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ABSTRACT
Label-free absolute protein quantification refers to a pro-
cess of estimating protein abundances in complex biological
samples based on the data acquired from a liquid chroma-
tography mass spectrometry (LC-MS) analysis. Most ap-
proaches to label-free quantification rely on measuring peak
areas from an extracted-ion chromatogram. However, be-
cause of the differences in physicochemical properties asso-
ciated with different peptide ions, observed peak areas in a
single experiment are determined not only by peptide abun-
dances, but also the intrinsic biases of analytical platforms.
Therefore, accurate modeling of these biases provides an op-
portunity to developing new computational methods for pre-
cise absolute protein quantification. In this work, we devel-
oped a new algorithm for absolute quantification of proteins.
The approach is based on the concept of peptide response
rate, which characterizes the peptide-specific signal detec-
tion bias in an LC-MS experiment. We argue that peptide
response rate is an intrinsic and reproducible property of
peptide ions that can be reliably predicted using non-linear
regression and features extracted from the sequence of the
parent protein. Protein abundances are estimated using a
maximum likelihood model in which the observed peak areas
of peptide ions are adjusted using predicted peptide response
rates. We evaluate our approach on a large LC-MS dataset
as well as simulated data and provide evidence that the ac-
curacy of absolute protein quantification is improved when
peptide-specific response rates are taken into account.
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1. INTRODUCTION
The advancement of techniques in quantitative proteomics

has enabled broad applications of liquid chromatography
tandem mass spectrometry (LC-MS/MS) to biomedical re-
search ranging from functional profiling of cellular proteomes
[3] to disease diagnosis and biomarker discovery [10, 27].
Quantitative proteomics is built upon a routine shotgun pro-
teomics experiment, in which complex proteome samples are
subject to proteolytic digestion followed by an LC-MS/MS
analysis [1]. In addition to a list of identified proteins from
the shotgun proteomics experiment, this approach provides
information about the abundances of these proteins and thus
can be used as a tool to monitor the changes of protein ex-
pression under different conditions [31, 20]; e.g., before and
after viral infection [11] or among samples from healthy and
diseased patients [9].

Two classes of methods have been developed for quantita-
tive proteomics. On the one hand, isotope labeling tech-
niques such as Isotope Coded Affinity Tags (ICAT) [15]
and Stable Isotope Labeling by Amino acids in cell Cul-
ture (SILAC) [24] can be used to estimate the relative abun-
dances of proteins in two samples by a single LC-MS anal-
ysis in which protein quantities from different samples can
be distinguished based on specific isotopically labeled amino
acids. On the other hand, label-free approaches are avail-
able for the direct comparison of protein abundances across
multiple LC-MS analyses of different samples using peptide
peak areas (precursor intensity) [22] or spectral counts [35,
5] attributable to the proteins of interest. In addition, there
is a recently proposed protein quantification method [13]
that measures peptide abundance based on the ion signals
of multiple fragments of a given peptide in the fragmenta-
tion spectrum. Generally speaking, labeling techniques yield
more accurate estimates of protein abundance ratios in two
samples, but require extra steps in sample preparation.

Both labeling and label-free approaches primarily address
relative protein quantification; i.e., comparing the abun-
dance of the same protein in different samples. The determi-
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nation of the absolute abundances of different proteins in the
same sample; i.e., absolute protein quantification is useful for
other important biological applications such as the mapping
of protein expression patterns in a whole proteome [3]. How-
ever, in contrast to the same-protein-different-sample sce-
nario, the quantitative measures such as spectral counts or
peptide peak areas of different proteins in the same sample
are not directly comparable. For example, two proteins with
the same abundance may have distinct spectral counts be-
cause the peptides from one protein are more easily identified
by LC-MS instruments than those from the other protein.
A concept of peptide detectability was proposed to model the
identification bias of peptides in a standard proteomics ex-
periment [33]. As a result, the absolute protein abundances
can be estimated from each protein’s spectral counts cor-
rected by the detectabilities of peptides in the protein [19,
34].

Similar to spectral counts, the detected peak areas be-
longing to different peptides are not directly comparable due
to the detection bias inherent in the peptide sequence and
need to be properly calibrated when used for absolute pro-
tein quantification. In this work we seek to quantitatively
model the peptide signal detection bias in LC-MS experi-
ment, which is referred to as peptide response rate. The re-
sponse rate of a peptide ion is defined as the ratio between
the observed total signal intensity of the peptide at a specific
charge state (e.g. +1, +2, +3) and the actual abundance
of the peptide in the sample. It is analogous to peptide de-
tectability [33, 17], which models the identification biases
of peptides in an LC-MS/MS experiment. A linear relation-
ship between peptide response rate and peptide quantity has
been previously demonstrated [4].

