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Efforts to integrate computational tools for 
variant effect prediction into the process 
of clinical decision-making are in progress. 
However, for such efforts to succeed and help 
to provide more informed clinical decisions, 
it is necessary to enhance transparency 
and address the current limitations of 
computational predictors.

Variant pathogenicity classification and interpretation is increas-
ingly integrated into the process of clinical decision-making and has 
evolved into an important component of modern medicine. Multiple 
guidelines have been created to provide systematic and consistent 
protocols to perform variant pathogenicity classification and inter-
pretation1–3. Such guidelines include the use of artificial intelligence 
in the form of computational tools for variant effect prediction. 
At the end of 2022, ClinGen published recommendations4 on the 
use of computational tools for missense variant pathogenicity clas-
sification, augmenting the American College of Medical Genetics 
and Genomics (ACMG)/Association for Molecular Pathology (AMP) 
guidelines1 for the classification of germline variants for monogenic 
conditions. The recommendations provide evidence for increasing 
the strength of criteria from computational tools for missense variant 
effect prediction. The important issue of double counting of evidence 
has been raised4; this arises from the potential use of information to 
train computational predictors and then subsequently using this very 
information as evidence within the ACMG/AMP guidelines. Popula-
tion frequency, functional information, protein structure, mutational 
hotspots data, clinical annotations, as well as evolutionary sequence 
conservation are examples of such evidence types. These types of 
evidence are frequently included as features by variant effect pre-
dictors and are described in detail in most predictor publications. 
Therefore, to minimize double counting of evidence, careful and 
detailed examinations of evidence types used by computational 
predictors is required.

However, many key potential users of computational predictors, 
such as variant curators, clinical geneticists and medical doctors, are 
known to be under severe time constraints and cannot be realistically 
expected to review publications at the level of detail required or keep 
track of updates in variant effect predictors. To be able to apply com-
putational predictors intelligently and to decrease double counting of 
evidence, diagnostic laboratory personnel and other users need easily 
accessible information about the features and ‘reasoning’ underlying 
a predictor of interest. Below, we outline the types of the additional 
information for which availability, especially if provided in a structured 

form, would be beneficial to increase the transparency and usefulness 
of computational tools for variant effect prediction.

Inputs and outputs of variant effect predictors
For predictors that use supervised learning (requires labeled training 
data), it is critically important to know if a variant, for which the predic-
tion is provided, was used in the training data set, and if so, whether it 
contributed to this particular prediction; if this is the case, the predictor 
is likely to provide only limited additional evidence for overall classifica-
tion. Furthermore, if a variant was in the training set for a predictor, it is 
important to know the criteria underlying its inclusion in the training 
set. In an extreme case, some databases used to construct training sets 
include variants that themselves have been classified as such on the basis 
of the results of a variant-effect prediction tool, producing circularity. 
This circularity may be difficult to measure and will require tightening of 
the criteria on reporting variant pathogenicity. For example, resources 
used to extract training sets may not list all the criteria used to assert vari-
ant pathogenicity, as is the case for ClinVar5, and moreover, authors of 
publications used for reporting in the Human Gene Mutation Database6 
may implicitly use computational tools, but not credit them formally. 
The circularity issue has the potential to become more prominent as the 
use of generative artificial intelligence approaches enters the field of 
variant pathogenicity prediction, and in some cases limited attention 
is paid to the careful vetting of training data.

Both supervised and unsupervised (do not require labeled training 
data) predictors may include variant population frequency, functional 
evidence, mutational hotspots, evolutionary conservation and protein 
domain data as features, and, to mitigate double counting of evidence, 
computational prediction should not be used in conjunction with ACMG/
AMP evidence used at full strength and based on the same features. It is 
also important to know the value and source of each feature, as well as 
databases (and versions) from which the information was extracted; for 
example, specifying variant population frequency source as filtering 
allele frequency from Genome Aggregation Database (gnomAD) v4.1.0. 
For all these evidence types, it would also be useful to know the relative 
weight of the evidence for an overall computational prediction, if such 
information is available and relevant to the prediction algorithm.

Furthermore, for variant classification and clinical interpreta-
tion, it is very important to know if a variant acts via a loss-of-function 
(LOF) or gain-of-function (GOF) mechanism. Therefore, computational 
predictors should specify if a prediction indicates LOF, GOF or makes 
no such claim. Table 1 lists examples of well-known computational 
predictors with key inputs and variant types covered. Of note, none of 
these predictors, with the exception of MutPred2, attempt to provide 
LOF or GOF inference.

Providing such level of detail will be especially challenging for 
meta-predictors, which use as input predictions from other compu-
tational predictors. By implicitly counting the same types of features 
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‘pathogenic’ or ‘benign’4. However, these terms have specific defini-
tions, and variant classification is intended to be based on careful 
evaluation of multiple criteria in relation to a particular condition or 
disease. The raw output of most prediction methods is a continuous 
value or ‘score,’ but many methods select thresholds on these scores, 
and it is important to understand or know how these thresholds were 
chosen. Other methods provide measures of statistical significance, 

and training examples multiple times, meta-predictors are at risk of 
overfitting and bias7. Efficient access in a centralized location to train-
ing data and feature details used by predictors would allow the creators 
of meta-predictors to identify these overlaps and to develop improved 
methods that result in less overfitting.

