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Searching spectral libraries in MS/MS is an important new approach to improving the quality
of peptide and protein identification. The idea relies on the observation that ion intensities in
an MS/MS spectrum of a given peptide are generally reproducible across experiments, and
thus, matching between spectra from an experiment and the spectra of previously identified
peptides stored in a spectral library can lead to better peptide identification compared to the
traditional database search. However, the use of libraries is greatly limited by their coverage of
peptide sequences: even for well-studied organisms a large fraction of peptides have not been
previously identified. To address this issue, we propose to expand spectral libraries by predicting
the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first
demonstrate that the intensity patterns of dominant fragment ions between similar peptides
tend to be similar. In accordance with this observation, we develop a neighbor-based approach
that first selects peptides that are likely to have spectra similar to the target peptide and then
combines their spectra using a weighted K-nearest neighbor method to accurately predict
fragment ion intensities corresponding to the target peptide. This approach has the potential to
predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we
estimate that the method increases the coverage of spectral libraries available from the National
Institute of Standards and Technology by 20–60%, although the values vary with peptide length
and charge state. We find that the overall best search performance is achieved when spectral
libraries are supplemented by the high quality predicted spectra.
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1 Introduction

LC coupled with MS/MS is a widely used platform for high-
throughput identification and quantification of proteins in
biological samples [1, 2]. In addition to experimental steps in
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the pipeline, computational, and statistical procedures play
important roles in determining the content of the complex
proteome sample. However, even with the best analytical plat-
forms and modern software, only about 10–30% of spectra
are identified in a typical experiment [3, 4]. In most situa-
tions, this results in a large fraction of identified proteins
(more than 50%) being covered by a single identified peptide,
which weakens the confidence of protein identification [5–7].

Software and data: www.informatics.indiana.edu/predrag/files/
knnspectra.zip
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There are several reasons for low identification cover-
age, involving biological, analytical, and also computational
factors. Biological samples may contain genomic variants,
contaminants, or enzymes with incompletely understood
specificity and cleavage patterns. They may also contain a
number of posttranslationally modified proteins, some with
yet unknown modifications. Analytical platform variations,
e.g. the differences in sample preparation or the inherently
stochastic nature of peptide elution, ion current variation in
ionization sources, or the ability of a peptide to ionize and
fragment well, are another notable source of variation. Ana-
lytical techniques can also introduce chemical modifications
of several residues, e.g. oxidation of methionine and histi-
dine, or cysteine alkylation. Similarly, a large number of
peptides may be truncated before even reaching the mass
spectrometer, resulting in the spectra of unexpectedly short
peptides [8]. Most of these sources are aggregated via the
concept of peptide detectability [9,10] or the proteotypic prop-
erty of peptides [11]. Finally, development of computational
approaches for accurate identification of tandem mass spec-
tra, estimating the false discovery rates (FDR) of peptide-
spectrum matches [12,13], or inferring the identity and quan-
tity of proteins [14], is still an open challenge. Among these,
improving the quality and confidence of peptide-spectrum
matching has the potential to directly impact biological dis-
coveries.

There are two main strategies used for assigning peptide
sequences to experimental MS/MS spectra. Depending on
whether the reference protein sequences of the organism(s)
under study are already known, these approaches are referred
to as database searching or de novo sequencing [15]. Database
searching strategies match experimental spectra with the-
oretical spectra corresponding to the peptides available in
the database (for sequenced organisms), whereas de novo al-
gorithms attempt to infer peptide sequences directly from
experimental spectra; implicitly assuming that the search
space contains all possible peptides within the mass/charge
tolerance of the experimental spectra. In database search,
it is expected that allowing for different fragment ion in-
tensities in a theoretical spectrum will result in improved
search outcomes. These intensities may be determined ad
hoc, as in SEQUEST [16], or using computational approaches
that predict experimental spectra directly from peptide se-
quence [17–20]. One recently introduced approach, extending
the ideas of small molecule identification, is that of spectral
libraries [21–25], where the spectra of all identified peptides
from previous experiments are aggregated into a library of
consensus spectra corresponding to the identified peptides.
Several approaches indicated that searching spectral libraries
has the potential to identify more peptide sequences given
the same database size. These studies resulted in hybrid al-
gorithms that utilize spectral libraries for previously identi-
fied peptides and conventional database searches on the re-
maining spectra [26–28]. Recently, new algorithms have been
developed to exploit differential ion intensities in matching
experimental and theoretical spectra [29].