Peptide response rate is determined by three major fac-
tors: 1) the efficiency of trypsin digestion at its target sites,
2) the ionization efficiency of the peptide, and 3) the detec-
tion bias of a mass spectrometer with respect to the peptide
ion. Note that we define the peptide response rate with
respect to a specific peptide ion, i.e. the ions of the same
peptide carrying different charges will receive different re-
sponse rates. This is because the ionization efficiency and
the detection bias differ for the same peptide at different
charges [29]. We developed a non-linear regression model
for the prediction of peptide response rate from peptide se-
quence and charge state. Finally, we present ALPINE, a
novel Absolute and Label-free Protein quantification based
on ion INtEnsity and predicted peptide response rate, and
show that it performs favorably over existing quantification
algorithms.

2. MATERIALS AND METHODS

2.1 Modeling peptide ion signals in LC-MS
Assuming the observed ion intensity of a peptide follows a

linear relationship with the actual abundance of the peptide
in the sample, we have

Aij = rij · qi · ε0j , (1)

where Aij represents the observed peak area of peptide ion
j from protein i, qi represents the absolute abundance of
the protein i, rij represents the peptide response rate of the
peptide ion j from protein i, and ε0j represents the error
from peak area measurement of peptide j. Note that in this
formulation we consider peptides with the same sequence

but carrying different number of charges as different pep-
tide ions. For simplicity, we only consider non-degenerate
peptides (i.e. the peptides uniquely mapped to one protein
in the sample) to model the protein abundance, so the abun-
dance of peptide j depends only on that of its parent protein
i. In reality the abundance of peptide j is lower than that of
protein i because the enzyme digestion is not 100% efficient.
However, as the digestion efficiency has been accounted for
by the model for peptide response rate prediction, we as-
sume that the abundance of peptide j is equal to that of its
parent protein i. The peptide response rate rij is assumed
to be independent of qi as the ionization suppression effects
and the detector saturation effects are ignored.

We assume ε0j for each peptide j follows the same log-

normal distribution logN (0, σ2), which leads to the quadratic
relationship between mean and variance of peak area (See
Figure 6) and thus we have

logAij = log(rij · qi) + εj , (2)

where εj = log ε0j follows a normal distribution N (0, σ2).

Note that the variance σ2 is assumed to be independent of
peptide j and the abundance of protein i.

The quantitative model described in Equations (1-2) can
be used to estimate the abundance of the proteins in the
sample, if the peptide response rates are known or can be
predicted solely from the peptide sequence, its charge, and
the sequence of its parent protein. Specifically, the abun-
dance of protein i, qi, can be estimated by maximizing the
likelihood function as

L(qi) =

ni∏
j=1

(
2πσ2)− 1

2 · exp
{
− log2

(
Aij

qi · rij

)
/(2σ2)

}
(3)

where ni is the number of peptide ions confidently identified
from protein i, and the likelihood function is the multiplica-
tion over all peptides j in the protein i and all charges. The
maximum likelihood estimate of the abundance of protein i
is then

q̂i = argmax
qi

L(qi)

= argmin
qi

ni∑
j=1

(logAij − log(qi · rij))2 .

This expression can be solved (see Appendix) to yield

q̂i =

(
ni∏
j=1

Aij

rij

) 1
ni

, (4)

which is the geometric mean of the ratios between peak areas
and peptide response rates over all identified peptide ions in
the protein.

