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ABSTRACT: Chemical cross-linking combined with mass
spectrometric analysis has become an important technique for
probing protein three-dimensional structure and protein−
protein interactions. A key step in this process is the accurate
identification and validation of cross-linked peptides from
tandem mass spectra. The identification of cross-linked
peptides, however, presents challenges related to the expanded
nature of the search space (all pairs of peptides in a sequence
database) and the fact that some peptide-spectrum matches
(PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both
peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new
database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring
scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given
knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to
estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link
studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those
containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative
methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch).
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■ INTRODUCTION

In recent years, chemical cross-linking combined with mass
spectrometry (XL−MS) has become a powerful tool in
structural biology,1−4 in particular for investigating protein
three-dimensional (3D) structures,5,6 determining subunit
arrangement in large protein complexes7,8 and for characteriz-
ing physical interactions between proteins at a whole-cell
level.9,10 In a typical cross-linking experiment, a chemical
reagent (called the linker) with two reactive groups is
introduced to a protein mixture, subsequently leading to the
formation of covalent bonds between specific amino acid
residues (e.g., lysine) and the linker. Because the reactive
groups are separated by a spacer arm of a specific length, only
those residue pairs, either from a single protein or two
interacting proteins, whose distances in 3D space are within the
length of the spacer arm may be linked. After proteolytic
digestion, the resulting sample containing cross-linked peptides
is analyzed using liquid chromatography−tandem mass
spectrometry (LC−MS/MS) and the cross-linked peptides
identified in the experiment and then generates a set of distance
constraints between linked residues. When combined with
conventional techniques such as X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy, these
distance constraints can help model the 3D structure of large

proteins or protein complexes,11−13 particularly for disordered
regions where structural details cannot be easily resolved.
A critical step in the analysis pipeline is the identification of

cross-linked peptides through database searching. Here, a
computer algorithm is used to score the similarity between each
experimental spectrum and theoretical spectra of peptide pairs
that match its measured mass-to-charge ratio. The best peptide
pair receiving a sufficiently high score against each experimental
spectrum is considered to be identified. Several algorithms have
been implemented and successfully applied to the identification
of cross-linked peptides.14−18 Nevertheless, statistical and
computational challenges remain. First, the search space for
the identification of cross-linked peptides grows quadratically
with the size of the peptide database. The increased search
space typically leads to longer search times and a greater chance
of incorrect identifications due to random matches; this
problem arises similarly in the identification of post-transla-
tionally modified peptides19 or semitryptic peptides.20

Secondly, the fragment spectra of cross-linked peptides may
contain a larger variety of product ions, including those that
contain the linker and those resulting from single or double
fragmentation sites. Finally, candidate peptide-spectrum
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matches (PSMs) in a cross-linking experiment contain a class of
incorrect identifications in which one of the two cross-linked
peptides is correctly identified and the other is not. In these
semifalse PSMs, the fragmentation in the correctly identified
individual peptide may explain a large number of observed
product ions in the MS/MS spectra, leading to score
distributions that are comparable to those of correct PSMs
but distinctly different from the scores of cross-link candidates
for which both of the peptides in a PSM are false.15

The occurrences of semifalse PSMs in cross-linked peptide
identification are partially caused by the scoring schemes used
in the identification algorithms. A common practice in a scoring
scheme is to measure the matching quality between theoretical
fragmentation of the entire cross-linked peptide pair and an
observed MS/MS spectrum. As a result, the number of
fragment ions supporting each of the two linked peptides
individually may be insufficient. To address this issue, some
identification algorithms require that a correct PSM contain a
minimum number of fragment ions to be observed from of each
of the two linked peptides.21,22 Similarly, a recent study
proposed to measure peptide-spectrum matching quality
separately for each of the cross-linked peptides and use the
lower of the two scores as the matching score for the entire
cross-linked peptide.16 Despite their success in improving the
confidence of identified cross-linked peptides, these methods
are largely based on empirical scoring schemes, and their
effectiveness may not generalize to a broad range of
experimental platforms and protocols (e.g., those using
different cross-linking reagents).
In this paper, we propose a database search algorithm

XLSearch for identifying cross-linked peptides from their MS/
MS spectra. XLSearch is based on a novel scoring function that
estimates the joint posterior probability that both of the cross-
linked peptides are correctly identified given a set of descriptors
of the candidate PSM. The joint probability is computed from
the outputs of two binary classification models that
approximate the posterior probabilities of one of the two
identified peptides being true, given that the other peptide is
true or false, respectively. In addition, the joint posterior
probabilities can be used to estimate the marginal probabilities
of each of the two cross-linked peptides to be correctly
identified. We confirm that the lower marginal probability of
these two peptides is a stronger indicator of the correctness of
the entire PSM than the higher marginal probability but also
demonstrates that both are inferior to the joint posterior score.
Finally, using the data from two previous cross-linking studies,
we evaluate the performance of XLSearch and show a larger
number of identified cross-linked peptides, compared to
xQuest14,15 and Kojak,17 that are the current state-of-the-art.