Since spectral libraries cover a relatively small fraction of
peptide sequences, an alternative solution has been to in sil-
ico predict the fragment spectra. Several algorithms have
been developed ranging from the kinetic models of pep-
tide fragmentation [17, 18] to fully data-driven algorithms
[19,20,30–32]. Recently, Li et al. investigated the variability of
tandem mass spectra of identical peptides and showed that
spectral reproducibility in the same experiment (i.e. in the
same run) is significantly higher than over different experi-
ments (i.e. over different runs and different labs), even for the
same analytical procedure [20]. They also concluded that al-
gorithms such as MassAnalyzer [17,18] and PeptideART [20]
provide predictions that consistently exceed 70% of the cor-
relation level achieved by the spectral reproducibility of iden-
tified peptides. Venable and Yates have also shown that the
variance of peptide-spectrum match scores is dependent on
both the peptide sequence and its quantity [33].

In this work, we study ion intensity patterns in CID spec-
tra from similar peptides. We show that the intensities of
fragment ions can be accurately predicted using a weighted
average of the spectra from peptides of the same length and
similar (neighboring) sequences whose consensus spectra
were already collected in spectral libraries. We then compare
this neighbor-based approach with both database search and
spectral library methods that rely on predicted intensities of
fragment ions [17, 18] and demonstrate that our approach
provides an improvement in peptide identification.

2 Materials and methods

2.1 MS/MS data

We used peptide tandem mass spectral libraries provided by
the National Institute of Standards and Technology (NIST;
http://peptide.nist.gov/). These libraries are comprised of
consensus spectra that were obtained by processing individ-
ual spectra from multiple samples and experiments. NIST
currently provides spectral libraries for nine species (Homo
sapiens, Mus musculus, Drosophila melanogaster, Caenorhabdi-
tis elegans, Saccharomyces cerevesiae, Escherichia coli, Deinococ-
cus radiodurans, Mycobacterium smegmatis, and Rattus norvegi-
cus) from ion trap platforms. The matched spectra were an-
notated by labeling conventional product ions, along with
the immonium ions, internal ions, and common neutral loss
ions. In cases of ambiguous peak assignments (NIST allows
up to two different ion types per peak), we picked the top anno-
tation. The library also contains posttranslationally modified
peptides; however, in this work, only unmodified peptides
were considered. Peptides with cysteine carbamidomethyla-
tion were excluded as only a subset of cysteine-containing
peptides were modified. Basic statistics of the NIST Library
are summarized in Table 1.

We converted the original consensus spectra stored in the
.msp files into vectors of annotated ion intensities, referred
to here as standard spectra. Given any peptide of length l and
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Table 1. NIST spectral library statistics

Species Number of Spectra +2 Spectra +3
spectra

H. sapiens 159 664 113 323 46 341
M. musculus 75 856 56 463 19 393
D. melanogaster 55 009 39 458 15 551
C. elegans 48 432 34 029 14 403
S. cerevesiae 41 533 31 165 10 368
E. coli 31 953 23 197 8756
D. radiodurans 5106 3988 1118
M. smegamatis 3107 1908 1199
R. norvegicus 12 582 8839 3743
Total spectra 312 370 120 872
(unique peptides) (283 122) (112 564)

a particular charge state, a standard spectrum corresponds
to a fixed-length vector representation of the intensities of
the particular types of fragment ions. A standard spectrum
for a doubly charged precursor ion contains the peaks of the
following product ions: b, y, b−18, y−18, b−17, y−17, b−35,
y−35, b+18, a, b++, [b−18]++, [b−17]++, [b+18]++, y++,
[y−18]++, [y−17]++, b−43, b−44, b−45, b−46, [b−43]++,
[b−44]++, [b−45]++, [b−46]++, y−43, y−44, y−45, y−46,
[y−43]++, [y−44]++, [y−45]++, [y−46]++ for each fragmenta-
tion site and prec−18, prec−17, prec−35, prec−36, prec−45,
prec−46 for the neutral loss ions derived from the precursor
ion. Ions that were absent from the original spectra were as-
signed zero intensity in the standard spectrum. For a triply
charged precursor, fragment ions b+++, y+++, [b−18]+++,
[y−18]+++, [b−17]+++, [b−43]+++, [b−44]+++, [b−45]+++,
[b−46]+++ were also considered. Therefore, for charge +2,
the dimension of the standard spectrum vector was 33·(l – 1)
+ 6; for charge +3, the dimension of the vector was 42·(l –
1) + 6, where l is the peptide length. If the same peptide was
found in multiple species/libraries, the consensus spectrum
with the most peaks was used. In this work, l ∈ {7, 8, . . . , 20}
for +2 precursors and l ∈ {12, 13, . . . , 25} for +3 precursors.