2.2 Learning peptide response rates
Equations (1) and (4) provide the relationship among the

observed peptide ion intensities Aij , the protein abundance
qi and the peptide response rates rij . If the peptide response
rates were known, one can use Equation (4) to estimate the
protein abundance based on the observed peptide ion inten-
sities in an LC-MS experiment; on the other hand, Equation
(1) can be used to construct a machine learning model to
predict peptide response rates from a training dataset, in
which the abundance of proteins in the sample are known.
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However, the challenge is that, in practice, neither the pep-
tide response rate nor the peptide abundance are known. To
address this problem, we use an iterative learning algorithm
that estimates peptide response rates and protein quanti-
ties simultaneously. Each iteration of the algorithm consists
of three steps. In the first step, the per-protein average of
peptide peak areas Aij are used as the initial estimation of
the abundance of protein i; i.e., q̂i =

∑ni
j=1 Aij/ni; then

the peptide response rate model is trained using Aij/q̂i as
the target values. In the following two steps, protein abun-
dances q̂i are first estimated by using Equation (4), based on
predicted peptide response rates oij from a regression model
trained in the last step; and the target values of peptide re-
sponse rates are subsequently updated using the estimated
protein abundances. An overview of the algorithm is pre-
sented below. Note that the algorithm can be considered
as having converged when the quantity estimation between
consecutive iterations are sufficiently similar. In our exper-
iments, we observed that the estimated protein quantities
stay largely unchanged after the first three iterations, and
hence the maximum number of iterations is set to three (see
Results).

q̂i ←
∑ni

j=1 Aij

ni
;

r̂ij ← Aij

q̂i
;

while not converge do
ANN ← train(log10 r̂ij ,X);
oij ← ANN(xij);
oij ← 10oij ;

q̂i ←
(∏ni

j=1

Aij

oij

)1/ni

;

r̂ij ← Aij

q̂i
;

end
Algorithm 1: Iterative learning of ion response rates. X
represents the feature matrix (see Table 1) of all peptide
ions in the training set, xij represents the feature vector
for peptide j from protein i, and the oij represents the
predicted peptide response rate by the neural network.

We used a two-layer Artificial Neural Network (ANN) to
approximate the peptide response rate of a specific peptide
ion, because it has been shown that this ANN is able to ap-
proximate an arbitrary bounded function with a sufficient
number of hidden neurons [8]. We initialize the ANN with
ten hidden neurons and we use sigmoidal and linear func-
tions as the activation function of the hidden and output
neurons to address the non-linear regression problem for
learning peptide response rate.

The values of peptide response rates were log-transformed
to be used as targets for ANN training, and the predicted
values are transformed back to response rates by taking ex-
ponentiation; see Algorithm (1). We bootstrapped the whole
set of proteins for training into 30 samples on which an en-
semble of 30 feed-forward two-layer neural networks were
trained. The predicted response rates averaged over 30 neu-
ral networks were used for updating protein abundances in
Equation (4).

2.3 Features for response rate prediction
The peptide response rate is a result of multiple steps in an

LC-MS experiment, including the proteolysis (e.g., trypsin

Description # Features
Residues around N/C-terminal cleavage site 160
Normalized distance of N- and C-terminal

2
cleavage sites to protein N-terminus
AA count of the peptide 20
Average AA location in the peptide 20
Number of residues in peptide sequence 1
Entropy of peptide sequence 1
Peptide precursor ion charge 1
Number of residues in protein sequence 1

Table 1: Features used for response rate learn-
ing. Each of the four residues around the N- or
C-terminal cleavage sites (i.e. X-K/R-X-X) is repre-
sented by a length-20 vector of indicator variables.
Note the effective number of features is 2 for K/R.

digestion), peptide ionization, and the readout of the ion
current signal by the mass spectrometer. Based on previ-
ous studies, we consider three types of peptide features in
the response rate prediction. The first type of features are
derived from the flanking amino acid residues in the parent
protein around the cleavage sites, which facilitates modeling
the digestion efficiency. Although the specific experimen-
tal protocol influences the digestion efficiency, systematic
amino acid preference has been reported for trypsin and
other proteases [28, 32]. The second type of features are
the amino acid composition of the peptide, which is related
to the ionization efficiency and detector response of the mass
spectrometer. Ionization efficiencies and charge state distri-
butions of peptides may be affected by multiple factors, such
as the physicochemical properties of peptides, the properties
of solvents and the ionization instrumentation [6]. Finally,
we consider the charge state of the peptide ion as an inde-
pendent feature, which affects both the ionization efficiency
and the detector response. Table 1 summarizes the features
used in our model. Obviously, the peptide response rate is
determined not only by the features described above but also
by the experimental instrument and protocol. However, be-
cause we build the predictive model of peptide response rate
for each specific LC-MS experiment, where the experimen-
tal conditions and protocol are the same for all the peptides,
the features used here determine the response rates among
different peptides.