Many users find it difficult to interpret typical outputs of pre-
diction methods, which often produce categorical results, such as 

Table 1 | Examples of well-known computational predictors

Prediction 
algorithm

Variant types covered Input data types Website Meta-predictor (list of predictors)

AlphaMissense Missense Reference protein 
sequence-based protein 3D 
structure predictions, amino acid 
frequency statistics, population 
frequency

https://github.com/google-deepmind/
alphamissense

No

BayesDel Single-nucleotide 
variants, inframe indels, 
non-coding variants

Sequence conservation, clinical 
annotations, other predictors

https://fenglab.chpc.utah.edu/
BayesDel/BayesDel.html

Yes (PolyPhen-2, SIFT, FATHMM, 
LRT, MutationTaster, Mutation 
Assessor, phyloP, GERP++, SiPhy)

CADD Single-nucleotide 
variants, multi-nucleotide 
substitutions, indels

Reference protein sequence, 
sequence conservation, protein 
functional annotations, other 
predictors

https://cadd.gs.washington.edu/snv Yes (SIFT, PolyPhen, phastCons, 
phyloP, GERP++, mirSVR, 
targetScan)

CHASMplus Missense Somatic missense mutations 
from TCGA, hotspots, germline 
variation, sequence conservation, 
molecular function annotations, 
protein–protein interface 
annotations, sequence-biased 
regions, gene-level covariates

https://run.opencravat.org No

Evolutionary 
Action

Missense Sequence conservation http://eaction.lichtargelab.org/ No

Mutation Assessor Missense Sequence conservation http://mutationassessor.org/r3/ No

MutPred2.0 Missense, inframe 
indels (MutPredIndel), 
frameshifting indels and 
stop gains (MutPred-LOF)

Reference protein sequence, 
sequence conservation, 
homology, residue function, 
clinical annotations

http://mutpred.mutdb.org/index.html No

PhD-SNPg Single-nucleotide 
variants, inframe indels, 
non-coding variants

Reference protein sequence, 
sequence conservation

https://snps.biofold.org/phd-snpg/
index.html

No

Primate-AI Missense Reference protein sequence, 
sequence conservation, 
population frequency, predicted 
protein secondary structure

https://github.com/Illumina/PrimateAI No

PolyPhen-2 Missense Reference protein sequence, 
sequence conservation, protein 
functional annotations, protein 
3D structure

http://genetics.bwh.harvard.edu/
pph2/

No

PROVEAN Missense Sequence conservation http://provean.jcvi.org/genome_
submit_2.php?species=human

No

REVEL Missense Sequence conservation, clinical 
annotations, other predictors

https://sites.google.com/site/
revelgenomics

Yes (VEST, FATHMM, MutPred, 
PolyPhen, SIFT, PROVEAN, 
Mutation Assessor, MutationTaster, 
LRT, GERP, SiPhy, phyloP, 
phastCons)

SIFT Missense, inframe indels Sequence conservation https://sift.bii.a-star.edu.sg/ No

VEST-4 Missense, inframe indels 
(VEST-indel)

Reference protein sequence, 
sequence conservation, clinical 
annotations, protein functional 
annotations, predicted protein 
secondary structure

https://run.opencravat.org No

Indel, insertion and/or deletion.
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so that each score is associated with an adjusted P value, allowing the 
user to pick their own thresholds based on tolerance to false posi-
tives4. However, not all users might be confident in having to make 
such a choice. Thus, a transparent approach to calibrate predictor 
output is needed, such as the framework that mapped predictor 
scores onto nine non-overlapping intervals, corresponding to the 
nine evidential strength levels defined by the ACMG/AMP guidelines4. 
Widespread adoption of this and other calibration efforts8 would be 
an important advance toward facilitating the clinical application of 
prediction methods.

Finally, it is important for a predictor and its calibration to be 
vetted repeatedly, independently and in a blinded setting. Errors in 
training protocols, the iterative nature of data access or simply biased 
training data can contribute to overly optimistic estimates of predic-
tion performance that can propagate into training data for subsequent 
next-generation models and increase downstream circularity. Perfor-
mance of predictors may also differ on the basis of the characteristics 
of a specific gene or disease, the germline versus somatic context and 
the type of genetic alterations (missense, insertions and/or deletions, 
splicing, non-coding, and so on)8–10. Community experiments such 
as the Critical Assessment of Genome Interpretation (CAGI) serve to 
inform the community of predictor quality, as well as provide valu-
able feedback to method developers and dataset providers8. CAGI is 
modeled on the Critical Assessment of Structure Prediction program11, 
which was instrumental in promoting the development of algorithms to 
predict protein structures from protein sequences. More information 
on CAGI can be found at https://genomeinterpretation.org.

Conclusions
Here, we have discussed the need for increased transparency with 
respect to the inputs and outputs of variant effect predictors, which 
we believe is achievable in the near term. However, some computational 
predictors that use machine learning, including deep neural networks, 
further lack transparency with respect to their internal reasoning. 
Such methods are sometimes referred to as ‘black boxes,’ because 
their decision-making is encoded in parameters that are difficult to 
interrogate, not interpretable by humans and their outputs are not 
explainable. Interpretability and explainability of machine learning 
results are subject to intensive research in computer science, build-
ing in part upon methods such as attention models and interpretable 
queries12, which could be incorporated into the next generation of 
methods for variant effect prediction13.

We hope that this Comment will help to bring attention to cur-
rent limitations in variant prediction tools, highlight the necessity 
to outline such limitations in recommendations for interpretation of 
sequence variants and stimulate efforts to make necessary improve-
ments. Providing the name, value and source of each feature used 
by computational predictors, in addition to currently provided out-
put, could be a valuable first step in such efforts. Another crucially 
important improvement for computational predictors would be to 
specify if a prediction indicates LOF or GOF, as such information is vital 

for proper variant classifications and clinical interpretations. With 
increased transparency and computational rigor, computational tools 
will help to provide more informed clinical decisions and more reliable 
variant pathogenicity classifications, benefiting both practitioners and 
patients in the realm of personalized medicine. Thus, despite the chal-
lenges ahead with regard to enhancing transparency of computational 
tools for variant effect prediction, they have the potential to improve 
genomic medicine.
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