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Abstract
We give sufficient identifiability conditions for estimat-
ing mixing proportions in two-component mixtures of
skew normal distributions with one known component.
We consider the univariate case and two multivariate
extensions: a multivariate skew normal distribution (MSN)
and the canonical fundamental skew normal distribution
(CFUSN). The characteristic function of the CFUSN distri-
bution is additionally derived.
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1 INTRODUCTION

Many real-world studies consider a population that can be divided into two subpopulations, based
on the presence and absence of a certain property or trait of interest. Such a population is usually
modeled using mixtures with two-component distributions, one for each subpopulation. Among
different variants of parameter estimation in this setting, we are motivated by the problem of
inferring mixing proportions (proportions of the subpopulations in the subsuming population)
given a sample from the mixture distribution (a sample from the population) and a sample from
one of the components (a sample from the subpopulation that satisfies the property). This setting
is common in domains where an absence of the property cannot be easily verified due to practical
or systemic constraints that are typically seen in social networks, molecular biology, etc. In social
networks, for example, users may only be allowed to click “like” for a particular product and,
thus, the data can be collected only for one of the component samples (a sample from the users
who clicked “like”) and the mixture (a sample from all users). Accurate estimation of mixing

Abbreviations: CF, characteristic function; MGF, moment-generating function; pdf, probability density function; SN,
univariate skew normal family; MSN, the first multivariate skew normal family; CFUSN, canonical fundamental skew
normal family.
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proportions in this setting is important, with fundamental implications for false discovery rate
estimation (Storey, 2002, 2003; Storey & Tibshirani, 2003) and, in the context of classification,
more precisely, positive-unlabeled learning (Denis, Gilleron, & Letouzey, 2005), for estimating
posterior distributions (Jain, White, & Radivojac, 2016; Jain, White, Trosset, & Radivojac, 2016;
Ward, Hastie, Barry, Elith, & Leathwick, 2009) and recovering true classifier performance (Jain,
White, & Radivojac, 2017; Menon, van Rooyen, Ong, & Williamson, 2015).

In this work, we consider two-component skew normal mixture families in univariate and
multivariate settings and establish sufficient conditions that ensure identifiability of mixing pro-
portions when the parameters of one of the components are known. Identifiability and estimation
of mixtures have been extensively studied and well understood (Allman, Matias, & Rhodes, 2009;
Dempster, Laird, & Rubin, 1977; McLachlan & Peel, 2000; Tallis & Chesson, 1982; Yakowitz &
Spragins, 1968). More recently, however, the case with one known component has been con-
sidered in the nonparametric setting because of its connections with novelty detection and
classification (Blanchard, Lee, & Scott, 2010; Bordes, Delmas, & Vandekerkhove, 2006; Jain et al.,
2016; Patra & Sen, 2016; Ward et al., 2009). Though the nonparametric formulation is highly
flexible, it can also be problematic due to the curse-of-dimensionality issues or when the irre-
ducibility assumption is violated (Blanchard et al., 2010; Jain et al., 2016; Patra & Sen, 2016).1 Such
a formulation also leads to difficulties in ensuring unimodality of density components, which is
a reasonable practical requirement. To guarantee unimodality of components and allow for the
skewness, we model the components with a skew normal family, a generalization of the Gaussian
family with good theoretical properties and tractable inference (Genton, 2004). Despite being rela-
tively young (see, e.g., Azzalini, 1985, 1986; Azzalini & Dalla Valle, 1996), the skew normal family
also has many practical applications (Abanto-Valle, Lachos, & Dey, 2015; Asparouhov & Muthén,
2016; Bernardi, 2013; Genton, 2004; Hu et al., 2013; Lee & McLachlan, 2013a, 2013b, 2018;
Lee, McLachlan, & Pyne, 2014; Lee, McLachlan, & Pyne, 2016; Lin, McLachlan, & Lee, 2016;
Lin, Wu, McLachlan, & Lee, 2015; Muthén & Asparouhov, 2015; Pyne et al., 2009; Pyne, Lee, &
McLachlan, 2015; Pyne et al., 2014; Riggi & Ingrassia, 2013; Schaarschmidt, Hofmann, Jaki, Grün,
& Hothorn, 2015).