3. RESULTS
In this section we summarize the empirical performance

evaluation of the proposed methodology. The protein quan-
tity estimation by ALPINE was compared with three al-
ternative methods that estimate protein quantity based on
peptide precursor intensity; i.e., TopN, iBAQ and MeanInt.
Briefly, TopN is a variant of Top3 [14, 26] that calculates
the average intensity of its top 3 (or fewer, if there are not
enough peptide hits for the given protein) best ionizing pep-
tides; iBAQ calculates the sum of the extracted ion inten-
sities of all identified peptides per protein and divides it by
the number of theoretically observable peptides [30, 7]; and
MeanInt [26] calculates the average precursor intensities of
peptides within the same protein. In addition, we imple-
mented a baseline approach (GeoMean) that calculates the
geometric mean of peptide ion precursor intensity as the es-
timated protein quantity.

All evaluations were performed using simulated as well as
real proteomics experiments. To our knowledge, there ex-
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ists only one proteomics experiment with known quantities
available for a subset of proteins; therefore, it was necessary
to simulate a large number of experiments in order to more
accurately establish the performance of each algorithm. As
performance measures, we compute the Pearson correlation
coefficient between the estimated and known abundance of
the reference proteins, both in the linear and log scale. Sim-
ilarly we compute the Euclidean distance between estimated
and true quantities, again, both in linear and log space of
quantities. Finally, we estimate the slope between the true
and estimated quantities of the reference proteins as the
measure of linearity of estimation. The algorithm with the
slope closest to 1 would have the best performance according
to this measure.

3.1 Evaluation on simulated data
Unlike most multicellular species, only a small number

of peptides in unicellular organisms are shared by multiple
proteins [18]. For example, only about 20% of the pep-
tides in the Schizosaccharomyces pombe data are typically
shared among different proteins, and 90% of proteins con-
tain at least one unique peptides. Since shared peptides
might contain important information for quantifying pro-
teins in humans and other multicellular species, it is de-
sirable to assess the accuracy of quantification algorithms
on more complex data than just yeast. Further, since re-
sponse rates are approximated in practice, it is important
to see how these methods compare under various levels of
noise. To this end, we numerically simulated a large number
of LC-MS experiments under variable conditions and used
them to benchmark ALPINE against other quantification
approaches.

3.1.1 Generation of simulated data
Following the information on peptide identification in mass

spectrometry given in the first table of [18], we assume that
the number of peptides per protein and the number of pro-
teins per peptide each follow shifted geometric distributions,
and that the number of unique peptides per protein follows
a geometric distribution. In order to generate realistic sys-
tems, we select the success rates of these distributions uni-
formly from the intervals (0.05, 0.15), (0.15, 0.5), and (0.5, 1)
respectively. We obtain protein quantities q by generating
values from the log-uniform distribution 10U(0,10). We as-
sume that standard peptide detectabilities d follow a beta
distribution with equal shape parameters selected uniformly
from the unit interval. The effective detectability of peptide
j is then

deffj = 1− (1− dj)
q−1
0

∑
i αijqi ,

where the standard quantity q0 is the geometric mean of the
true peptide quantities, and α is a matrix of protein-peptide
membership. We call a peptide identified if a random num-
ber in the unit interval is exceeded by that peptide’s effec-
tive detectability. We assume that peptide response rates r
are distributed log-normally with log-scale 0 and log-shape
selected uniformly from (1, 5). We sort response rates by
standard detectabilities in order to enforce the correlation
between them. Finally, we generate peptide peak areas A
by multiplying response rates and peptide quantities with
log-normal noise having shape parameter 0 and log-scale σ.

The peak area for peptide j is then

Aj =

{
ε · rj ∑i qiαij if deffj > u

0 otherwise

with ε ∼ logN (0, σ) and u ∼ U(0, 1). We generate between
100 and 1000 proteins according to these distributions and
remove proteins with no identified peptides. The protein-
peptide membership, peptide peak areas, and peptide re-
sponse rates are then provided to each absolution quantifi-
cation algorithm, and given this input we measure how ac-
curately each approach is able to estimate the true protein
abundances.