Mosquito data set: The Aedes albopictus C6/36 cell line
was cultured under appropriate conditions (1 × MEM sup-
plemented with 10% FBS, nonessential amino acids, L-
glutamine, and antibiotic/antimycotic solution in the pres-
ence of 5% CO2) prior to subcellular fractionation into nu-
clear, cytoplasmic, and membranous fractions via mechanical
disruption and centrifugation. Membrane fractions, normal-
ized to cell number, were resolved using SDS-PAGE pre-
ceding gel excision. Gel slices were treated with Solution I
(25 mM ammonium bicarbonate prepared in 50% ACN) prior
to desiccation and rehydration with Solution II (25 mM am-
monium bicarbonate) and in gel trypsin digestion overnight
at 37�C. Peptide fragments were eluted using Solution III
(50% ACN and 5% formic acid) via sonication prior to sam-
ple concentration via vacuum drying.

Digested samples were diluted with 20 �l of LC solvent A
(98% water, 2% ACN, 0.1% formic acid). Four microliters of
each sample was analyzed by nano-LC-MS/MS on an Eksi-

gent nano-LC-2D coupled to a Thermo LTQ-orbitrap XL. A
60 min gradient from 95% solvent A to 60% solvent B (ACN
with 0.1% formic acid) was used that provided separation of
the peptides. The mass spectrometer was set up to capture
one MS scan followed by MS/MS spectra for the top five pre-
cursor ions. Dynamic exclusion was employed such that if the
same precursor m/z is selected twice within 15 s it is excluded
from selection for 30 s. Overall, the data set contained 85 016
doubly and 67 568 triply charged MS/MS spectra.

2.2 Problem formulation and classification model

Given a spectral library L = {(pi, si)}, where pairs (pi, si) repre-
sent peptides with their standard consensus spectra (peptide-
spectrum pairs; PSPs), our goal is to predict the spectrum
s that corresponds to any previously unseen peptide p. We
seek to express the predicted spectrum ŝ of p as a weighted
average of a subset of spectra from L that are expected to be
most similar to s. More specifically, the prediction is made
using a weighted K-nearest neighbor formulation as:

ŝ =
K∑

k=1

wk · sk, (1)

where K is a positive integer, {wk} is a set of weights, and {sk}
is a set of K spectra in L that are most similar to s. Because s is
unknown, it is necessary to find {sk} and determine weights
{wk} based on the sequence of peptide p and a set of peptides
from L that have the same length as p.

To determine the parameters from Eq. (1), we first define a
measure of similarity between standard spectra. The spectral
similarity � between spectra si and sj corresponding to some
equal-length peptides is measured using the cosine function.
That is:

�(si , s j ) =
〈
si , s j

〉

||si || · ||s j || ,

where 〈u, v〉 is a dot product between two vectors and ‖u‖ =√〈u, u〉 is a Euclidean norm of vector u. Because all elements
of a standard spectrum are nonnegative, it holds that 0 ≤
�(si , s j ) ≤ 1.

Generally, each weight wk in Eq. (1) should be proportional
to �(s , sk). To achieve this, we constructed a classification
model to approximate the spectral similarity function from
peptide sequences only. This procedure enabled us to select
the K spectra that were expected to be most similar to s as
well as the set of weights {wk}. Formally, given two equal-
length peptides pi and pj, a classification model was trained
to provide a similarity score �(pi , p j ) between spectra si and
sj corresponding to pi and pj, respectively.

The scoring function � was learned using a training set
{(xi , yi )}, where xi was a vector encoding a pair of peptide
sequences p1

i and p2
i . The class label was set to yi = +1

if �(s 1
i , s 2

i ) ≥ �high and yi = −1 if �(s 1
i , s 2

i ) < �l ow . That is,
the positive set and negative set were comprised of pairs of
peptides with very similar and very dissimilar spectra. Setting
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�high = �l ow would utilize all data points (pairs of peptides
of the same length). Vector xi was constructed using pep-
tide sequences only. Considering that both peptides were of
length l, another string of length l could be constructed over
an extended alphabet corresponding to the pairs of amino
acid symbols that were found at each position (there are 210
such symbols, e.g. AA, AC, AD, etc.). Vector xi represented
a binary encoding of this string as well as the Hamming dis-
tance (normalized by l) between p1

i and p2
i ; it resulted in a

sparse vector of dimension 210·l +1 (except for the normal-
ized Hamming distance, only l elements in each data point
xi were set to 1, while the remaining elements were 0). Note
that the order of the two amino acids is not relevant; that is,
AD and DA correspond to the same symbol in the extended
alphabet.