Genton (2004) provides several applications of the skew elliptical families, obtained as exten-
sions of skew normal families, in economics, finance, oceanography, climatology, environmetrics,
engineering, image processing, astronomy, and biomedical sciences. Lee and McLachlan (2013a)
demonstrated the usefulness of skew normal and t-component distributions on six real data
sets from different domains such as finance, biology, sports, and image processing on clustering
and classification tasks. Muthén and Asparouhov (2015) used skewed t-component mixtures for
growth mixture modeling. Bernardi (2013) demonstrated the usefulness of multivariate skew nor-
mal mixtures to model assets distribution, by showing that the resulting distribution of the port-
folio returns (a linear combination of the assets) is a univariate skew normal. Hu et al. (2013) and
Pyne et al. (2014) used multivariate skew normal and t-distributions for cytometric data analysis.

Until recently, the literature on identifiability of parametric mixture models has emphasized
identifiability with respect to a subset of parameters; for example, when only a single location
parameter, or location and scale parameters, can change, and few studies have considered iden-
tifiability of mixtures of general multivariate densities with respect to all of their parameters
(Browne & McNicholas, 2015; Holzmann, Munk, & Gneiting, 2006). We take the latter approach
and investigate identifiability of two-component mixtures of skew normal distributions with one

1The irreducibility assumption constrains the unknown component so that it cannot be expressed as a nontrivial mixture
containing the known component.
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known component. Though we only focus on identifiability of mixing proportions, the derived
conditions imply identifiability of all parameters in a typical well-behaved skew normal family.
We begin with a univariate skew normal family (SN) introduced by Azzalini (1985) and, then,
extend our results to two forms of multivariate skew normal families (MSN and CFUSN) intro-
duced by Azzalini and Dalla Valle (1996) and Arellano-Valle and Genton (2005), respectively. Our
main contributions are presented in Theorems 2–4 that state sufficient conditions for identifia-
bility of mixing proportions in the mixtures of SN, MSN, and CFUSN components, respectively.
We also derive a concise formula for the characteristic function of CFUSN in Appendix B.

2 BACKGROUND AND IDENTIFIABILITY

Let 0 and 1 be families of probability density functions (pdf) on ℝK . Let  (0,1) be a family
of pdfs having the form

𝑓 = 𝛼𝑓1 + (1 − 𝛼)𝑓0, (1)
where 𝑓0 ∈ 0, 𝑓1 ∈ 1, and 𝛼 ∈ (0, 1). Densities f1 and f0 will be referred to as component
pdfs, f will be referred to as the mixture pdf, and 𝛼 will be referred to as the mixing propor-
tion.  (0,1), therefore, is a family of two-component mixtures. We will later restrict 0 and
1 to three different skew normal families, one univariate and two multivariate, as defined in
(Genton, 2004). An example of this situation is shown in Figure 1, where both f1 and f0 belong to
the SN (Section 3).

Our goal is to identify the conditions under which estimation of 𝛼 using samples from f and
f1 is well posed, that is, conditions under which 𝛼 can be uniquely identified from f and f1. As
a reasonable simplification of having a sample from the component, we assume f1 to be fixed to
discuss identifiability. This is equivalent to restricting 1 to a singleton set, that is, 1 = {𝑓1}.
With a minor abuse of notation, we denote the family of mixtures  (0,1) as  (0, 𝑓1).

Next, we formalize identifiability and derive Theorem 1 that gives a useful technique for
proving identifiability, which we will later apply to skew normal mixtures. Once f1 is fixed, f in
Equation (1) can be treated as a pdf parametrized by 𝛼 and f0. To reflect this parameterization, we
rewrite f as a function of 𝛼 and f0; that is, 𝑓 ∶ (0, 1) × 0 →  (0, 𝑓1) given by

𝑓 (𝛼, 𝑓0) = 𝛼𝑓1 + (1 − 𝛼)𝑓0.

