered a

pure connective tissue disorder. The potential variants identified in

these two genes were classified as likely benign. Given that the

MYO1E and GATA4 are associated with focal glomerulosclerosis and

cardiac malformations, respectively, they would not be considered

likely candidate genes for this patient's Ehlers–Danlos syndrome. In

addition, because of lack of information, the deep intronic variant

identified in MYO1E was clinically classified as likely benign.

Group 7: Group 7 proposed two candidate variants for a single

ophthalmologic patient (7/X), whose phenotype included bilateral

retinal hamartomas, nystagmus, and severe myopia: a missense

alteration in PROM1 (c.776T>G, p.Met259Arg) and a benign 5’‐UTR
variant in GNAQ. Sequence variants in PROM1 have been associated

with autosomal recessive retinitis pigmentosa (MIM# 612095) and

autosomal dominant Stargardt disease (MIM# 603786). Of note, the

amino acid methionine at codon 259 is not well conserved among

species but this variant is novel, as it has not been previously

observed in the general population (gnomAD) and in silico models

predict the variant to be damaging. Based on this limited information

and lack of functional evidence, the variant was clinically classified as

a VUS. Importantly, because hamartomas have yet to be associated

with PROM1 variants, PROM1 would not be considered a high

priority candidate for assessment as a disease gene.

Group 8: The computational algorithms used by the group 8 to

match genomes to patients yielded six matches: 7(X), 56(N), 68(J),

93(F), 99(B), and 102(A). However, all of the variants predicted to be

associated with the patient phenotypes were classified as benign or

likely benign, again, primarily due to high allele frequencies in the

general population. In four matches, the selected variants fell in genes

that could be considered to match the phenotype category; 56(N)

TNXB connective, 68(J) ATM neurologic, 99(B) SLC25A22 neurologic,

and 102(A) COL5A2 connective. In addition, for all but 68(J), the

proposed disease gene could plausibly explain the patient's phenotype,

particularly if one allowed for some phenotypic expansion.
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3.6 | Variants of interest not matched to the
correct patient

During the clinical assessment of the nominated variants it became

clear that matching genomes to patients based on the information in

the phenotype descriptions was difficult at best. Therefore we

examined the highest probability incorrectly matched variants and

evaluated the ones identified in more than one submission for a given

genome. Only variants classified as VUS or above were considered. This

yielded a number of interesting variants discussed below (Table 6).

A rare missense VUS (c.602C>T, p.Thr201Met) in IMPDH1 was

identified by groups 2, 3, 4, and 8 in genome 97 and 67, although this

variant was not present in the VCF file of genome 67. IMPDH1 is

associated with autosomal dominant retinitis pigmentosa (MIM

#180105) which is consistent with retinitis pigmentosa found in

patient M. This variant was incorrectly attributed to other patients

(O, W, and C) all of which had eye phenotypes that could be

considered overlapping with retinitis pigmentosa. However, the

p.Thr201Met is found in six heterozygous individuals in gnomAD.

This number of supposed healthy adult individuals in gnomAD would

exclude most variants from clinical consideration in the case of a

highly penetrant autosomal dominant disease such as retinitis

pigmentosa indicating that if by chance this variant is pathogenic,

other factors must be at play.

For genome 78, a missense variant in the COL1A2 gene

(c.2122C>T, p.Arg708Trp) was identified as a potential candidate in

SID# 3, 4, and 6.1. The correct patient match for genome 78 is patient

V, who has hypermobility type Ehlers–Danlos syndrome, and variants

in COL1A2 are associated with autosomal dominant Ehlers–Danlos

syndrome (MIM# 120160). Ehlers–Danlos syndrome was also the

primary phenotype for patients S and Q to which this genome was

incorrectly attributed. The amino acid arginine at codon 708 is highly

conserved among species and most in silico algorithms predict the

variant to be damaging. This particular variant has been observed in

the general population at a frequency of 0.0012% (gnomAD) and was

clinically classified as a variant of uncertain significance (VUS) in

agreement with ClinVar. As a VUS, this variant might be included in a

clinical report depending on how the population frequency and

penetrance of disease are considered by the individual diagnostic

laboratory, but would provide little impetus for clinical action.