■ MATERIALS AND METHODS

Identification of Cross-Linked Peptides through Database
Searching

We consider the problem of identifying cross-linked peptides
using database searching. First, protein sequences in a given

database are in silico digested and paired, resulting in a
collection of hypothetical cross-linked peptides α β= {( , )}i i ,
where α and β represent sequences of the two cross-linked
peptides, respectively. Next, each experimental MS/MS
spectrum S is compared against a subset of cross-linked
peptides in , whose mass (the sum of the masses of the two
peptides plus the mass of the linker) is within the mass
tolerance of the precursor ion mass of S. An MS/MS spectrum
Si and its best-scoring candidate peptide pair constitute a
peptide-spectrum match (PSM), denoted as αi, βi, Si. Because
each algorithm considers a different scoring scheme between
experimental spectra and theoretical spectra of the peptides in
, the set of PSMs is specific to the search algorithm.
Unlike the conventional peptide identification, in which a

PSM is either true (correctly identified) or false (incorrectly
identified), in cross-linked peptide identification, we can think
of three categories of PSMs: true−true, in which both peptides
are correctly identified; true−false, in which one peptide is
correctly identified but the other is not; and false−false, in
which neither peptide is correctly identified. Although all true−
false and false−false PSMs constitute incorrect identifications,
separating true−false from true−true PSMs is more challenging
as they could contain an individual peptide that contributes a
significant number of shared peaks between theoretical and
experimental spectra. Thus, a powerful scoring scheme should
be able to incorporate this type of information and distinguish
both true−false and false−false PSMs from the true−true
PSMs.

Scoring PSMs Involving Cross-Linked Peptides

We seek to express the score for each PSM (α, β, S) resulting
from a database search as the joint posterior probability P(α =
T, β = T|x) that both peptides are correctly identified given the
feature vector x describing α, β, S. Using Bayes’ rule,

α β α β β= = | = = | = · = |P T T P T T P Tx x x( , ) ( , ) ( )
(1)

α β β α α= = | = = | = · = |P T T P T T P Tx x x( , ) ( , ) ( )
(2)

We can also express marginal posterior probabilities of correct
identification as

α α β β

α β β

= | = = | = · = |

+ = | = · − = |

P T P T T P T

P T F P T

x x x

x x
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Solving equations 3 and 4 for P(α = T|x) and P(β = T|x), it
follows that

α α β β α α β α β
α β α β β α β α

= | = = | = + = | = · = | = − = | =
− = | = − = | = · = | = − = | =
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After the substitution of equations 5 and 6 into 1 and 2, P(α
= T, β = T|x) can be expressed solely in terms of the
conditional probabilities
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Figure 1. Schematic diagrams showing (a) how the classifiers are trained and used to estimate the posterior probabilities; (b) how the true−true
PSMs are used to derive the true−false and false−false PSMs for constructing the training data; and (c) the composition of target−target, target−
decoy, and decoy−decoy hits in terms of true−true, true−false, and false−false PSMs.
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It is straightforward to show from here that P(α = T, β = T|x)
is bound by the lesser of P(α = T|x) and P(β = T|x).
In equations 7 and 8, the conditional probabilities P(α = T|β

= T,x), P(α = T|β = F,x), P(β = T|α = T,x), and P(β = T|α =
F,x) indicate the probability of α (or β) being the true peptide,
given that β (or α) is the true−false peptide, whereas the
marginal probabilities P(α = T|x) and P(β = T|x) represent the
probabilities that the peptide α (or β) is true, whether or not
the other peptide β (or α) is true. Note that both joint
probability P(α = T, β = T|x) and marginal probabilities P(α =
T|x) (or P(β = T|x)) are in fact posterior probabilities with
respect to the set of features x.
For gaining an intuitive understanding of how the condi-

tional probabilities are related to the marginal probabilities and
the joint probability, consider a true−false PSM (α = T, β =
F,x). It follows that P(α = T|β = F,x) ≈ 1 and P(β = T|α = T,x)
≈ 0. Substituting P(α = T|β = F,x) and P(β = T|α = T,x) into
equations 5 and 6, we have P(α = T|x) ≈ 1 and P(β = T|x) ≈ 0
regardless of the values of P(α = T|β = T,x) and P(β = T|α =
F,x), which eventually leads to P(α = T, β = T|x) ≈ 0. Similar
results can be shown for other cases (i.e., (α = T, β = T,x), (α =
F, β = T,x), and (α = F, β = F,x)). Finally, we note that the
identification events for peptides α and β are not conditionally
independent given x. In certain situations, α and β may share
theoretical fragment ions, causing the experimental peaks that
match fragment ions in one peptide to also match the ions from
the other peptide. Therefore, the knowledge about one
peptide’s correct identification for this PSM may significantly
influence the identification outcome for the other peptide.