FIGURE 1 Problem illustration: a mixture of two univariate skew normal distributions, as defined later in
Section 3. Density functions were drawn as f0(x) = SN(0, 2.5, − 3) (red curve, left skewed), f1(x) = SN(1, 2, 3)
(blue curve, right skewed), and f (x) = 𝛼f1(x) + (1 − 𝛼)f0(x) with 𝛼 = 0.25 (yellow curve). This work considers a
setting when samples are available from f (x) and f1(x), as indicated by the solid curves (ideally, f1(x) is known).
On the other hand, no sample is available from f0(x), as shown by the dotted curve. The objective of our work is to
derive sufficient identifiability conditions for estimating 𝛼 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


958 Scandinavian Journal of Statistics JAIN ET AL.

A family of distributions  = {g𝜃 ∶ 𝜃 ∈ Θ} is said to be identifiable2 if the mapping from 𝜃 to g𝜃
is one to one.3 Therefore,  (0, 𝑓1) is identifiable if ∀a, b ∈ (0, 1) and ∀h0, g0 ∈ 0,

𝑓(a, h0) = 𝑓(b, g0) ⇒ (a, h0) = (b, g0). (2)

The lack of identifiability means that even if (a, h0) and (b, g0) are different, the target density
f contains no information to tell them apart. If we are only interested in estimating 𝛼, we need
 (0, 𝑓1) to be identifiable in 𝛼. That is, ∀a, b ∈ (0, 1) and ∀h0, g0 ∈ 0,

𝑓(a, h0) = 𝑓(b, g0) ⇒ a = b. (3)

Identifiability of  (0, 𝑓1) in 𝛼 might seem to be a weaker requirement as compared to the identi-
fiability of  (0, 𝑓1) in (𝛼, f0). However, Jain et al. (2016) (Lemma 2) showed that the two notions
of identifiability are equivalent; that is,

 (0, 𝑓1) is identifiable if and only if  (0, 𝑓1) is identifiable in 𝛼.

Consider now the largest possible 0, that is, 0 that contains all pdfs in ℝK , except f1 (or any pdf
equal to f1 almost everywhere). Then,  (0, 𝑓1) contains all nontrivial two-component mixtures
on ℝK with f1 as one of the components. Lemma C.1 (Appendix) shows that this family is not
identifiable. Jain et al. (2016, Lemma 5) gave the following necessary and sufficient condition for
identifiability of  (0, 𝑓1):

 (0, 𝑓1) is identifiable if and only if  (0, 𝑓1) ∩ 0 = ∅.

The next lemma gives a sufficient condition for identifiability that is mathematically convenient.
Let Span() denote the span (set of all finite linear combinations) of a set of functions  ; that is,
Span() =

{∑k
i=1 aigi ∶ k ∈ ℕ, ai ∈ ℝ, gi ∈ }

. For a given g ∈  , let Ψg(t) denote a mapping
from a t ∈ ℝK to a real or a complex number. We assume that Ψ is linear in g; that is, Ψag + bh(·) =
aΨg(·) + bΨh(·), for any complex (or real) numbers a, b and any g, h ∈ Span(). Let Supp(Ψg)
denote the support of Ψg(·); that is, Supp(Ψg) = {s ∈ ℝK ∶ Ψg(s) ≠ 0}.

Theorem 1. Consider the family of pdfs  (0, 𝑓1). If for all pairs of pdfs 𝑓0, g0 ∈ 0, there
exists (1) a mapping Ψg(t) (as defined above) with g ∈ Span({ f0, g0, f1}) and (2) a sequence {tn}
in Supp(Ψ𝑓1 ) such that

lim
n→∞

Ψ𝑓0 (tn)
Ψ𝑓1 (tn)

= 0 and lim
n→∞

Ψg0(tn)
Ψ𝑓1 (tn)

∉ (−∞, 0), (4)

then  (0, 𝑓1) is identifiable.