Hypermobility type Ehlers–Danlos syndrome is likely an under‐
reported phenotype and variable phenotypic presentation may be

dependent on many factors, which means that three heterozygous

individuals in gnomAD should definitely not exclude this variant as a

possible cause of disease. However, it would be difficult to resolve the

VUS status of the variant without additional evidence from functional,

case/control, or segregation studies.

Group 6 selected a SKI missense variant (c.1268C>T, p.Pro423Leu)

in both submissions for genome 9. This variant was clinically assessed to

be a VUS, mainly due to limited information. Pathogenic alterations in

SKI cause Shprintzen–Goldberg syndrome, a severe, congenital, mainly

connective tissue disorder. Patient W, who is the correct match

for genome 9, has an ophthalmologic phenotype rather than

Shprintzen–Goldberg syndrome. While the penetrance of Shprintzen–-

Goldberg syndrome due to SKI alterations is not known, most SKI

alterations are de novo (Greally, 1993), which is consistent with it being

a severe dominant congenital disorder. Consequently, the presence of

two heterozygous carriers of this variant in gnomAD casts serious

doubts that this alteration could cause Shprintzen–Goldberg syndrome.

This variant was incorrectly attributed to patient V, a child with

primarily an Ehlers–Danlos syndrome phenotype, but with other

features that could have been consistent with Shprintzen–Goldberg

syndrome had this variant belonged to patient V.

Usher syndrome is an autosomal recessive disease characterized

by retinitis pigmentosa and sensorineural hearing loss. Usher

syndrome 1B is caused by pathogenic alterations in MYO7A, which

account for over half of all Usher syndrome cases (Lentz & Keats,

1993). SID#1 and 6.2 selected a p.Asp1387Asn MYO7A alteration for

genome 95, which belongs to patient C and was clinically classified as

VUS due to lack of information. Interestingly, patient C has vision

problems that could be consistent with Usher syndrome and also had

hearing issues and speech delay, but the hearing issues have

reportedly resolved. While patient C has some possible phenotype

overlap with Usher syndrome theMYO7A variant would only account

for one allele and a second candidate variant was not identified in C's

genome for this recessive disorder. Hence, this variant is unlikely to

be causative. Of note, this variant was incorrectly attributed to two

other retinitis pigmentosa patients, H and M, neither of whose

phenotypic descriptions included hearing issues.

Group 6 selected a loss of function alteration (c.343C>T,

p.Arg115Ter) in CEP152 in both submissions for genome 39. As a

loss of function alteration, the p.Arg115Ter alteration was clinically

classified as pathogenic and loss of function alterations in CEP152

cause two autosomal recessive syndromes: primary microcephaly 9

and Seckel syndrome 5 (MIM# 613529). Patient P, the patient

associated with genome 39, has a neurological phenotype and the

known CEP152‐related diseases encompass neurological phenotypes,

so the gene is plausible for the broad neurologic category, but

patient's overall clinical picture does not overlap well with the two

diseases associated with CEP152. Patient P's primary phenotype,

epileptic encephalopathy, is not a feature of either primary

microcephaly 9 and Seckel syndrome 5. In addition, patient P does

not have severe microcephaly, a constant feature of the known

CEP152‐associated disorders and a second disease‐causing CEP152

allele was not identified. The CEP152 variant was incorrectly

attributed to patients K and R. Patient K was considered to belong

to the connective tissue category and has little if any phenotype

correlation with CEP152‐related diseases. Patient R belonged to the

neurologic category with some limited phenotype correlation with

CEP152‐related diseases. However, neither patient K nor R have

severe microcephaly.