We trained support vector machines (SVMs) using the
SVMlight software [34]. We used default SVMlight parameters on
a balanced data set of positive and negative data points (note
that a separate classifier was trained for each peptide length
l). To minimize the chance of overfitting, we used the linear
kernel function. The output of a trained SVM was further
mapped to a 0–1 interval using the sigmoid function [35].
Thus, the similarity function � was approximated using the
soft outputs of a classification model.

The weight wk associated with sk was determined by the
rank rk of the SVM score �(p, pk) among the top K scoring
PSPs (those with the highest scores �). Here, we used an
exponentially decaying function:

wk = e1−√
rk ,

where rk ∈ {1, 2, . . . K }. We also define a confidence score
reflecting the reliability of the prediction ŝ as the average of
the SVM scores of the nearest neighbors of peptide p. That is:

c(p) = 1

K

K∑

k=1

�(p, pk), (2)

where {pk} is a set of K peptides in L with highest SVM
scores �(p, pk) relative to the target peptide. This confi-
dence score is expected to be higher for more similar pep-
tides and was used to determine the quality of the predicted
spectrum.

2.3 Performance evaluation

The performance of the classification model and spec-
trum prediction was evaluated using tenfold cross-validation.
Specifically, the set of PSPs L = {(pi, si)} was split into ten
disjoint partitions. Then, in each step of the process the accu-
racy of the spectrum prediction was evaluated on PSPs in one
(test) partition using the scoring function trained on pairs of
PSPs from the other nine partitions (training). However, the
neighbors for constructing a spectrum were selected from
the entire spectral library. The classifier performance was
estimated using the area under the receiver operating char-

acteristic (ROC) curve. On the other hand, the performance
of the spectrum prediction was evaluated using the spectral
similarity between the observed spectrum s and the predicted
spectrum ŝ , i.e. �(s , ŝ ), as well as spectral library search.

To assess the performance of the predicted spectra in an
actual proteomics search, we created two duplicate NIST li-
braries where all peptide sequences were kept but the original
consensus spectra were replaced by the predicted spectra. The
first duplicate library (NISTKNN) was constructed using the
weighted K-nearest neighbor approach using the training and
test sets (to avoid overfitting) from the tenfold cross-validation
described above. The second duplicate library (NISTMA) was
generated using MassAnalyzer [17,18] with the default param-
eters, and was used to evaluate whether the neighbor-based
approach provides advantages compared to the kinetic model
for prediction of peak intensities. All libraries were separated
by precursor charge and contained 283 122 PSPs for charge
+2 and 112 564 for charge +3. Spectral searches were then
performed on a human cell line data set [3] to evaluate the
performance of NIST, NISTKNN, and NISTMA libraries. For
this purpose, we used the SpectraST software [24] with the
default parameters.

For each library, an equal-size decoy library was gener-
ated using SpectraST’s create mode, which first annotates
each peak in each peptide-spectrum pair, and then shuf-
fles the corresponding peptide sequence and repositions the
peaks according to the shuffled sequence [36]. The query
spectra were searched against a combined target/decoy li-
brary. The FDR was estimated using the decoy count method;
that is:

FDR = 2 × F P

T P + F P
,

where FP is the number of hits to decoy and TP is the number
of hits to the target library.