Proof. We give a proof by contradiction. Suppose conditions of the theorem are satisfied but
 (0, 𝑓1) is not identifiable. Thus,  (0, 𝑓1) ∩ 0 ≠ ∅, that is, there exists a common element
in (0, 𝑓1) and0, say f0. Because f0 is in (0, 𝑓1), there exists g0 ∈ 0 such that f0 = f(a, g0)
for some a ∈ (0, 1). Because f0 and g0 are in 0, there exists a linear transform Ψ and a
sequence {tn} satisfying condition (4). It follows that f0 = f(a, g0) = af1 + (1 − a)g0 and so
Ψ𝑓0 (t) = aΨ𝑓1 (t) + (1 − a)Ψg0(t). Now, for all t ∈ Supp(Ψ𝑓1), we have Ψ𝑓0 (t)

Ψ𝑓1 (t)
= a + (1 − a) Ψg0 (t)

Ψ𝑓1 (t)

2In statistics parlance, this is same as the more descriptive phrasing: The parameter 𝜃 from the model  = {g𝜃 ∶ 𝜃 ∈ Θ}
is identifiable.
3Technically, we require bijection but ignore the obvious “onto” requirement for simplicity.
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and, consequently, limn→∞
Ψg0 (tn)
Ψ𝑓1 (tn)

= − a
1−a

∈ (−∞, 0) (contradiction) because {tn} satisfies

limn→∞
Ψ𝑓0 (tn)
Ψ𝑓1 (tn)

= 0 from condition (4).

We will invoke this lemma later in this paper with two linear transforms, namely, the
moment-generating function (MGF) transform and the characteristic function (CF) trans-
form. The main ideas in this lemma (linear transforms and limits) come from Theorem 2 in
Teicher (1963) on identifiability of finite mixtures.

3 TWO- COMPONENT SKEW NORMAL MIXTURES

Gaussian mixtures are widely used in many applications to model real-world data. A straightfor-
ward use of Gaussian mixtures in the context of our problem is to assume the components to be
Gaussian. However, such an assumption would not be reasonable for skewed components. A pos-
sible approach to account for the skewness is to model the components themselves as mixtures of
Gaussians; however, finite Gaussian mixtures are still ill-equipped to model the skewness, espe-
cially when the component distributions are expected to be unimodal (see Figures D1 and D2 in
the Appendix).

In this paper, we derive identifiability results for  (0, 𝑓1), where f1 is a fixed skew normal
density and 0 is a subset of a skew normal family in univariate and multivariate cases. Our con-
tributions here are Theorem 2, Theorem 3, and Theorem 4, which give a rather large identifiable
family of two-component skew normal mixtures by restricting 0. A similar approach has been
reported by Ghosal and Roy (2011) for mixtures of normal and skew normal distributions. Our
result, however, results in a much more extensive family  (0, 𝑓1). Before giving these results, we
first introduce the SN as well as its two most common multivariate generalizations.

Univariate skew normal family: Azzalini (1985) introduced the skew normal (SN) family
of distributions as a generalization of the normal family that allows for skewness. It has a location
(𝜇), a scale (𝜔), and a shape (𝜆) parameter, where 𝜆 controls for skewness. The distribution is right
skewed when 𝜆 > 0 and left skewed when 𝜆 < 0, and reduces to a normal distribution when
𝜆 = 0. The pdf of a random variable X ∼ SN(𝜇, 𝜔, 𝜆) is given by

𝑓 (x;𝜇, 𝜔, 𝜆) = 2
𝜔
𝜙

(x − 𝜇

𝜔

)
Φ

(
𝜆(x − 𝜇)

𝜔

)
, x ∈ ℝ,

where 𝜇, 𝜆 ∈ ℝ, 𝜔 ∈ ℝ+, and 𝜙 and Φ are the probability density function (pdf) and the
cumulative distribution function (cdf) of N(0, 1) (the standard normal distribution), respectively.
Alternatively, the SN family can be parameterized by Δ and Γ (defined in Table 1), instead of 𝜆
and 𝜔. The alternate parametrization naturally arises in the stochastic representation of an SN
random variable: X

d
= 𝜇+ΔT +Γ1∕2U, where T ∼ TN(0, 1,ℝ+), the standard normal distribution

truncated below 0; U ∼ N(0, 1), the standard normal distribution;
d
= reads as “equal in distribu-

tion.” The expressions for MGF and CF are given in Table 2 (Genton, 2004; Kim & Genton, 2011;
Pewsey, 2003).