For both submissions, group 6 identified a missense variant

(c.2981A>G, p.Gln994Arg) in the KIF7 gene for genome 79. Genome

79 belongs to patient K, who has a clinical diagnosis of Ehlers–Danlos

syndrome and possibly ADHD (attention‐deficit/hyperactivity
disorder). There are two homozygous individuals in gnomAD and
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MAF's for this variant range as high as 1/320, casting doubt on its

ability to cause any disease. In addition, the disorders associated with

KIF7 are not consistent with patient K's phenotype. However, due to

conflicting information, it was classified as a VUS (ClinVar variation

ID: 194572). Of note, this variant was incorrectly attributed to

patient F, most likely because F's neurological findings (seizures and

hearing impairment, motor delay) and Ehlers–Danlos syndrome

characteristics partially overlap with those seen in KIF7‐associated
disorders.

Group 3 and 4 predicted a FLNA missense variant (c.7136A>G,

p.Tyr2379Cys) for genome 21 but incorrectly attributed this genome

to patient V and T, respectively. The p.Tyr2379Cys alteration is listed

in VarSome, but was not found in any other control or disease

database that was searched. Patient G, the matching patient for

genome 21, is a female with infantile epileptic encephalopathy and

global developmental delay. As with LMNA, FLNA variants are

associated with a broad range of diverse phenotypes (MIM#

300017). The FLNA phenotype with the best phenotype correlation

with patient P is periventricular heterotopia 1, an X‐linked dominant

disorder, which is associated with refractory seizures (MIM#

300049). However, MRI abnormalities reported in patient G (delayed

myelination and thin corpus callosum) are not consistent with

reported brain abnormalities in periventricular heterotopia 1. In

addition, the majority of FLNA variants associated with periven-

tricular heterotopia are LOF variants, not missense variants. Patient

V and T both were considered to belong to the connective tissue

category due to a clinical suspicion of Ehlers–Danlos syndrome, but

also had histories of developmental delays/learning disabilities.

Because this combination of features is suggestive of case reports

of FLNA variants causing an Ehlers–Danlos/periventricular hetero-

topia phenotype, it likely drove the misattribution of genome 21 to

patients V and T.

3.7 | Secondary variants

Three groups (1, 4, and 7) submitted secondary predictive variants

that confer high risks for other diseases whose phenotypes were not

reported in the clinical descriptions (see Table S4). 35 distinct

variants were submitted, 8 of which were clinically classified as

pathogenic, 4 as likely pathogenic, 16 VUS, 4 likely benign, and 3

benign alterations. Overall, the variants chosen as secondary findings

were much more likely to be truly pathogenic than the predicted

primary diagnostic variants. This task was also easier as it did not

require any genotype–phenotype matching; however, secondary

variants do require a higher burden of proof for inclusion in a

clinical report. Only variants that provide strong evidence that a

person will develop a disease are reported, thus VUS alterations are

not reported clinically. Of the eight pathogenic variants, seven are

associated with autosomal recessive disorders and would only be

considered as clinically reportable as heterozygous carrier variants. A

pathogenic variant in G6PD was identified but would not be reported

by all clinical laboratories, as it is a low penetrance gene and it causes

favism, a very mild disorder.

Only one alteration represented a clearly reportable clinical

finding, a MSH2 splice alteration reported several times in ClinVar as

a likely pathogenic variant, predicted by SID#1 and 4 in genome 91

and by SID#4 also in genome 81. Of note, this variant is absent from

gnomAD and is not a common pathogenic MSH2 variant, yet it was

present in 2/24 CAGI5 patients. Such a coincidence raises the

possibility of sequencing artifacts requiring Sanger verification,

particularly since this was a one base pair insertion. If verified by

confirmatory clinical sequencing, this c.942 + 2delT alteration would

confer a high risk of Lynch syndrome and its associated cancers

(MIM# 12434).

3.8 | CAGI4 SickKids challenge ‐ solely variant
prediction

The CAGI4 SickKids challenge took place in 2016 and focused on

identifying diagnostic variants and predictive secondary variants in

unsolved cases, without the need for genome to phenotype matching.