As an additional comparison, we performed a sequence
database search using InsPecT [37] on the same query spec-
tra. Two sequence databases in the FASTA format were cre-
ated for charge +2 (length 7 to 20) and +3 (length 12 to 25)
separately, in which each peptide sequence from the corre-
sponding target spectral library was represented as an entry.
A corresponding equal-size decoy database was created by
shuffling each peptide in the target database, but keeping K,
R, and P in their original positions to maintain the number
of tryptic termini. To ensure each peptide sequence was con-
sidered as a single candidate, we set the protease option to
trypsin and RequireTermini option to 2. Default parameters
were used except that the precursor mass tolerance (PMTol-
erance) was set to 3 and 4.5 Da for charges +2 and +3, respec-
tively, to match SpectraST’s 1.5 Da/e precursor m/z tolerance.
Note that we removed all peptides with missed cleavage sites
from all libraries/databases to ensure that the search space
between spectral and sequence search were equal. This re-
sulted in 223 392 doubly and 62 600 triply charged spectra in
the final data set.
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Figure 1. The spectral similar-
ity of standard spectra corre-
sponding to all pairs of doubly
charged peptides of length 20.
(A) Spectral similarity between
standard spectra, averaged over
pairs with Hamming distance d,
where d ∈ {1, 2, . . . , 20}. (B) His-
togram of all spectral similarity
values.

3 Results

3.1 Peptides with similar sequence have similar

standard spectra

Because fragmentation of peptides is highly dependent on
amino acid sequence [38], peptides with similar sequences
can be expected to have similar standard spectra. To test this
hypothesis, we examined all pairs of equal-length peptides
and calculated the spectral similarity between their standard
spectra as a function of the number of amino acid mismatches
(Hamming distance) between peptides. In Fig. 1A, we show
that the average spectral similarity monotonically decreases
with the Hamming distance between peptides, suggesting
that sequence similarity is indeed predictive of spectral sim-
ilarity. This result also justifies the inclusion of multiple se-
quence neighbors in the candidate set in increasing order
of the Hamming distance between two peptides (similarity
of spectra for peptides with one mismatch has been recently
studied by Hu et al. [39]). Figure 1B shows that values of
spectral similarity follow an extreme value-like distribution,
with the majority of peptide pairs having moderately low (0.3–
0.4) similarity values. We note that Fig. 1 corresponds to the
doubly charged peptides of length 20 (8934 peptides); how-
ever, similar trends were observed for all other lengths and
charge states (Supporting Information Fig. 1; Supplementary
Materials).

3.2 Evaluation of the spectral similarity scoring

function

As illustrated in Fig. 1, simple sequence-based features such
as the Hamming distance are predictive of spectral similar-
ity between peptides. Other studies have also shown that the
frequency of a peptide bond’s fragmentation in CID depends
on the identity of amino acids N- or C-terminal to it [30, 40].
A standard example is the preference of proline (P) on the C-
terminal side of the fragmentation site, which suggests that

the presence of proline induces an intense peak correspond-
ing to the peptide bond fragmentation N-terminal from the
proline. Consequently, a strong peak may be lost due to a
P-to-non-P substitution. Another observation, illustrated in
Supporting Information Fig. 2 (Supplementary Materials),
is that the most influential amino acids on the similarity
between two spectra are generally located in the middle of
the sequence for longer peptides, and toward N-terminus for
shorter peptides. This may be a consequence of the fact that
the ions of particular lengths account for most of the over-
all intensity (Supporting Information Fig. 3; Supplementary
Materials).

Although these relatively simple empirical rules offer clues
as to how the fragmentation spectrum is influenced by the
composition of amino acids and their location along the pep-
tide sequence, they are difficult to combine in the presence
of multiple changes. Rather than manually selecting features
that potentially are predictive of spectral similarity (e.g. the
number of substitutions, the presence/absence of a P-to-non-
P substitution), a similarity function was learned. The sparse
binary data representation was selected to incorporate both
amino acid differences and their locations in the pairs of
peptides.

We assessed the performance of the scoring function and
spectrum prediction using a cross-validation approach as de-
scribed in Section 2.3. The parameters �high and �l ow were set
so that each model used top 5% and bottom 5% of the avail-
able data. The areas under the ROC curves (AUCs) for all
models are shown in Supporting Information Table 1 (Sup-
plementary Materials). Various properties of the predictors in
terms of spectral similarity were also analyzed and presented
in Fig. 2.

