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Abstract. Qualitative influence statements are often provided a priori
to guide learning; we answer a challenging reverse task and automatically
extract them from a learned probabilistic model. We apply our Qualita-
tive Knowledge Extraction method toward early prediction of gestational
diabetes on clinical study data. Our empirical results demonstrate that
the extracted rules are both interpretable and valid.

1 Introduction

The nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-
to-Be) study [3] aims to identify early warning signs of adverse pregnancy out-
comes, design interventions, and assist with decision-making. Since 2010, eight
research sites in the United States followed up with women throughout their
pregnancies—collecting routine clinical information, exercise data, and food they
ate. Using this data, we consider learning to explain the relationship between
gestational diabetes mellitus (GDM) and some common risk factors.

A common way to employ knowledge in machine learning and AI is via
the use of qualitative relationships that express how changes in a (subset of)
feature(s)/risk factor(s) affect the target. These rules were mainly used as “in-
ductive bias” apriori to learning since they are both intuitive and natural in
many domains. We address the challenging “reverse task”. Can we extract these
rules from data? To this effect, in the context of nuMoM2b, we propose a two
step process. First we learn a joint probability distribution over all the variables
including the target (GDM). In the second step, the constraints are extracted
by reasoning over this joint probability distribution. We demonstrate in our ex-
periments that such an approach yields rules that are both intuitive and valid
(as validated by our clinical expert Dr. David Haas). We first explain these
constraints before outlining our approach and presenting our learned rules.

2 Extracting Qualitative Influences

A qualitative influence (QI) statement outlines how a change in one or more
factor(s) would influence another factor [8]. We focus on two types of QI: Mono-
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tonicity and Synergy [1, 5, 9]. Monotonicity represents a direct relationship be-
tween two variables: “As BMI increases, neck circumference increases” indicates
that the probability of greater neck circumference increases with increase in BMI.
Specifically, a monotonic influence (MI) of variable X on variable Y , denoted by
XM+
≺ Y (or its inverse XM−

≺ Y ), indicates that higher values of X stochastically
result in higher (or lower) values of Y . Synergy represents interactions among
influences. Two variables synergistically influence a third if their joint influence
is greater than their separate, statistically independent influences. Synergy can
capture influences like “Increase in BMI increases the risk of high blood pres-
sure in patients with family history of hypertension more than patients without
family history.” Formally, a synergistic influence (SI) of two variables A and B
on variable Y , denoted by A,BS+

≺ Y , indicates that increasing the value of A
has greater effect on Y for higher value of B than the lower value of B. Both A
and B should necessarily have same monotonic relationship with Y .4 Similarly,
a sub-synergistic influence (sub-SI), denoted by A,BS−

≺ Y , indicates that while
A and B have increasing monotonic influence on Y , the joint influence is lesser
than their separate, statistically independent influence.

2.1 Proposed Approach

Given: A data set D consisting of examples in the form of risk factors X and
binary target Y (in this case: GDM).
To Do: Learn a set of QIs that explain the effect of X on Y .

We use Xa to denote the ath variable in the feature set X. xia denotes a
particular value of variable Xa and |Xa| denotes the number of discrete values
Xa takes. We assume that the joint distribution (P ) over the set of random
variables X is known (we learn this joint distribution in our empirical evaluation
using a causal learning algorithm). For brevity, we restrict the description of
our method to extracting positive MIs and SIs, ≺M+ and ≺S+. The degree of
monotonic influence, δa, of Xa ∈X on Y is defined as

δa = I(Ca>0) ·
∑
j

∑
j′>j

∑
k

P (Y ≤ k|Xa = xja)− P (Y ≤ k|Xa = xj
′

a )

|Xa|
(1)

where,

Ca =
∏
j

∏
j′>j

∏
k

max(P (Y ≤ k|Xa = xja)− P (Y ≤ k|Xa = xj
′

a ) + εm, 0) (2)