This challenge involved 25 children with a wide range of suspected

genetic disorders who were referred for clinical genome sequencing,

but remained unsolved after initial analysis (Pal et al., 2017;

Stavropoulos et al., 2016). Predictors were given patients’ WGS data

and clinical phenotypic descriptions in the form of Phenotips

annotations, based on HPO terms. Four teams participated in this

challenge (Table 1); two of them took part also in the CAGI5 SickKids

challenge described above (groups 11 and 12).

Altogether 191 potential diagnostic variants were proposed for

25 patients, including 60 variants in genes not associated with OMIM

disease phenotypes. The majority were variants for dominant

disorders and no structural variants were proposed. Of note, half

of the variants proposed by SID#10 and over 20% of the diagnostic

variants proposed by SID#12 had MAF>1%, rendering them unlikely

to be causal variants. Although variants generally were chosen for

their ability to explain the patient's phenotype, for the majority, the

phenotypic abnormalities associated with the variant only partially

overlapped with those of the patient. In many of these cases, the

degree of mismatch between predicted phenotype and patient's

phenotype was sufficient to make causality highly unlikely. For

example, a novelMECP2 missense variant (p.Glu55Lys) was proposed

by SID#9 and SID#11 for patient 1041, who presented with

microcephaly, hypotonia, and developmental delays (Table 7). While

these terms are also seen in Rett syndrome (the condition associated

with MECP2), they were present at birth in the child, while girls

affected by Rett syndrome appear normal at birth and only become

symptomatic with age.

For CAGI4, most variants were predicted by a single submission

only. However, 10 variants were nominated for the same patients by

more than one group (Table 7). SID#9 and 11 had the largest overlap

(six variants), this is somewhat expected as they both used Exomizer

for variant prioritization. In four cases, the predictor's candidate

variant also had been classified as a candidate variant by the SickKids

bioinformatics pipeline but discarded upon initial manual review by

the SickKids Genome Clinic diagnostic team. Nomination by the
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CAGI4 participants prompted reassessment of these variants by the

SickKids Genome Clinic team, which performed validation and

reverse phenotyping for several of the proposed causal variants.

For patient 1024, the predicted variant was in a gene that did not fit

the clinical phenotype and for patient 1025, the gene was a good

phenotypic fit but the variant did not validate by Sanger sequencing

(both were predicted by SID#12 and the SickKids bioinformatics

pipeline). Prioritized variants for patients 1011 (by SID#12 and

SickKids) and 1060 (by SID#9, 12, and SickKids) were located in

genes that had partial overlap with the clinical phenotype and were

successfully validated. In two instances (patients 1105 and 1106)

when two teams picked the same variant (Table 7), the patient's

referring clinical geneticist re‐assessed the patient in light of the

proposed disease gene and concluded that it was a good fit for the

patient's phenotype, meaning that the CAGI participants provided a

clinical diagnosis for these two cases (Pal et al., 2017).

In addition to primary diagnostic variants, three groups also

predicted secondary findings. No variants were proposed by more

than one team. Variants submitted by SID#10 and 11 did not fulfill

the 2015 ACMG criteria for pathogenic or likely pathogenic variants

and would hence not be returned as medically actionable. Four of the

variants predicted by SID#12 had also been picked by the SickKids

diagnostic assessment team as potentially medically actionable (data

not shown). Of note, three of them were discarded due to low read

depth and two did not validate by Sanger sequencing. This left only

one variant in FBN1 (c.G1027A, p.Gly343Arg) that has conflicting

interpretations in ClinVar (Variation ID: 161244), meaning that

ultimately none of the nominated predictive secondary variants were

reportable clinical findings.