Estimating Posterior Probabilities Using Binary Classifiers

The conditional probabilities used in equations 7 and 8 can be
regarded as posterior probabilities that the peptide in question
is true under the condition that the other peptide is true or
false, respectively. Given that the outputs from well-trained
binary classification models can approximate posterior proba-
bilities,23 we trained two logistic regression-based models to
learn P(α = T|β = T,x) and P(α = T|β = F,x), respectively. As
illustrated in Figure 1a, true−true and true−false PSMs are
used to train Classifier I, where all training examples (PSMs)
contain a correct β peptide. This model is used to classify
whether α is correct as well. Likewise, true-false and false−false
PSMs are used to train Classifier II, in which all training
examples (PSMs) contain an incorrect β peptide. This model is
used to classify whether α is correct.
For the computation of the features representing a particular

candidate PSM (α, β, S), the set of theoretical ions are first
derived from the potentially cross-linked peptide (α and β).
Based on the matching between the theoretical ions and peaks
in the experimental spectrum S, we compute features of the
PSMs including the numbers of cleavage sites supported by
matched experimental peaks for both α and β as well as the
percentage of matched experimental peaks (see Table 1 for
details). This results in 8-dimensional feature vectors xα and xβ
that describe the quality of matching for α and β, separately. In
the case when α and β share a set of theoretical fragment ions
matched to the experimental peaks, these peaks are
(conservatively) counted only for the peptide containing
more matched peaks overall.
Given Classifiers I and II and feature vectors xα and xβ, the

posterior probabilities are computed as shown in Figure 1(a).
Specifically, P(β = T|α = T,x) is the output of Classifier I on the
input x = [xα, xβ], P(α = T|β = T,x) is the output of Classifier I

on the input [xβ, xα], P(α = T|β = F,x) is the output of Classifier
II on the input [xα, xβ], and P(β = T|α = F,x) is the output of
Classifier II on the input [xβ, xα]. The computed posterior
probabilities are further calibrated to reconcile the differences in
class priors of the PSMs used as training data and the PSMs
from a specific database search.24 Briefly, we adjusted the
expectation-maximization approach by Saerens et al.24 to our
problem as follows: Classifiers I−II are first applied on the
PSMs from the database search to obtain the uncalibrated
posterior probabilities that are then used to estimate the new
class priors. These new class priors are subsequently used to
calibrate the posterior probabilities and the updates are
performed until convergence (see the Supplementary Methods
section). Finally, the posterior probabilities from Equations 7
and 8 are computed using the calibrated posterior probabilities.

Estimating False Discovery Rates

A target−decoy approach was adopted for the identification of
cross-linked peptides.15,25 Specifically, the target sequence
database was combined with a decoy database containing the
reversed sequence of each protein from the target database.
Searching spectra against this database result in (1) target−
target hits, where both peptides are from target proteins; (2)
target−decoy hits, where one peptide is from a target protein
and the other is from a decoy protein; and (3) decoy−decoy
hits, where both peptides are from decoy proteins.
We estimate the false discovery rate (FDR) using the formula

from Walzthoeni et al.15 as

Table 1. Summary of the Theoretical Ions and the Features
Computed from PSMa

fragment site product ions

1 backbone b, b − water, b − ammonia
a, a − water, a − ammonia
y, y − water, y − ammonia

2 backbone closest to C-
terminus

b + water, a + water

3 between lysine side precursor, precursor − water, precursor −
ammonia

chain and the linker precursor + linker, precursor + linker-water
precursor + linker − ammonia, precursor +
linker − double water
features

1 number of cleavage sites supported by a matched prefix ion (i.e., b and a)
2 number of cleavage sites supported by a matched suffix ion (i.e., y)
3 length of longest consecutive cleavage sites supported by a matched

prefix ion
4 length of longest consecutive cleavage sites supported by a matched suffix

ion
5 binary value indicating if a precursor ion (e.g., precursor + linker)

matched an experimental peak
6 percentage of experimental peaks that can be assigned
7 percentage of total experimental peak intensities that can be assigned
8 peptide length

aGiven PSM (α, β, S), the masses of theoretical ions are first
computed by assuming a single cleavage at each peptide bond for α
and β, which leads to the regular b, y, and a ions. In addition, we
consider the ions resulting from the dissociation of the bond between
the side chain of the cross-linked residue and the linker (e.g., the bond
between lysine’s amino group and DEST). The matching between the
theoretical ions and the peaks in S are represented as feature vectors
for α and β separately, giving rive to xα and xβ (each having a length of
eight).
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=
−n n

n
FDR TD DD

TT

where nTT, nTD, and nDD denote the numbers of the three types
of database hits, respectively. The FDR was estimated at the
level of unique peptide pairs as well as at the level of PSMs, and
both measures were used to determine the target−target cross-
link identifications in our benchmarking experiments. In
addition, we estimated the FDR separately for intraprotein
and interprotein cross-links.15−17 This is because the number of
theoretical combinations of intraprotein peptide pairs is usually
far smaller than the number of interprotein peptide pairs. As a
result, the validation of the two types of cross-linked peptides
would require different score cutoffs, as the likelihood of
encountering a random intraprotein or interprotein cross-links
are typically different.
In addition to the target−decoy method, the identified cross-

linked peptides were further validated using the protein
structural models available in the Protein Data Bank.26 In
these cases, the peptides α and β from each identified PSM
were mapped to the structural model of the desirable protein
complex, and the distance between the cross-linked residues
was calculated between their α-carbon atoms. We then
computed the percentage of the identified PSMs at a particular
FDR threshold of which the distance exceeds the expected
value. These PSMs were subject to manual inspection.
Data Sets