As shown in Fig. 2A, neighbors with higher SVM scores
have on average smaller Hamming distance relative to their
target. Figure 2B shows that the distribution of influential
amino acids along the alignment between each target pep-
tide and its highest scoring neighbor (i.e. peptide with the
largest predicted SVM score) has the same trend as observed
in Supporting Information Fig. 2. In addition, as depicted in
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Figure 2. For each target peptide p (with standard spectrum s) of length 20, the similarity scores �(p, pk) between p and a top neighbors pk

(with standard spectra sk) were predicted; k ∈ {1, 2, . . . , K}. We consider K = 11 and precursor ion charge of +2. (A) The Hamming distance
between p and pk, averaged over all p’s, as a function of the rank of pk ’s predicted similarity. Note that because the majority of peptides do
not have close neighbors, the average Hamming distance is generally high for all top-scoring peptides. (B) The number of times p and its
nearest neighbor (with largest predicted similarity) have an identical amino acid at position i (match count) where i ∈ {1,2, . . . , 19}; position
20 is ignored because it is either K or R. Match count is summed over all p’s. (C) The spectral similarity between s and sk, averaged over
all p’s, as a function of the rank of pk ’s predicted similarity (solid line), or as a function of the rank of pk ’s Hamming distance in ascending
order (dashed line).

Fig. 2C, the spectral similarity between a target’s and a neigh-
bor’s standard spectrum is on average higher for neighbors
with higher SVM scores, suggesting that the learned scor-
ing function provides an effective estimate of the spectral
similarity between two peptides. Although similar trends are
observed by using only the Hamming distance as a feature,
the learned scoring function is more predictive of the spectral
similarity than the Hamming distance alone.

We further studied how well the predicted SVM score
�(p1, p2) agrees with the actual spectral similarity �(s1, s2). A
heat map depicting these two quantities is shown in Support-
ing Information Fig. 4 (Supplementary Materials), indicating
that the predicted similarity score positively correlates with
the actual similarity (Pearson correlation coefficient: 0.43).

3.3 Evaluation of spectrum prediction

We calculated the average spectral similarity between pre-
dicted and true standard spectra for peptides with different
lengths and charges (Supporting Information Table 1; Sup-
plementary Materials). The accuracy of predicting the spec-
trum of a target peptide depends not only on the discrim-
inating power of the classification model, but also on the
neighbors that can be found in a spectral library and used
to synthesize a target spectrum. In particular, the target se-
quences for which a better set of neighbors can be found
should be expected to have better predictions of their standard
spectra. To verify this, we calculated the confidence score for
each target peptide as described in Methods, in addition to
evaluating the prediction accuracy. The relationship between
these two quantities is shown in Supporting Information Fig.
5 (Supplementary Materials), indicating that prediction accu-
racy can be inferred from the confidence score. For example,
the average spectral similarity for the subsets of predictions
with confidence scores greater than 10th, 50th, and 90th per-

centile of the distribution were 0.751, 0.782, and 0.814, re-
spectively. We believe that the low spectral prediction quality
for some target peptides is due to the lack of good quality
neighbors in spectral libraries (e.g. for target sequences not
similar to any sequence in a library), which suggests that the
neighbor-based approach may not be appropriate for predict-
ing spectra of these peptides.

We also investigated the influence of parameter K, which
controls the number of neighbors used in the construction
of the predicted spectrum and estimating the confidence of
prediction. The average spectral similarity between predicted
and observed spectra as a function of K (Supporting Infor-
mation Fig. S6; Supplementary Materials), however, did not
show significant variation. Thus, we determined that K =
11 provided a good balance between speed and accuracy of
prediction for all lengths and charges.

3.4 Assessment of predicted spectra in spectral

library searches

The usefulness of predicted spectra was evaluated in two dif-
ferent spectral library and database searches. We first used
a large set of spectra derived from a human cell line and
searched it against three spectral libraries (NIST, NISTKNN,
and NISTMA) and a sequence database. The sample comes
from an extract of the human erythroleukemia cell line K562,
where trypsin-digested peptides were eluted by a multistage
gradient (Agilent 1100 Series HPLC) into electrospray ioniza-
tion source of an LCQ ion trap mass spectrometer [3]. This
set of identified spectra had already been included in the
NIST spectral library; thus, the NIST library had an unfair
advantage over its counterparts that used predicted spectra.
However, it remained useful for estimating the empirical up-
per limits of identification.
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Figure 3. Comparing sensitivity
of spectral library search (NIST,
NISTKNN, and NISTMA) and se-
quence database search (In-
sPecT). The number of positive
identifications plotted as a func-
tion of FDR for charge +2 (A)
and +3 (B). Venn diagrams cor-
responding to the unique pep-
tide identifications for charge +2
(C) and +3 (D).

Figure 3A and B shows that both predicted spectral li-
braries outperformed the sequence database search. This
is probably because SpectraST’s scoring function [24] has
utilized information of well-predicted peak intensities to
improve the scores for the correct PSPs. We also com-
pared the unique peptide identifications between predicted
and real libraries at 1% FDR estimated by using a target-
decoy search approach. The Venn diagrams in Fig. 3C
and D show that the predicted and real libraries have
a large number of overlapping unique peptide identifica-
tions, while the real (NIST) library still has most unique
identifications.