4 | DISCUSSION

One of the greatest barriers to fully realizing the potential

of genomic medicine to transform clinical practice is variant

interpretation. While current technologies allow us to identify the

vast majority of variants in the human genome, we can only interpret

the phenotypic and clinical significance of a few. This is due to lack of

knowledge about the impact/pathogenicity of variation in most parts

of the human genome as well as insufficient clinical descriptions or

per contra heterogeneity/diversity of the phenotype under examina-

tion. This calls for a multidisciplinary approach that enlists computa-

tional biologists, clinical experts and research geneticists to tackle

these challenges. The CAGI SickKids challenges were designed to

begin to address this complex problem.

CAGI4 and CAGI5 participants were provided with WGS data

and phenotype descriptions for 25 and 24 patients respectively who

had remained without a diagnosis after evaluation by the SickKids

Genome Clinic project (Lionel et al., 2018; Stavropoulos et al., 2016).

Participants were asked to predict primary and secondary causal

variants. In addition, for CAGI5, groups had to match each genome to

one of three categories of disease (neurologic, ophthalmologic, and

connective), and separately to each patient.

4.1 | A single category does not provide enough
information to distinguish a genome

For the first task in CAGI5 SickKids challenge, matching genomes to

one of the three clinical categories, groups performed no better than

random prediction (Figure 1), assigning the correct phenotype

category to an average of nine genomes. Only a third of all genomes

were correctly matched by more than three submissions. Although

half of the submissions had a higher accuracy than the nine matches

expected of a random prediction, the results were not statistically

significant. A comparison of the accuracy of predictions in each broad

disease category showed that the connective tissue category was

slightly easier to match, with one submission (SID#6.2) achieving a

significantly better result compared to 10,000 random simulations by

matching 10 out of 11 genomes correctly. However, this result would

still rank lower than the random prediction where the highest

TABLE 7 Potential diagnostic variants predicted by multiple submissions in CAGI4

Patient ID SID# Genomic position (hg19) Gene Transcript Nucleotide change Protein change

1011 12, SickKids 17:48266777:AGGGCCAGG:A COL1A1 NM_000088.3 c.2782_2789delCCTGGCCC p.Pro928CysfsTer10

1014 9, 11 13:100623343:T:A ZIC5 NM_033132.4 c.587A>T p.Asp196Val

1024 12, SickKids 16:3778350:TG:AA CREBBP NM_004380.2 c.6697_6698delCAinsTT p.Gln2233Leu

1025 12, SickKids 5:36985083:AA:A NIPBL NM_133433.4 c.1808dupA p.Ser604ValfsTer2

1028 9, 11 7:155595841:C:A SHH NM_000193.4 c.1142G>T p.Arg381Leu

1041 9, 11 X:153297872:C:T MECP2 NM_004992.3 c.163G>A p.Glu55Lys

1060 9, 12, SickKids 9:140648627:C:T EHMT1 NM_024757.5 c.1253C>T p.Ser418Leu

1064 11, 12 11:6654044:G:A DCHS1 NM_003737.4 c.2699C>T p.Thr900Met

1076 9, 11 11:47470494:T:A RAPSN NM_005055.5 c.23A>T p.Gln8Leu

1083 9, 11 11:118307298:G:C KMT2A NM_001197104.1 c.71G>C p.Arg24Pro

1099 9, 12 5:88056849:T:TT MEF2C NM_001193347.1 c.412dupA p.Ile138AsnfsTer2

1105 9, 11 10:112361827:A:T SMC3 NM_005445.3 c.2996A>T p.Lys999Met

1106 11, 12 20:47991474:A:G KCNB1 NM_004975.4 c.623T>C p.Leu208Pro
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probability would always be given to the connective tissue category

(11 out of 24 genomes or 46%). This challenge was made all the more

difficult by the presence of patients with complex phenotypes who

had been assigned to a specific clinical category based on their most

prominent clinical features, but had clinical features belonging to two

or more categories. These results indicate that classifying patients

into a single category may not provide sufficient information to

distinguish a genome, or that there is insufficient knowledge about

genomic variation to segregate genomes into broad categories.