3.1.2 Evaluation results
We simulated LC-MS experiments on the Big Red II su-

percomputing cluster and obtained 20,288 proteomes for use
in comparing the performance of ALPINE against iBAQ,
GeoMean, TopN, and MeanInt. Overall, ALPINE outper-
forms all the other quantification methods in terms of several
accuracy measures between the predicted and the true simu-
lated absolute protein quantities, including linear correlation
(Figure 1), logarithmic correlation (Figure 2), as well as the
Euclidean distance between log-transformed predicted and
log-transformed true quantities, and the displacement from
1.0 of the slope from log-transformed linear regression (data
not shown). We further used the paired one-sided Wilcoxon
signed-rank tests to evaluate the statistical significance of
the improvement of ALPINE over the other methods. We
observed that ALPINE significantly outperformed all other
predictors in all of those measures (p < 2.2 × 10−16 for
all). The only exception was logarithmic correlation against
iBAQ, for which our method did not make a significant im-
provement. In this measure, all predictors had a very low
average logarithmic correlation on simulated shared peptide
proteomes of about 0.2 or less.

3.2 Evaluation on real proteomics data
Next, we used a public dataset from a large system-wide

proteomic study of S. pombe to demonstrate the performance
of learning peptide response rate and absolute protein quan-
tification. The dataset consists of six technical replicates of
1D-LC-MS runs of unfractionated protein sample of yeast
cell in quiescent states on the LTQ-Orbitrap platform [20].
Absolute abundances for 34 reference proteins were deter-
mined using spiked-in heavy reference peptides to translate
the summed MS-intensities of all peptides to copies/cell for
all identified proteins. The list of reference proteins and the
associated peptides used in our evaluation (note that only
a subset of reference proteins have at least one confidently
identified peptide) can be found in reference [20]. The yeast
dataset has been previously used for the performance com-
parison of different absolute protein quantification measures
[2].

MASCOT [25] was used to search the tandem mass spec-
tra against a target database consisting of 5143 S. pombe
protein sequences appended with a decoy database with the
same number of reversed protein sequences. The following
search parameters were used: two missed cleavages were al-
lowed; carbamidomethylation on cysteines was set as fixed
modification; methionine oxidation was applied as a vari-
able modification; mass tolerance for precursor and fragment
ions were set to 10ppm and 0.6Da, respectively. We consid-
ered only peptide identifications with MASCOT ion scores
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Figure 1: Boxplots of linear correlation coefficients
between true protein quantities and predicted pro-
tein quantities from ALPINE, TopN, iBAQ, Ge-
oMean, and MeanInt on more than 20,000 simulated
LC-MS experiments.
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Figure 2: Boxplots of correlation coefficient be-
tween log-transformed true protein quantities and
log-transformed predicted protein quantities from
ALPINE, TopN, iBAQ, GeoMean, and MeanInt on
more than 20,000 simulated LC-MS experiments.

Exp. ID
Exp. ID 1 2 3 4 5 6

P
ea
k
a
re
a

1 1 0.936 0.885 0.886 0.900 0.928
2 1 0.883 0.858 0.924 0.949
3 1 0.940 0.888 0.882
4 1 0.885 0.893
5 1 0.968
6 1

R
es
p
o
n
se

ra
te 1 1 0.909 0.839 0.838 0.877 0.871

2 1 0.843 0.834 0.884 0.858
3 1 0.887 0.803 0.812
4 1 0.830 0.829
5 1 0.899
6 1

Table 2: Reproducibility of peptide peak area and
estimated response rate. For each pair of repli-
cated experiments, Pearson correlation coefficient
were computed on peak areas and estimated re-
sponse rates of peptides identified in both experi-
ment i and j.

above 25.0, which corresponds to 0.2% False Discovery Rate
(FDR). In addition, all peptide hits are required to be iden-
tified in at least two out of six replicate experiments, and no
modified peptides were included. ProteinProphet [23] was
used to assign a probability score to each protein identifi-
cation. Precursor signal intensities (i.e. peak area) were
calculated using MASIC [22] with default parameters. We
used the list of proteins whose ProteinProphet probability
scores were ≥0.75 (there are about 700-900 proteins identi-
fied in each of these datasets) to perform on-line training of
peptide response rate in the iterative algorithm, and tested
on the set of 20 reference proteins with known abundances
[20].