For monotonicity to hold, we require P (Y ≤ k|Xa = xja) + εm ≥ P (Y ≤
k|Xa = xj

′

a ) for all pairs of configurations of Xa, (j, j
′) with j′ > j at any given

threshold value k. Here the monotonic slack εm allows violating a constraint
within a chosen margin. The degree of MI, δa, in Equation 1 measures the
cumulative difference in the probability that the target variable Y is less than a
threshold k given Xa at two different values xja and xj

′

a .
We extend the concept of degree of MI to SI by conditioning on a pair of

variables instead of a single variable. First, consider the difference in the effect

4 Without loss of generality, assume the variables in synergistic relation have mono-
tonically increasing impact.
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of changing Xa from xia to xi
′

a on Y under the context of two different values of

Xb (xjb and xj
′

b ). We define this as

φi,i
′,j,j′

a,b =
∑
k

P (Y ≤ k|Xa = xia, Xb = xjb)− P (Y ≤ k|Xa = xi
′

a , Xb = xjb)−

P (Y ≤ k|Xa = xia, Xb = xj
′

b ) + P (Y ≤ k|Xa = xi
′

a , Xb = xj
′

b )

For synergy to hold, we require φi,i
′,j,j′

a,b + εs to be non-negative for all i′ > i
and j′ > j. Where εs is the synergistic slack. We define the degree of synergistic
influence, δa,b, of variables Xa ∈ X and Xb ∈ X on Y ∈ X as the cumulative
difference in degrees of context specific influence of Xa on Y in the context of
Xb. It is given by

δa,b = I(Ca,b>0) ·
∑
i

∑
i′>i

∑
j

∑
j′>j

φi,i
′,j,j′

a,b

|Xa| · |Xb|
(3)

where,

Ca,b =
∏
i

∏
i′>i

∏
j

∏
j′>j

max(φi,i
′,j,j′

a,b + εs, 0) (4)

Algorithm 1: QuaKE

input : P, Y,X, εm, εs, Tm, Ts

output: Rules R
initialize: R← ∅
for a← 0 to (|X| − 1) do

compute δa using Eq. 1
if δa ≥ Tm then

R ← (XM+
a≺ Y ) ∪ R

for b← a+ 1 to (|X| − 1) do
compute δa,b using Eq. 3
if δa,b ≥ Ts then

R ← (Xa, Xb
S+
≺ Y ) ∪ R

// Decreasing cases

return R

We employ both definitions to learn
QIs in Algorithm 1, Qualitative
Knowledge Extraction (QuaKE). The
algorithm assumes the existence of
a joint distribution [6] over ordi-
nal features, which we learn using
a causal probabilistic learning algo-
rithm (PC) [7, 2]. We chose PC al-
gorithm to verify our hypothesis that
the use of a causal model will yield
causally interpretable qualitative re-
lationships. We calculate the degree
of MI of every variable Xa ∈ X on
Y and SI of every pair of variables
Xa, Xb ∈ X on Y . The MI rules
XM+

a≺ Y are extracted if their corresponding degree of MI δa are above a pre-
defined threshold Tm. Similarly, the synergistic rules Xa, Xb

S+
≺ Y are extracted

if their corresponding degree of SI δa,b are above a pre-defined threshold Ts.

3 Learning qualitative influences for GDM modeling

The nuMoM2b study tracked pregnancies of 10, 037 women near 8 sites in the
United States. We excluded 817 cases where women were already diagnosed
with diabetes; and we evaluate our proposed method for extracting QIs using
8 features5 of the remaining 9, 220 women. 7 features had inherent ordering of
categories whereas Race had no obvious ordering. We use an ordering based on
previous studies [4] on the effect of Race on GDM.