4.2 | Thorough understanding of the phenotypic
description leads to success in the specific genome to
patient matching

From the outset, one of the greatest obstacles for the CAGI5

SickKids challenge was to match a genome to a patient. The only

information that could be accurately assigned based on our current

knowledge was gender and reported ancestry, with the latter

available only for 19 of the 24 patients. Interestingly, not all groups

utilized gender information to the full extent (Table S2). Despite the

difficulty of matching a given genome to a specific clinical description

and in contrast to the lack of success in broad category matching, two

submissions (SID#4 and 8) performed significantly better than

random chance. These two groups were able to correctly match five

and six genomes, respectively, whereas the expected highest match

number of nine random predictions was four. A similar success range

was achieved in another CAGI challenge (Cai et al., 2017), where the

best prediction could correctly match up to 25% of genomes to self‐
reported phenotypes.

To understand whether the overall low accuracy of the predictor

community was caused by lack of information in the clinical

descriptions, we assessed the relationship between the number of

correct genome–patient matches and the informational content of a

patient's phenotype description. Unexpectedly, except for ophthal-

mologic disorders, richer clinical descriptions did not correlate with

higher correct prediction rates (Figure 4). The mismatch between

patients and genomes in the presence of rich phenotypic information

could be explained, at least in part, by the complexity of the clinical

descriptions. Reflecting the reality of clinical diagnosis of genetic

disorders, these often included terms belonging to more than one

phenotypic category, potentially confounding prediction classifica-

tion. Specifically, in 29% (7/24) of cases, clinical descriptions contain

references to both connective and neurological defects (patients A, I,

K, and V), eye and connective (patient X) or eye, and neurological

(patient J) defects, or defects belonging to all three categories

(patient D). In at least two cases (patients J and L), these descriptions

reference conditions outside the three defined categories, including

major, multisystem health concerns, abnormal organ morphology and

physiology, abnormal immunity, and metabolism.

Most of the predictors used HPO coding (or another similar

gene–phenotype database) for gene prioritization in each clinical

case. A recent paper has demonstrated that the use of specific HPO

terms improves gene‐ranking with the top 10% of HPO terms being

sufficient to rank the causative gene (Tomar, Sethi, & Lai, 2019).

Unlike other submissions, SID#4 weighed the clinical terms by

scoring the most serious and definitive (to a presumed disease) term

in the profile with the highest value (Pal et al., & Moult, 2019). SID#8

built eight gene sets related to the diseases of interest and classified

each case as belonging to one of those categories, rather than using

all the genes associated with any of the HPO terms derived from the

clinical descriptions. Complex phenotypes (patients A, J, and X) were

among the correctly matched genomes by these best‐performing

submissions, suggesting that in this case, phenotypic diversity could

present an advantage in genome matching if appropriately leveraged.

In summary, this part of the challenge suggests that exhaustive

phenotyping can introduce noise in the selection process, and that

focusing on specific phenotypic features of a disease most relevant to

the patient under examination can be a more effective prediction

strategy than collecting as much phenotypic information as possible.

Therefore, in addition to considering gender and ethnicity, a

thorough understanding of the phenotypic descriptions was likely a

key success factor.

4.3 | Considerations for improving variant
prediction

The CAGI challenges were designed to test our ability to associate

genotype and phenotype beyond our current limits, and to look at

genomic and phenotypic data in a much more multifactorial and

complex way than monogenic Mendelian approaches. In the past,

genetics was, out of necessity, a phenotype‐to‐genotype‐driven field.