We then investigated the nature of the set of unique pep-
tides that were identified in the NIST library but missed by
the NISTKNN library. As shown in Supporting Information
Table 2 (Supplementary Materials), the average spectral simi-
larity between predicted and real standard spectra was higher
for peptides identified in both NISTKNN and NIST than for
peptides identified only in NIST. In addition, the average
confidence scores for the peptides identified only by NIST
were comparatively lower (Supporting Information Table 2),
which suggests that confidence scores can be used to select
high quality predicted spectra. To evaluate this, we searched
the same query spectra against smaller spectral libraries con-
sisting of subsets of predicted spectra with high confidence
scores (we used the 50, 40, 30, 20, and 10% of spectra with the
highest confidence scores). As shown in Fig. 4, spectral search
against these smaller NISTKNN libraries resulted in noticeably

more identifications than against NISTMA libraries with the
same search space.

The increase in coverage of three well-studied proteomes
for the situations when high-confidence predicted libraries
can be created is shown in Table 2. These results indicate
that the approach is practically useful for improving peptide
identification.

Finally, to evaluate spectral identification in less well-
studied organisms and using unequal search spaces, we per-
formed a spectral library search on the set of experimen-
tal spectra from an in-house mosquito sample (Section 2.1).
As shown in Fig. 5, at equal (but small) search space the
NIST library resulted in slightly more peptide identifications
than its predicted counterpart NISTKNN. However, the pre-
dicted libraries MosquitoKNN and MosquitoKNN-80% led to a
significantly larger number of identifications than NIST even
though they contain only predicted spectra. This suggests
that a substantial expansion in search space compensates for
the decrease in quality of predicted spectra. In particular, the
85-fold increase in the search space of the MosquitoKNN li-
brary resulted in three times more identifications at 1% FDR
compared to NIST, whereas MosquitoKNN-80% almost doubled
the number of identifications with only a 14-fold increase in
search space. This is possibly because MosquitoKNN-80% con-
tains a higher quality predicted spectra than MosquitoKNN and
thus it achieves a better trade-off between the search space
size and spectral quality. We also observe that the search of a
hybrid library, which contained real spectra of NIST-covered
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Figure 4. Comparing sensitivity of spectral search on NISTKNN and NISTMA with equal search space corresponding to the 20% of the most
confident predictions in NISTKNN for (A) charge +2 and (B) charge +3 precursor ions. This resulted in 56 642 of 283 122 peptides ions
for charge +2 and 22 528 of 112 564 peptide ions for charge +3. The same set of peptide ions were then selected from the NISTMA for
the parallel spectral search. To minimize the impact of decoy library (randomly shuffled peptide sequences) on small target libraries, we
generated 50 decoy libraries using SpectraST and performed 50 independent searches in which the target library was appended with each
decoy library. The numbers of positive IDs at each FDR cutoff were averaged over all 50 runs.

Table 2. The number of peptides in various proteomes addition-
ally covered with high-confidence spectral predictions of
the neighbor-based approach

Length Covered Covered by the neighbor
by NIST approach

Top 10% Top 20% Top 30%

Human
+2 7–20 113 323 23 176 50 479 80 117

7–10 37 939 9289 21 953 36 654
11–15 50 857 9478 18 974 28 324
16–20 24 527 4409 9552 15 139

+3 12–25 46 341 10 629 23 118 37 618
12–15 15 666 3974 8094 13 374
16–20 18 878 5329 11 805 18 469
21–25 11 797 1326 3219 5775

Fly
+2 7–20 39 458 3200 8436 20 216

7–10 11 490 2069 5158 8820
11–15 18 580 2500 4954 7384
16–20 9388 1175 2570 4012

+3 12–25 15 551 2450 5423 8817
12–15 4256 822 1713 2903
16–20 6594 1308 2959 4579
21–25 4701 320 751 1335

Yeast
+2 7–20 31 165 4185 10 736 26 552

7–10 10 893 2849 7190 12 098
11–15 13 866 3142 6360 9476
16–20 6406 1492 3166 4978

+3 12–25 10 368 2590 6111 10 181
12–15 3100 875 1928 3336
16–20 4299 1361 3258 5183
21–25 2969 354 925 1662

Three thresholds for the confidence level were considered: top
10, top 20, and top 30% of predicted spectra.