5 Refer to the supplementary material for details on the data and features:
https://starling.utdallas.edu/papers/QuAKE/
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Rule Prior Knowledge QuaKE Data Alone

BMIM+
≺ GDM X X X

AgeM+
≺ GDM X X X

RaceM+
≺ GDM X X 7

EducationM+
≺ GDM X X 7

GravidityM+
≺ GDM X X 7

Smoked3monthsM+
≺ GDM X 7 7

SmokedEverM+
≺ GDM X 7 7

Age,BMIS+
≺ GDM X X X

Age, Smoked3monthsS+
≺ GDM X X X

BMI, SmokedEverS+
≺ GDM X X X

Education, Smoked3monthsS+
≺ GDM ? X X

BMI,GravidityS+
≺ GDM X X 7

BMI, Smoked3monthsS+
≺ GDM X 7 X

Age, SmokedEverS+
≺ GDM X 7 7

BMI,EducationS+
≺ GDM 7 X X

Education, SmokedEverS+
≺ GDM ? 7 7

Age,EducationS−
≺ GDM X X X

BMI, Smoked3monthsS−
≺ GDM 7 X 7

Age, SmokedEverS−
≺ GDM 7 7 X

BMI,GravidityS−
≺ GDM 7 7 X

Gravidity, SmokedEverS−
≺ GDM 7 7 X

Education, SmokedEverS−
≺ GDM ? 7 X

Age,GravidityS−
≺ GDM X 7 7

Table 1. Comparision of QI from prior knowledge (PK), QuaKE and Data Alone.
X/7 represents that this relationship does/not exist respectively while ? represents
unknown influence. The three groups of rows show: (1) MI, (2) SI, and (3) sub-SI. Colors

highlight rules recovered by QuaKE and show (a.) coherent with the PK and baseline

(b.) contradicting the baseline (c.) coherent with baseline but contradicts the PK .

We pose and answer the following questions: (Q1) Does QuaKE extract high-
quality rules that align with background knowledge in this domain? (Q2) Does
QuaKE help uncover QI statements in cases where prior knowledge is uncertain?

We compare learned rules with those from our clinical expert, Dr. Haas. W.r.t
GDM, these could either be increasing, decreasing, no effect, or unknown. Since
Algorithm 1 assumes a complete joint distribution P is available, we consider
two factorizations of P . The first learns a causal model [2] and the other (base-
line) estimates the probabilities directly from data. Alternative baselines might
have included rules extracted from decision trees, rule mining, or Bayesian rule
learning—but each induce conjunctive rules of the form (x1∧x2∧...∧xn) =⇒ y,
making their exact connection to the QI statements tenuous.

All rules are presented in Table 1. The “Prior” knowledge refers to the rules
provided by our expert. We compare these to the rules extracted by QuaKE and
baseline (Data Alone). QuaKE’s precision compared to expert advice is 0.923±0;
whereas the precision of our unstructured baseline is 0.636±0. Precision of each
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method was consistent across five stratified cross validation folds. This affirms
Q1: QuaKE can extract high-quality rules aligning with prior knowledge.

Since we have formalized degree of the QIs in Equations 1 and 3, we can
analyze rules that were highly uncertain according to the prior knowledge. Two
of the synergistic relations involving smoking and education had an unknown
effect with relation to GDM. Education, Smoked3monthsS+

≺ GDM was a high-
confidence rule extracted by QuaKE and the baseline. We speculate that this
could be either due to the high correlation between Education and Age, or
related to an unobserved relationship between education and socioeconomic sta-
tus. Note that both these results are especially interesting since we found only
a weak monotonic relationship between smoking and GDM more generally. We
use this to answer Q2: our approach can identify potentially interesting cases
where prior knowledge is uncertain.

Discussion and Conclusion: We considered the problem of learning inter-
pretable and explainable qualitative rules for modeling GDM. To this effect, we
learned a causal (probabilistic) model and recovered the knowledge by applying
the rules. Our results indicate that most of our rules are in line with the prior
knowledge of our expert and some interesting influence relationships appear that
are worth investigating. Incorporating richer domain knowledge, automatically
refining the rules, identifying broader relationships and scaling to larger feature
sets are interesting future research directions.
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