We used a large data set containing 80 811 MS/MS spectra
from a previous cross-linking experiment on the E. coli
ribosome (PRIDE: PXD003381).27 The E. coli ribosome is a
large ribonucleoprotein complex composed of a small and large
subunit containing three rRNA molecules and over 50 proteins.
Its 3D structure was probed using an amidinating cross-linker
diethyl suberthioimidate (DEST), a bifunctional reagent with
an 11 Å spacer arm that reacts with the amino group on lysine
side chains or protein N-termini. The cross-linked proteins
were tryptically digested, and the resulting sample was
fractionated and analyzed through a routine LC−MS/MS
workflow. The fragment ion spectra were acquired using an
LTQ Orbitrap XL mass spectrometer from Thermo Scientific.
To further validate our method, we considered another

publicly available data set from a cross-linking study28 on the
Human transcription factor TFIID (PRIDE: PXD001454).
TFIID contains TATA-binding proteins (TBP) and a number
of TBP-associated factors (TAFs). The sample containing the
TAFs was cross-linked using the bifunctional reagent
bissulfosuccinimidyl-suberate (BS3). The cross-linked peptides
were analyzed on an LTQ Orbitrap Velos mass spectrometer
coupled with an UltiMate 3000 Rapid Separation LC system,
which yielded a 45 331 MS/MS spectra.

■ RESULTS AND DISCUSSION
XLSearch was first applied to the E. coli data set to examine the
score distributions of PSMs and spatial separation of the
identified cross-linked peptides in the 3D structure of the E. coli
ribosome. Then, the performance of XLSearch was compared
with alternative search algorithms xQuest and Kojak on both E.
coli and Human TAF data sets.
Constructing Training Sets for Classification Models

The fragment ion spectra of the E. coli data set were used to
construct the true−true, true−false and false−false PSMs for
training Classifiers I and II. The initial set of true−true PSMs

was obtained by searching the experimental spectra against the
forward sequences of the E. coli ribosomal proteins using a
stringent rule-based algorithm. This algorithm simply computes
the feature vectors xα and xβ of the candidate PSMs for each
query tuple (α, β, S). The PSMs are then filtered to keep only
those for which the number of cleavage sites supported by
matched prefix (b and a) and suffix (y) ions are no less than
20% of the length of α and β. This criterion ensures that the
identification of both peptides is supported by a sufficient
number of matched peaks (note, however, that the XLSearch
software also provides a functionality that allows a user to
supply a set of confident true−true identifications as seeds for
training purposes). For the spectra containing more than one
candidate PSM satisfying this criterion, only the PSM with the
highest percent total intensity of matched peaks is retained.
Based on the set of true−true PSMs, the sets of true−false

and false−false PSMs are constructed based on the procedure
illustrated in Figure 1b. Specifically, two sets of PSMs {(α, β ′,
S)} and {(α ′, β, S)} are derived from each PSM (α, β, S) in the
true−true set, in which the peptides α′ and β′ have the same
precursor masses as α and β, respectively, but are sampled from
the set of proteins of another organism (i.e., mouse). Because
(α, β′) and (α′, β) are still paired with the same spectrum S,
they can be used to mimic the set of semifalse PSMs occurring
during the database search. Likewise, {(α″, β″, S)} are derived
from (α, β, S), in which the sum of the precursor masses of α′′
and β′′ equals that of α and β but have different sequences than
their counterparts. They are used to mimic the false−false
PSMs. Using this approach, we can use one true−true PSM to
construct multiple true−false and false−false PSMs.
By applying this algorithm, we obtained a training set

consisting of 169 true−true, 8568 true−false, and 91 242 false−
false PSMs and used them to train Classifiers I and II as logistic
regression models. To estimate the prediction accuracy of these
models, we performed a 10-fold cross-validation. The area
under the ROC curve (AUC) values of 0.969 and 0.988 were
observed for Classifiers I and II, respectively, as illustrated in
the ROC curves (Supplementary Figure S6). Although the
classifiers were trained using significantly more negative than
positive data, the false positive rates were reasonably small
(0.18 and 0.05 for Classifiers I and II, respectively) at a high
sensitivity level (0.95).

Analysis of the E. coli Ribosomal Protein Data Set

We searched the fragment ion spectra against a target−decoy
database containing 56 E. coli ribosomal proteins, obtained
from UniProt,29 and their reversed sequences (112 proteins in
total). The search algorithm first performed in silico digestion
of the protein sequences, resulting in a total of 3146 tryptic
peptides with up to two missed cleavage sites containing at least
four amino acid residues and an internal lysine (i.e., not on the
C-terminus). The database search was conducted on the whole
set of hypothetical cross-linked peptides, which were
preindexed according to their masses so that a subset of
cross-linked peptides consistent with the precursor mass is
compared with the query spectrum. Cross-linking was
considered to occur on protein N-terminus residues and
internal lysine. Mass tolerance of 5 ppm and 0.01 Da were used
for matching the precursor and fragment ions, respectively.
Cysteine residues were not modified because the protein
sample was not reduced and alkylated. Only the top-scoring
PSMs were reported for each MS/MS spectrum after the
search.
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Distinguishing Power of the Scoring Scheme. The
search against the target−decoy database reported a total of
50 562 spectra identified with at least one candidate cross-
linked peptide. Among those, 13 535 were target−target hits,
24 522 were target−decoy hits, and 12 505 were decoy−decoy
hits. In the rare cases in which an individual peptide appeared
in both target and decoy databases, it was considered to be only
from the target database. The compositions of the three types
of database hits in terms of true−true, true−false, and false−
false identifications is schematically illustrated in Figure 1c.
We first examined the score distributions of target−target,