We first investigated if the peptide response rates are suf-
ficiently reproducible across technically replicated LC-MS
experiments. To this end, we considered the set of non-
degenerate peptides identified from all reference proteins
for each of the six LC-MS runs in the S. pombe dataset
[20]. Because the protein abundances should be the same
across technical replicates (for unfractionated samples) and
the quantity of each unique peptide is equal to the quantity
of its parent protein, the observed peak areas of the same
unique peptide identified in multiple runs are anticipated to
be approximately the same, so assessing the reproducibility
of true response rates and peptide peak area would be equiv-
alent. This is consistent with our observation: as shown in
Table 2, the correlation coefficient of the peak areas across
replicated experiments are generally high (∼0.9), which is
comparable with other omics techniques, such as RNA-seq
for transcriptomic analysis [21]. In addition to the high re-
producibility of true response rates, the response rate of the
same peptide ion that were estimated by the models trained
separately on each replicate experiment are also reasonably
similar (0.8 ∼ 0.9, Table 2), suggesting that response rate
is likely to be an intrinsic property of peptides in LC-MS
experiment.

We then proceeded to examine the degree to which re-
sponse rates vary across different peptides in the same sam-
ple. Again, because these are unique peptides and are from
reference proteins, the response rate of each peptide can be
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Figure 3: Distribution of peptide response rates.
Peptide response rates are calculated for all pep-
tides from the reference proteins. The values are
normalized such that the minimum response rate
equals 1.0.

calculated as the observed peak area divided by the known
abundance of its parent protein. As indicated in Figure 3,
the peptide response rates are widely distributed, spanning
up to four orders of magnitude. This suggests that there
is noticeable bias in signal detection for different peptides,
and more importantly, because of its high variability, the re-
sponse rate cannot be assumed to be constant across differ-
ent peptides when estimating protein abundances based on
the peak areas of identified peptides. Furthermore, as the
response rate is highly reproducible for the same peptide,
but highly variable for different peptides, we hypothesize
that the response rate is an intrinsic property of a peptide
and can be predicted from the peptide sequence by using
machine learning methods. The predicted response rate can
be incorporated to improve the quantification of proteins in
complex proteome samples.

We ran and evaluated ALPINE independently for each of
the six replicate experiments. Specifically, ALPINE was run
for three iterations and the final protein quantity estimation
was reported. First we examined how well the peptide re-
sponse rates could be learned. Note that in each iteration of
ALPINE algorithm the neural networks take the same fea-
ture matrix as input whereas the targets may vary. As shown
in Figure 5A, the performance of neural network training
(i.e. correlation coefficient between predicted and target re-
sponse rates on the test set) improved noticeably in each
successive iteration, indicating that the neural networks are
supplied with more informative signals as target values. In
addition, the improvement in peptide response rate learning
translates to better similarity measure between estimated
and true protein quantity (Figure 5B). This indicates that
even the algorithm was initially supplied with supposedly
inaccurate peptide response rate estimation as targets, the
algorithm re-adjusts the target values of the response rate
for neural network training by incorporating the updated
protein abundance estimation, which eventually leads to im-

proved estimation of both peptide response rate and protein
quantity.

Table 3 summarizes the similarities between the estimated
protein quantities by each method with respect to the true
protein abundances based on different measures. ALPINE
consistently outperforms the other methods for the correla-
tion coefficient in the linear scale, and also gives generally
best performance for the rank-based non-parametric cor-
relation coeffients (Spearman’s and Kendall’s tau). Note
that GeoMean computes protein abundances as the geomet-
ric mean of the observed precursor intensities of identified
peptides, implicitly assuming all identified peptides have the
same response rates. By taking into consideration the pre-
dicted peptide response rates, ALPINE gained noticeable
improvement in the correlation coefficients over GeoMean.

An important and desirable property of the quantification
method is the linearity between estimated and true protein
quantity ([2]). Specifically, given the true quantity Q and

estimated quantity Q̂, Q can be expressed as Q = K · Q̂,
where K is a constant scalar. By taking log-transformation
of the both sides, it follows that logQ = log Q̂ + logK.
Clearly, the linearity is determined by the degree to which
the slope of the regression line between logQ and log Q̂ is
displaced from 1.0. As illustrated in Figure 4, the slope of
ALPINE is closest to 1.0 in most cases, and both Q and Q̂
span approximately three orders of magnitude, which indi-
cates one can multiply the estimated quantity of a protein
reported by ALPINE by a scalar, which can be easily esti-
mated from a few well characterized proteins in the same
sample, to approximate the true abundance of the protein.

It is interesting to observe that iBAQ has generally bet-
ter correlation coefficient computed in log-scale while the
slope of iBAQ is far from 1.0 (around 0.5). This implies a

non-linear relationship between Q and Q̂ibaq: Q = (Q̂)0.5.
As shown in Figure 4, iBAQ consistently underestimates
low-abundant proteins compared with high-abundant ones,
which eventually caused the wider dynamic range of Q̂ibaq

and the non-linear relationship between Q and Q̂ibaq.