With the advent of NGS, a genotype‐to‐phenotype approach became

possible. For the CAGI SickKids challenges, groups mainly adopted a

phenotype‐to‐genotype approach, where most groups started with

gene prioritization by building gene lists associated with given

phenotype descriptions and selected variants within those genes or

gene ontologies. No group took a purely variant‐to‐phenotype
approach where rare, predicted damaging variants were used to

independently build a set of gene ontology and phenotype terms that

were then matched to patients’ phenotype descriptions. In clinical

practice, bioinformatics pipelines typically filter out common, benign,

and noncoding variants, and the phenotypes previously associated

with the genes in which the remaining variants are found are

compared with the patient phenotype, assuming a single gene disease

relationship. It would be interesting to see how combinations of

various approaches might lead to an improvement in performance of

computational methods and identification of multigenic possibilities

in similar challenges in the future.

The variant prediction part of the CAGI5 challenge was also

complicated by the fact that the genomes were unlinked from the

respective clinical descriptions. In CAGI4 on the other hand, the

specific genome–patient matches were known. The vast majority of

variants in that challenge appeared to be chosen for the ability to

partially explain phenotype. In two cases this approach led two

groups to predict the same variant for the same genome which

resulted in a diagnosis for these patients. Yet, for many proposed
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diagnostic variants, the phenotype associated with the variant had

little enough overlap with the patient's phenotype that the variant

was considered implausible by the clinical assessors. This issue arose

multiple times in both CAGI4 and CAGI5, suggesting that there may

be systematic problems with how phenotypic information is used

bioinformatically. One contributing cause is the tendency to match

the patient's phenotype and the phenotype associated with the

variant at the root HPO term. For example, retinal degeneration and

cataracts match at the root term of eye disorder, but have

fundamentally different etiologies and clinical significance. Another

problem is matching one HPO term at a time, which can produce an

apparent match between the candidate gene and the patient when

they don’t share other major HPO terms. For example, a patient with

developmental delay is matched to a gene that is associated with

developmental delay, but the patient lacks the severe microcephaly

and malformations seen with the candidate gene.

4.4 | Study limitations

Primary disease‐causing variants selected by groups were often

excluded from further clinical analysis due to the population frequencies

of the variant being too high to cause Mendelian disease, variants

located in noncoding regions, or variants being synonymous. Population

frequencies of variants involved in multifactorial genetic disease may be

higher than for Mendelian disorders. Such high frequency, multifactorial

variants may prove to be important for clinical phenotypes in the future,

but evidence for such a role is currently lacking.

The phenotype spectrum caused by pathogenic variants in a

particular gene often expands over time with new information and

identification of additional patients. In addition, ~5% of children

evaluated for rare genetic disorders have more than one causal

genomic variant (Smith et al., 2019; Stavropoulos et al., 2016).

Furthermore, inheritance patterns for genes often change with

improved knowledge and understanding. It is reasonable to

suspect that some of the VUS identified in this study may, in the

future, be reclassified as phenotype expansions (Masuda et al.,

2015; Negri et al., 2015; Sellars, Sullivan, & Schaefer, 2016).

Examples of such variants include the EP300 p.Gln2343Arg variant

in patient F (genome 93) and the LMNA p.Arg296Leu variant in

patient J (genome 68).

Finally, a major limitation of current genome sequence analysis

methods, is the identification of significantly large number of variants

of unknown clinical significance. This is in part due to limited

functional information available for these variants. Integrating other

“omics” data, such as transcriptomics and proteomics analyses, would

enrich variant functional characterization and aid in the identification

of causative variants.

5 | CONCLUSION

Adopting WGS as a diagnostic tool requires addressing the current

lack of understanding of the role of many genes and variants in

disease. Our assessment of the CAGI SickKids challenges involving

undiagnosed children, suggests that computational approaches are

most successful in predicting genotype from phenotypic information

when the associated clinical terms are weighted by relevance. This

may be especially pertinent in the case of complex phenotypes.

Reportable clinical findings were discovered in the linked genomes

challenge (CAGI4), while several other variants were identified as

good candidates for phenotypic expansion or further research in

CAGI5. Introducing clinical methodologies, such as combining

phenotype‐to‐gene with variant‐to‐phenotype information, and in-

tegrating different types of omics data could hold promise for future

development of computational methods seeking to explore the

genetic basis of disease.
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