target−decoy, and decoy−decoy hits. As shown in Figure 2a, in
the high-score range, we observed a larger proportion of
Target−Target hits than Target-Decoy and Decoy−Decoy hits.
Interestingly, the discrepancy in score distribution between
Target−Target and Target-Decoy hits appears to be more
conspicuous than that between Target-Decoy and Decoy−
Decoy hits (Figure 2b), which is likely accounted for by the
discrepancy in the unknown score distribution between true
positives and semifalse hits. This implies that the joint
probability has the potential to distinguish true positives from
semifalse hits, even though the latter contains one correctly
identified individual peptide.
In addition to the joint probability of cross-linked peptides,

we also estimated the marginal probabilities for each individual
peptide, as shown in equations 5 and 6. We distinguish between
the individual peptide that comes with the higher marginal
probability and the one with the lower marginal probability and
show the scatter plot of the marginal probabilities versus the
corresponding joint probability in Figure 3a. We observe that,
in addition to being a tighter upper bound of the joint
probability, the lower marginal probability seems to be better
correlated with the joint probability than the higher marginal
probability (Pearson’s correlation coefficients of 0.882 and
0.237, respectively). Moreover, for many PSMs, the difference
between the higher and lower marginal probability appears to
be large. This implies that the individual peptides in these
PSMs were identified with different confidence. If a scoring
scheme simply calculates the sum of the match quality
measures as the score of the entire cross-linked peptide, the

confidence of individual peptides may not be guaranteed. In
contrast, as the joint probability is bounded by the lower
marginal probability that is independently estimated, the
semifalse PSMs would not likely receive a high joint probability,
even if they contain a (true) peptide identified with high
confidence. Figure 3c illustrates an example of a semifalse
identification in which the marginal probability of the false
peptide (QEALELAAKVR) is considerably lower than that of
the true peptide (EKPTWLEVDAGK). This resulted in a low
joint probability for the entire cross-linked peptide.
The effectiveness of the marginal probabilities can be further

demonstrated by examining the numbers of PSMs identified
using each marginal probability in place of the joint probability
as the score of the entire cross-linked peptides. As illustrated in
Figure 3b, more cross-linked peptides were identified using the
lower marginal probability at both 1% and 5% FDR (109 versus
8 and 146 versus 8) cutoff, consistent with the hypothesis that
the lower marginal probability represents a better indicator of a
true PSM than the higher marginal probability. Nevertheless,
the joint probability achieved overall more identifications than
either of the marginal probabilities (218 versus 109 versus 8
and 353 versus 146 versus 8), indicating that the higher or
lower marginal probability may be too loose or too stringent,
respectively, compared with the joint probability in assessing
the overall confidence of cross-linked peptide identification.

Spatial Separation of the Identified Cross-Linked
Peptides. The peptide sequences from the identified cross-
linked peptides were mapped to the structural model of the E.
coli ribosome (PDB ID: 4KIX, 4KIY).30 We computed the Cα

− Cα distances for each identified pair of cross-linked residues
and counted the number of cross-linked residues whose
distance exceeded 24.0 Å (i.e., the length of the DEST spacer
arm plus twice of the length of the lysine side chain). As shown
in Table 2 for intraprotein cross-links, the percentages of
target−target hits (at the PSM or unique peptide pair level)
with distance greater than the expected value is generally
comparable to the FDRs estimated from the target−decoy
approach. However, this number is found be to significantly
larger for interprotein cross-links. One reason for this might be
the small size of the data set as well as the fact that the Cα − Cα

Figure 2. Score distribution of the PSMs that result from database searching against the target-decoy database of E. coli ribosomal proteins. (a) The
histogram of the joint probability scores of PSMs where (1) both peptides are in the target database (target−target), (2) one peptide is in the target
and the other is in the decoy database (target−decoy), and (3) both peptides are in the decoy database (decoy−decoy). (b) The box plot of top-
thousand PSMs divided into three groups: target−target (794), target−decoy (162), and decoy−decoy (44). The averages are 5.59·10−2, 2.76·10−3,
and 2.42·10−3, respectively.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b00004
J. Proteome Res. 2016, 15, 1830−1841

1835

http://dx.doi.org/10.1021/acs.jproteome.6b00004


Figure 3. Marginal probabilities estimated for each individual peptide in a PSM. (a) Scatter plot of the higher (red) and lower (blue) marginal
probability versus the corresponding joint probability for each PSM. The Pearson correlation coefficient between the marginal probabilities and the
joint probabilities are 0.237 (red) and 0.882 (blue), respectively. (b) The numbers of cross-link PSMs identified at the PSM-level FDR using the
target−decoy approach. The score associated with each PSMs equals (1) the joint probability of the PSM (gray), (2) higher marginal probability
(red), and (3) lower marginal probability (blue). Notice that the lower marginal probability resulted in more identifications than the higher one, and
the joint probability is superior to either marginal probability. (c) The spectrum identified as a correct (red) peptide cross-linked with an incorrect
(green) peptide with marginal probabilities of 0.99 and 5.25·10−5, respectively. The peptide depicted in red is from the forward sequence of S4 of the
small subunit of the E. coli ribosome and is extensively covered by fragment ion assignment. The peptide depicted in green is from the reversed
sequence of S4 and has only two fragment ion assignments. The decoy peptide (in green) has the same amino acid composition as the true peptide
(i.e., VKAALELAEQR).