4. CONCLUSIONS
In this work, we formalize the definition of peptide re-

sponse rate, which describes the precursor ion intensity de-
tected in an LC-MS experiment for a peptide ion at a given
abundance level. We show that in a typical LC-MS experi-
ment, peptide response rates can differ significantly among
different peptides, while still being highly reproducible across
technical replicates. We show that peptide response rate
is an intrinsic property of peptide ions (and their parent
proteins) and can be reliably predicted using non-linear re-
gression. Based on a simple quantitative model that relates
peptide response rates and protein abundances, we develop
an iterative algorithm for estimating them simultaneously.
We employ a large-scale LC-MS dataset to demonstrate the
effectiveness of this approach and show that it evaluates fa-
vorably against alternative protein quantification methods
on both empirical and simulated data alike. To our knowl-
edge, this approach represents the first attempt that explic-
itly incorporates peptide response rate when using peak area
for proteomic quantification, and our results show that accu-
rately predicted response rates can be used for calibrating
the observed peak areas as well as significantly improving
the accuracy of protein quantification.
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Figure 4: Scatter plot of the log-transformed true protein abundance versus the log-transformed estimated
protein abundance for TopN, iBAQ, GeoMean, MeanInt, and ALPINE for the S. pombe dataset. For each
method, the least-square linear regression was performed and the slope of the regression line is shown. The
dashed line represents the diagonal.

Pearson’s corr. coef. (linear-scale) Pearson’s corr. coef. (log-scale)
Method Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6
ALPINE 0.779 0.737 0.761 0.775 0.875 0.875 0.911 0.819 0.768 0.776 0.785 0.781
iBAQ 0.571 0.504 0.698 0.708 0.648 0.626 0.910 0.831 0.828 0.773 0.857 0.830
TopN 0.557 0.483 0.734 0.757 0.621 0.609 0.903 0.778 0.792 0.704 0.823 0.788
MeanInt 0.671 0.621 0.711 0.702 0.723 0.715 0.903 0.769 0.756 0.647 0.808 0.770
GeoMean 0.604 0.572 0.564 0.527 0.553 0.539 0.879 0.757 0.698 0.612 0.765 0.711
APEX 0.369 0.416 0.756 0.772 0.468 0.434 0.531 0.482 0.449 0.499 0.626 0.534

Spearman’s rank corr. coef. Kendall’s tau
ALPINE 0.845 0.768 0.683 0.735 0.767 0.785 0.689 0.594 0.519 0.571 0.660 0.635
iBAQ 0.821 0.731 0.710 0.658 0.807 0.780 0.651 0.559 0.578 0.521 0.651 0.603
TopN 0.810 0.709 0.683 0.679 0.779 0.724 0.632 0.524 0.489 0.521 0.593 0.519
MeanInt 0.834 0.652 0.683 0.597 0.738 0.740 0.670 0.477 0.489 0.471 0.565 0.561
GeoMean 0.799 0.637 0.626 0.535 0.680 0.633 0.641 0.441 0.459 0.403 0.507 0.466
APEX 0.570 0.581 0.607 0.607 0.674 0.606 0.418 0.463 0.439 0.439 0.496 0.473

Table 3: Similarity measures (Pearson’s correlation coefficient (linear- and log-scale), Spearman’s rank cor-
relation coefficient, Kendall’s tau rank correlation coefficient) are computed between true and estimated
quantities of the reference proteins for ALPINE and alternative methods. Note that log-transformation
would not change the relative order of values, and the rank correlation would be identical in linear- and
log-scale.
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Figure 5: Performance of iterative learning of pep-
tide response rate and protein quantity estimation.
At each iteration of ALPINE algorithm, each of
the 30 bootstrapped samples was divided into a
training (85%) and test(15%) set. A neural net-
work was trained on the training set and response
rates were predicted for the peptides in the test set.
Correlation coefficient between predicted and tar-
get response rates were computed for the test set
of each bootstrapped sample and for each iterative
step (a). The error bars indicate the standard devi-
ation among 30 bootstrapped samples. In addition,
correlation coefficient was computed between esti-
mated and true abundance of the reference proteins
for each iterative step. Step 0 corresponds to the ini-
tial protein quantity estimation (i.e. average of pep-
tide precursor intensity), and step 1 corresponds to
the protein quantity estimation using Equation (4)
after the first round of response rate learning.
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Figure 6: The quadratic relationship between mean
and variance of peak area, indicating the error of
peak intensity measurement follows a log-normal
distribution. The mean and variance of the peak
areas of the same peptide ion identified in all six
replicate experiments are plotted. The correlation
coefficient of log transformed means and variances is
0.9202. The slope of the linear regression line from
the replicate experiments (blue line) is equal to 1.88
(close to 2.0), indicating the quadratic relationship
(black dashed line).