Multivariate skew normal families: Azzalini and Dalla Valle (1996) proposed an extension
of the skew normal family to the multivariate case. The family has a useful property that it is closed
under marginalization (Azzalini & Capitanio, 1999). More recently, many other multivariate skew
normal families have been proposed (Lee & McLachlan, 2013c). We consider a reparameterization
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TABLE 1 Alternate parametrization: the identifiability results are better formulated in terms of the
alternate parameters

Family Alternate parametrization Related quantities
canonical → alternate alternate → canonical

SN(𝜇, 𝜔, 𝜆) Δ = 𝜔𝛿 𝜆 = sign(Δ)
√

Δ2∕Γ 𝛿 = 𝜆√
1+𝜆2

Γ = 𝜔2 − Δ2 𝜔 =
√
Γ + Δ2

MSNK(𝜇,Ω, 𝜆) Δ = Ω1∕2𝛿 𝜆 = Ω−1∕2Δ√
1−Δ′Ω−1Δ

𝛿 = 𝜆

1+𝜆′𝜆

Γ = Ω − ΔΔ′ Ω = Γ + ΔΔ′

CFUSNK,M(𝜇,Ω,Λ) Δ = Ω1∕2Λ Λ = Ω−1∕2Δ

Γ = Ω − ΔΔ′ Ω = Γ + ΔΔ′

Note. This table gives the relationship between the alternate and the canonical parameters, as well as some related
quantities. SN= univariate skew normal family; MSN= the first multivariate skew normal family; CFUSN= canonical
fundamental skew normal family.

TABLE 2 Skew normal families: expression for the characteristic function and
moment-generating function

Family MGF(t) CF(t)

SN(𝜇, 𝜔, 𝜆) 2 exp
(

t𝜇 + 1
2

t2𝜔2
)
Φ(Δt) exp

(
𝜄t𝜇 − 1

2
t2𝜔2

)
(1 + 𝜄ℑ(Δt))

MSNK(𝜇,Ω, 𝜆) 2 exp
(

t′𝜇 + 1
2

t′Ωt
)
Φ(Δ′t) exp

(
𝜄t′𝜇 − 1

2
t′Ωt

)
(1 + 𝜄ℑ(Δ′t))

CFUSNK,M(𝜇,Ω,Λ) 2M exp
{

t′𝜇 + 1
2

t′Ωt
}
ΦM(Δ′t) exp

{
𝜄t′𝜇 − 1

2
t′Ωt

} ∏
𝛿∈Δ(1 + 𝜄ℑ(𝛿′t))

Note. The noncanonical parameters are defined in Table 1. Here, 𝜄 denotes the imaginary number and
ℑ(x) = ∫ x

0

√
2∕𝜋 exp(u2∕2)du. Φ and ΦM denote the cdfs of the standard normal and M-dimensional multivari-

ate normal with 0 mean and M covariance, respectively. In addition to the K × M matrix, Δ in the expression
for CFUSN CF also represents the multiset containing its column vectors. t ∈ℝ for SN and t ∈ℝK for MSN
and CFUSN. MGF = moment-generating function; CF = characteristic function; SN = univariate skew nor-
mal family; MSN= the first multivariate skew normal family; CFUSN= canonical fundamental skew normal
family; cdf = cumulative distribution function.

of the original multivariate skew normal family, MSN, and its generalization referred to as the
Canonical fundamental skew normal distribution CFUSN.