Table 2. Comparing Cross-Link Identifications Validated Using the Target−Decoy Approach against the Structural Modela

target−target hits

FDR total distance computable distance ≥24.0 Å percentage

1% intraprotein 132 (36) 105 (28) 1 (1) 0.95% (3.57%)
interprotein 84 (25) 59 (15) 3 (3) 5.08% (20.0%)

5% intraprotein 134 (38) 107 (30) 1 (1) 0.93% (3.33%)
interprotein 87 (27) 62 (17) 5 (5) 8.06% (29.4%)

aThe total numbers of PSMs, the numbers of PSMs for which the Cα −Cα distance were computable, and the numbers of PSMs for which the Cα −
Cα distance exceeded 24.0 Å are illustrated. The numbers in the parentheses correspond to the unique peptide pairs. The FDR was estimated at the
unique peptide-pair level.
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distances were computable for only a subset (60−80%) of the
identified PSMs. In addition, some of the distance-violating
target−target hits may not be false positives (see below).
At 1% FDR, 132 intraprotein and 84 interprotein PSMs were

identified. These PSMs correspond to 55 unique cross-linked
sites (Table 3), of which 32 were intraprotein and 23 were
interprotein. The larger number of intraprotein peptides was
expected because the search space for intraprotein cross-links
(54 289) was significantly smaller than that for interprotein
cross-links (4 899 089). Therefore, the likelihood that the score
of a decoy match exceeds a certain threshold would be lower
for the identification of intraprotein cross-linked peptides.
Despite the agreement with the structural model of E. coli

ribosomes for most of the identified cross-linked peptides, one
intraprotein and three interprotein cross-linked peptides were
observed to have Cα − Cα distance exceeding the expected
value (Table 3). The distance of K54−K111 in ribosomal
protein L14 appears to be on the borderline, which may be
accounted for by the conformational flexibility of the proteins.
However, the distances between the pairs of cross-linked
residues K40−K44, K100−K44, and K12−K106 that connect
the ribosomal proteins S21 to S12, S9 to S12, and S14 to L3,
respectively, are much greater than expected and thus are
unlikely caused by conformational flexibility. We examined the
fragment ion spectra identified as the corresponding cross-
linked peptides and found that the majority of peak were
matched with theoretical fragmentation and both peptides were
extensively supported by fragment ion assignments (Supple-

mentary Figures S1−S5). In fact, E. coli ribosomes may form
polysomes during translation such that residues on different
ribosomes may be in close proximity.31 The structural basis of
these cross-links is worth further investigation.
Comparative Evaluation

We evaluated the performance of XLSearch using the E. coli
ribosome and Human TAF protein data sets and compared it
with two alternative searching algorithms, xQuest and Kojak.
The spectra from the E. coli data set were searched against a
database containing 56 E. coli ribosomal proteins as described
earlier. The spectra of the human data set were searched against
a database containing eight Human TAF proteins appended
with an additional 50 randomly selected human protein
sequences to simulate a more complex sample. For XLSearch,
the logistic regression models trained on the E. coli data set
were directly used for scoring PSMs from the Human TAF
protein search. Except for a fixed modification of carbamido-
methylation on cysteine that was only used to analyze the
human data, the same parameters were used in both searches:
minimum peptide length = 4, maximum missed cleavage sites =
2, residues for cross-link = lysine, allow cross-link on peptide C-
terminus = false, allow cross-link on protein N-terminus = true,
MS1 mass tolerance = 5 ppm, and MS2 mass tolerance = 0.01
Da. We used the latest version of xQuest (v2.1.1) and Kojak
(v1.4.2) for the comparative evaluation. The parameters of
xQuest and Kojak were adjusted to match those used in
XLSearch (for a complete set of parameters, see Supplementary
Tables S6−S8). The FDR was estimated separately for

Table 3. Unique Cross-Linked Sites Corresponding to the 132 Intraprotein and 84 Interprotein PSMs Identified at 1% FDR (at
the Unique Peptide Pair Level) by Searching against the E. coli Ribosomal Proteins (See Table 4)a