Figure 5. Comparison of spectral library searches with unequal
search space. The numbers of positive identifications are plot-
ted as a function of FDR for each of the seven libraries; the
same types of lines indicate the same search space between
groups of libraries. NIST and NISTKNN are spectral libraries de-
scribed in Section 2.3. MosquitoKNN contained predicted spec-
tra of all tryptic peptides (length 7–20 for charge +2 and 12–
25 for +3) from the set of A. aegypti proteins in Swiss-Prot,
and MosquitoKNN-80% was a subset of MosquitoKNN in which the
predicted spectra had confidence scores greater than the 80th
percentile threshold. MosquitoMA and MosquitoMA-80% were coun-
terparts of MosquitoKNN and MosquitoKNN-80%, respectively, but
the spectra were generated using MassAnalyzer. Hybrid was
a library in which NIST spectral library was combined with
MosquitoKNN; if a peptide sequence was present in both libraries,
the spectrum from NIST was retained. In total, the set of A. ae-
gypti peptides contained 395 213 tryptic peptides, of which 4685
were present in NIST. MosquitoKNN-80% and MosquitoMA-80% each
contained 65 346 peptides.
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peptides and predicted spectra of the remaining mosquito
peptides, resulted in even larger number of identifications
than the search of MosquitoKNN.

4 Discussion

In this study, we present evidence that similar peptides gen-
erally produce fragmentation spectra with similar ion inten-
sities of the corresponding product ions. We then exploit
this observation to develop a novel neighbor-based method
for predicting peak intensities of the product ions in a CID
fragmentation spectrum. Finally, we demonstrate that the
spectral libraries built from the predicted spectra can be used
to improve peptide identification over a standard sequence
database search.

The analysis of similarities of standard spectra correspond-
ing to peptides of various lengths revealed some interesting
findings. For example, we noticed that most short peptides (l
∈ {7, 8}) have very similar standard spectra regardless of the
peptide sequence. Such peptides usually have higher peaks
corresponding to the b2 and yl−2 ions for +2 and y++

l−2 ions for
+3 precursors (Supporting Information Fig. 3). This effect,
however, diminishes for longer peptides (l ≥ 12 for +2 and l
≥ 23 for +3 precursor ions; Supporting Information Fig. 3).

Current approaches addressing the prediction of ion in-
tensities in MS/MS spectra are based on two strategies: mod-
eling of the basic chemistry of peptide fragmentation and
data-driven strategies in which machine learning is used to
train predictors from a large collection of peptide-spectrum
pairs. While accurate, both of these approaches encounter
problems, stemming from either incomplete understanding
of chemistry of peptide ionization and fragmentation or be-
cause they rely on de novo learning of the rules of peptide
fragmentation in a data-driven manner. The neighbor-based
approach presented here exploits experimental spectra of pre-
viously identified peptides and, importantly, has the ability
to estimate the accuracy of prediction based on the types of
neighbors it utilized for prediction. Thus, our method extends
spectral library-based search algorithms beyond previously
identified spectra.

Previous studies provided evidence that spectral library
searching was superior to a traditional database search and
that the use of the kinetic model for predicting fragmentation
spectra provided only minor advantages over the traditional
database search [41, 42]. The results of our study, however,
suggest that the prediction of intensities of fragment ions
does improve peptide identification at equal search space
(Fig. 3), although we note that the methods for spectral li-
brary search and database search use different methods for
estimating FDR.

While real and predicted spectral libraries provide bet-
ter performance than conventional database search at equal
search space, it is of greater interest to compare their perfor-
mance in a more realistic application scenario. Our results
suggest that for well-studied organisms with high spectral

coverage of all detectable peptides, spectral library searches
should be expected to outperform conventional database
searches (Fig. 3). On the other hand, for organisms with
low coverage, the peptide identification process can signifi-
cantly benefit if a high quality predicted library can be gen-
erated (Fig. 5). In such situations, our results show that the
best performance is achieved using hybrid libraries, i.e. li-
braries where a real spectral library available for an organism
is complemented with high quality predicted spectra for the
remaining peptides. We also suggest that the estimated qual-
ity of predicted spectra may be useful for developing more
powerful peptide-spectrum matching algorithms. Generally,
such approaches should lead to improved peptide and protein
identification with impacts on studies ranging from funda-
mental biology to human disease intervention.
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