Although peptide response rates are found to be highly
reproducible across technical replicates, we observed the re-
producibility of peptide response rates was relatively low
across different platforms. For example, peptide ion intensi-
ties observed from replicate experiments on the same plat-
forms (LTQ-FT and LTQ-Orbitrap) are found to be very
reproducible (0.896 and 0.868, respectively), while the cross-
platform reproducibility was observed to be 0.554. There-
fore, we suggest that the predictive model for peptide re-
sponse rates be trained simultaneously with protein quan-
tification on the same dataset or different datasets from the
same platform.

It should be noted that because shared peptides are rare in
unicellular organisms, here we only considered non-degenerate
peptides in the learning step. While we have seen that non-
degenerate peptides are sufficient for the purpose of learning
peptide response rates, shared peptides do contain impor-
tant information for quantifying proteins in higher organ-
isms such as human. A recent work has proposed a statisti-
cal model that explicitly incorporates information of shared
peptides to improve the accuracy of protein quantification
[12], and this information will be incorporated in future ver-
sions of the ALPINE model.

In addition to the properties of a peptide ion (such as its
amino acid composition and charge state), post-translational
modifications (PTMs) may alter the ionization efficiency of
peptides in an LC-MS experiment. For instance, phospho-
rylation will make a peptide more likely to carry negative
charges compared with the unmodified peptide, and thus
it is likely that the modified and unmodified peptide have
different response rates. Although it has been shown that
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tyrosine phosphorylation may slightly (less than two-fold)
alter the response rates of the peptides [16], a large-scale
analysis is needed to elucidate the impact of PTMs on the
response rate.

Finally, in this work, we assume peptide response rate is
independent of protein abundances and ignore the effects
of ionization suppression and detection saturation, while in
LC-MS experiments the competition for ionization among
co-eluting peptides (as well as other molecules) may lead to
detection saturation. It should be noted that the training set
has included all peptides in the sample (including co-eluting
peptides), and therefore those properties that may affect the
outcome of ionization competition were likely incorporated
in the model for peptide response rate prediction, and the
model is then applied to the peptides from the same sample,
constituting the same background of competition. Nonethe-
less, the model may still benefit from the explicit modeling
of the ionization competition when it is applied for cross-
sample prediction (i.e. model trained on one dataset as the
predictor of another dataset). This will be considered in the
future work.
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APPENDIX
A. ALPINE DERIVATION

The likelihood of the ith quantity qi is

L(qi) =
ni∏
j=1

(
2πσ2)− 1

2 exp

{
− log2

(
Aij

qi · rij

)
/
(
2σ2)} .

We wish to find the quantity that maximizes this likelihood,
which we may equivalently obtain by minimizing the nega-
tive log likelihood:

q̂i = argmin
qi

[−��(qi)]

where

��(qi) =

ni∑
j=1

− log2
(

Aij

qi · rij

)
/
(
2σ2) .

We can find critical points by differentiating the negative
log likelihood with respect to the ith quantity and setting it
equal to zero as follows:

∂ [−��(qi)]
∂qi

=
∂

∂qi

ni∑
j

log2
(

Aij

qi · rij

)
/
(
2σ2)

= −(qiσ2)−1
ni∑
j

log

(
Aij

qi · rij

)

= 0.

We may now multiply both sides of the by the ith quantity
and the variance, and then use the laws of logarithms to find

ni∑
j

log

(
Aij

qi · rij

)
= log

[
ni∏
j

(
Aij

qi · rij

)]
= log

⎡
⎣
∏ni

j

Aij

rij

qni
i

⎤
⎦ = 0

which we can then exponentiate to get∏ni
j

Aij

rij

qni
i

= 1

from which we arrive at the ALPINE solution:

q̂i =

ni∏
j

(
Aij

rij

) 1
ni

.
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