proteins linkage distance (Å) PSMs proteins linkage distance (Å) PSMs

intraprotein cross-links S3−S3 K86−K45 14.0 4
L1−L1 K14−K6 NA 2 S3−S3 K86−K79 11.3 3
L1-L1 K205−K54 NA 3 S4−S4 K167−K156 16.1 10
L1−L1 K54−K167 NA 5 S7−S7 K149−K171 NA 5
L14−L14 K44−K54 5.5 8
L14−L14 K54−K111 25.6 1 interprotein cross-links
L17−L17 K78−K121 NA 1 L14−L31B K114−K30 NA 1
L18−L18 K63−K76 16.5 2 L17−L32 K35−K53 16.7 1
L19−L19 K63−K87 14.2 1 L25−L16 K83−K127 12.5 3
L2−L2 K59−K207 20.1 1 L27−L18 K62−K17 15.7 1
L20−L20 K85−K78 10.2 9 L28−L9 K44−K35 15.8 2
L25−L25 K25−K10 13.3 3 L28−L9 K44−K42 22.7 15
L33−L33 K10−K50 8.8 1 L28−L9 K44−K57 NA 8
L33−L33 K37−K50 9.0 1 L28−L9 K62−K42 12.5 5
L33−L33 K50−K33 7.4 7 L6−L7 K29−K71 NA 2
L4−L4 K166−K132 14.3 1 L6−L7 K86−K60 NA 2
L6−L6 K44−K6 11.9 1 L7−L11 K71−K100 NA 1
L7−L7 K108−K60 NA 3 S1−L2 K150−K68 NA 1
L9−L9 K42−K57 NA 8 S14−L3 K12−K106 148.4 1
S14−S14 K19−K47 17.9 2 S14−S10 K76−K11 17.8 2
S14−S14 K23−K47 16.0 3 S15−S17 K71−K81 17.6 2
S17−S17 K39−K30 9.0 1 S17−S8 K30−K87 12.3 20
S19−S19 K17−K21 5.9 8 S19−S14 K17−K47 12.1 4
S19−S19 K17−K28 13.5 1 S21−S12 K40−K44 46.4 1
S20−S20 K16−K19 5.3 11 S6−S18 K106−K30 NA 8
S20−S20 K49−K34 10.1 2 S7−S1 K149−K279 NA 1
S20−S20 K69−K76 11.3 2 S8−S2 K69−K26 15.9 1
S3−S3 K108−K147 14.3 2 S9−S1 K100−K279 NA 1
S3−S3 K49−K86 16.8 20 S9−S12 K100−K44 85.0 1

aThe “Linkage” column indicates the indices of the lysine residues in the protein sequences.
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intraprotein and interprotein cross-links at both the PSM and
unique peptide pair levels.
Table 4 and Figure 4 illustrate the cross-linked peptides

identified by the different search algorithms. As expected, we
observe that the numbers of target−target hits identified with
FDR at the unique peptide pair level are less than or equal to
those at the PSM level. This is because the target−target hits
are more likely to be dominated by a few cross-links with many
PSMs as compared with decoy hits (as is the case in Table 3).
Thus, counting only the number of unique cross-linked
peptides would typically give rise to a more conservative
estimate of FDR.
For the E. coli ribosome data set, XLSearch identified 65

unique cross-linked peptides with 5% FDR (at unique cross-
linked peptide level), of which 19 overlapped with the results
from xQuest or Kojak and 46 were unique to XLSearch (Figure
4b). In comparison, there were a total of 11 cross-linked
peptides that were unique to xQuest or Kojak. We found that
the majority of these peptides were also identified by XLSearch
at a higher FDR level (Supplementary Table S1). A pair of the
46 cross-linked peptides unique to the XLSearch and three of
the 11 cross-links that it missed were observed to contain no
fragment ion assignment to one of the two individual peptides.
These peptides were typically short (with 4−6 amino acid
residues) and, thus, were not as informative as longer peptides
that would result in more fragment ions. Although they were
observed in the identification results of all algorithms, the
peptides in the XLSearch-identified cross-linked peptides were
found to be generally longer than those in xQuest or Kojak.
Furthermore, the cross-links identified by XLSearch at 1% FDR
contained longer individual peptides than those identified at 5%
FDR (Supplementary Figure S7). This is expected because
short peptides generally provide fewer fragment ion assign-
ments, and, therefore, cross-links containing short peptides
would likely receive relatively lower scores.
In addition, the spectra from the E. coli data set were also

searched against an expanded database containing 34 additional

proteins that likely interact with the ribosome. We refer to
these proteins as the ribosome-associated proteins; see the
Supplementary Methods section for the procedure that was
used to determine these proteins.. This resulted in a number of
identifications involving at least one ribosome-associated
protein (Table 5). As compared with the search against the
56 ribosomal proteins, the size of the target search space for
intraprotein and interprotein cross-links increases by 134%
(from 54 289 to 127 314) and 224% (from 4 899 089 to
15 898 976). However, the number of identifications were
observed to increase only moderately. This can be explained by
a deficiency of stable complexes between ribosomal and
associated proteins and an increased likelihood for decoy
matches in the expanded database that prevented more cross-
links from being identified. As shown in Table 4, the numbers
of identifications by xQuest was actually reduced in the
expanded database search compared with XLSearch, suggesting
that XLSearch may be less susceptible to the increased
likelihood of decoy matches in larger databases.
The search of spectra from the Human data set against the

database containing eight TAF and 50 arbitrary proteins
resulted in 94 and 134 unique cross-linked peptides by
XLSearch at 1% and 5% FDR levels, respectively (these
numbers do not include target−target PSMs containing
peptides from the arbitrary human proteins) (Figure 4b). In
this case, we were unable to validate the identified cross-linked
peptides using protein structure data as the 3D structure of the
whole Human TAF protein complex is not available. Instead,
we compared our results with the manually validated
identifications in the original publication.28 Out of the 59
unique cross-linked peptides reported in the paper, XLSearch
identified 45 and 49 at 1% and 5% FDRs, respectively
(Supplementary Figure S8).
Note that the 50 randomly added human protein sequences

were introduced to simulate the characterization of a more
complex sample. For the comparison purposes, we carried out
another search against a restricted database that contains only

Table 4. Numbers of PSMs and Unique Cross-Linked Peptides (in the Parentheses) Identified by XLSearch, xQuest, and Kojak,
Separated into Intraprotein and Interprotein Cross-Linksa

FDR methods E. coli Expanded E. coli Human Expanded Humanb Expanded Humanc

intra inter intra inter intra inter intra inter intra inter
FDR estimated at PSM level

1% XLSearch 134 (38) 84 (25) 192 (51) 115 (33) 66 (33) 115 (60) 74 (36) 116 (61) 74 (36) 119 (63)
xQuest 32 (10) 38 (10) 14 (4) 2 (1) 40 (21) 52 (30) 19 (7) 18 (10) 19 (7) 19 (11)
Kojak 47 (15) 23 (8) 50 (15) 22 (9) 63 (23) 42 (23) 8 (4) 7 (5) 8 (4) 8 (6)

5% XLSearch 225 (59) 128 (34) 260 (67) 130 (35) 185 (79) 231 (113) 158 (71) 208 (106) 158 (71) 218 (110)
xQuest 108 (35) 103 (25) 14 (4) 2 (1) 244 (89) 251 (120) 44 (21) 59 (33) 44 (21) 60 (34)
Kojak 54 (15) 25 (9) 64 (16) 25 (9) 78 (29) 46 (27) 61 (22) 39 (22) 61 (22) 45 (28)

FDR estimated at unique peptide pair level
1% XLSearch 132 (36) 84 (25) 192 (51) 113 (32) 66 (33) 88 (50) 74 (36) 109 (58) 74 (36) 112 (60)

xQuest 32 (10) 38 (10) 14 (4) 2 (1) 40 (21) 52 (30) 19 (7) 18 (10) 19 (7) 19 (11)
Kojak 47 (15) 23 (8) 50 (15) 22 (9) 63 (23) 42 (23) 8 (4) 7 (5) 8 (4) 8 (6)

5% XLSearch 134 (38) 87 (27) 197 (53) 115 (33) 161 (70) 210 (109) 103 (49) 164 (85) 103 (49) 170 (87)
xQuest 32 (10) 38 (10) 14 (4) 2 (1) 44 (21) 53 (30) 40 (21) 52 (30) 40 (21) 53 (31)
Kojak 47 (15) 23 (8) 50 (15) 22 (9) 71 (25) 46 (27) 8 (4) 7 (5) 8 (4) 8 (6)

aFDR was estimated at both the PSM level and the unique peptide pair level and separately for intraprotein and interprotein cross-links. The
corresponding Venn diagrams are shown in Figure 4. The searches were performed against 56 ribosomal proteins (E. coli), 56 ribosomal and 34
associated proteins (Expanded E. coli), eight TAF proteins (Human), eight TAF proteins, and 50 arbitrary proteins (Expanded Human). bNote that
for the search against the Expanded Human database, we separately listed the target−target PSMs that do not contain peptides from the 50 arbitrary
proteins, and. cNote that for the search against the Expanded Human database, we separately listed the target−target PSMs that include peptides
from the 50 arbitrary proteins.
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the eight TAF proteins (Table 4 and Figure 4). We observe
that xQuest reported significantly more cross-linked peptides at
the same FDR levels compared with the expanded database,
and the numbers of identifications by XLSearch are similar.
This again illustrates that XLSearch appears to be less sensitive
to the increased number of decoy peptides that may prevent
more target peptides from being identified.

Software

XLSearch is on open-source software implemented in Python.
It takes experimental MS/MS spectra, protein sequence
database, and search parameters as input. The best matching
cross-linked peptide is reported for each query spectrum, and
the fragment ion assignments for experimental peaks will be
shown. The user can opt to use the pretrained logistic

regression models or to in-sample train the models using the
available data. As of now, XLSearch has only been evaluated on
high-resolution LC−MS/MS platforms such as Orbitrap-MS. It
is freely available at https://github.com/COL-IU/XLSearch.

■ CONCLUSIONS

In this study, we developed a database search algorithm for
identifying cross-linked peptides in a tandem mass spectrom-
etry experiment. We were motivated by the thought that the
identification events of two individual peptides in a cross-linked
peptide are typically not independent. Hence, we proposed a
rigorous probabilistic scoring method that takes into account
the dependence of the score of one peptide on the score of the
other peptide and employed a machine learning approach to

Figure 4. Venn diagram illustration of the comparison of the unique cross-linked peptides identified by XLSearch, xQuest, and Kojak, respectively.
The FDR was estimated at both the PSM level (a) and the unique peptide pair level (b). For the target−target PSMs identified in the search against
the Expanded Human database, those with at least one individual peptide from the 50 randomly selected proteins were excluded in this figure (see
Table 4).
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estimate the posterior joint probability that both peptides in the
cross-link are correctly identified.
XLSearch is able to perform in-sample training and can

therefore incorporate different linker reagents, although it
depends on the initial set of confidently identified true−true
peptides. In this work, two data sets were available, each
containing a relatively small number of true−true peptides. For
this reason, we engineered a small set of features and used a
linear classifier to approximate posterior probabilities. As a
larger number of cross-link data sets becomes available, it will
be possible to pretrain classification models for each
experimental platform and use them either as off-the-shelf
models or to provide an initial set of peptides to be used in the
training phase.
XLSearch was evaluated on the E. coli ribosome and the

human TAF data sets. Our initial experiments provide evidence
that its performance is reliable and favorable to xQuest and
Kojak using high-resolution MS/MS data. However, further
experiments will be necessary to more thoroughly characterize
each of these tools.
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