MSN: Using the location scale parametrization espoused by Lachos, Ghosh, and
Arellano-Valle (2010), the pdf of a K-dimensional random variable X ∼ MSNK(𝜇,Ω, 𝜆) is given by

𝑓 (x;𝜇,Ω, 𝜆) = 2𝜙K(x − 𝜇 ∣ Ω)Φ(𝜆′Ω−1∕2(x − 𝜇)), x ∈ ℝK ,

where Ω is a K × K covariance matrix; 𝜇 ∈ ℝK is a column vector giving the location parameter;
𝜆 ∈ ℝK is a column vector giving the shape/skewness parameter; 𝜙K(· ∣ Ω) is the density function
of NK(0,Ω), the multivariate normal distribution with Ω covariance; Φ is as defined earlier; and
v′ is used to denote the transpose of a vector v. As for SN, the stochastic representation of an
MSN random variable can be expressed with Δ and Γ (defined in Table 1) more conveniently:
X

d
= 𝜇 + ΔT + Γ1∕2U, where T ∼ TN(0, 1,ℝ+) and U ∼ NK(0,K). The expressions for MGF and

CF are given in Table 2. Since Azzalini and Capitanio (1999) and Kim and Genton (2011) use
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a different parameterization in the derivation of MGF and CF, we verify the correctness of our
formula in Appendix A.

CFUSN: The pdf of a K-dimensional random variable X ∼CFUSNK,M(𝜇,Ω,Λ) is given by

𝑓 (x;𝜇,Ω,Λ) = 2M𝜙K(x − 𝜇 ∣ Ω)ΦM
(
Λ′Ω−1∕2(x − 𝜇) ∣ D

)
, x ∈ ℝK ,

where Ω is a K × K covariance matrix; 𝜇 ∈ ℝK is a column vector giving the location parameter;
𝛬 is a K × M shape/skewness matrix such that D = M −Λ′Λ is a positive definite matrix, that is,‖Λa‖ < 1 for any unitary vector a ∈ ℝM ; 𝜙K is as defined earlier; ΦM(· ∣ D) is the cdf of NM(0,D);
and A′ denotes the transpose of matrix A. As for SN and MSN, the stochastic representation of a
CFUSN random variable can be expressed with Δ and Γ (defined in Table 1) more conveniently:
X

d
= 𝜇+ΔT +Γ1∕2U, where T ∼ TNM(0,M ,ℝM

+ ), the multivariate normal distribution truncated
outside the positive orthant and U ∼ NK(0,K). The expressions for MGF and CF are given in
Table 2. The MGF was obtained from Arellano-Valle and Genton (2005). To the best of our knowl-
edge, the expression for the CF was not available in the literature; we derived it in Theorem B.1
(Appendix) for the purpose of this study.

Lee and McLachlan (2013c) grouped many multivariate skew normal families, including MSN
and CFUSN into four groups: restricted, unrestricted, extended, and generalized (in increasing
order of generality). MSN belongs to the restricted group, and all the other families in the restricted
group are mere reparameterizations. CFUSN was introduced by Arellano-Valle and Genton (2005)
as a special case of the fundamental skew normal family (FUSN), the most prominent member of
the generalized group. When K = M, CFUSNK,M is identical to Sahu's MSN, the most prominent
example of the unrestricted group (Sahu, Dey, & Branco, 2003). Compared to the other multivari-
ate skew normal families, MSN and CFUSN are the most natural and well-known generalizations
of SN. Looking at their stochastic representation, in all the three families, skewness is achieved via
a truncated normal variable T. T is univariate in the case of SN and MSN, whereas it is multivari-
ate in the case of CFUSN, but in all the three families, 0 is used as a threshold for truncation; that
is, only points greater than or equal to 0 have a positive density. The other families in the extended
and generalized group either allow T to be truncated with an arbitrary threshold parameter and/or
define T as a truncation of a non-Gaussian distribution.

3.1 Identifiability
In this section, we discuss identifiability of  (0, 𝑓1) for skew normal families. We first observe
that 0 is the set of distributions and not the set of underlying parameters. Thus, by saying that
 (0, 𝑓1) is identifiable, we mean identifiability in (𝛼, f0). However, it does not necessarily mean
that the parameters corresponding to f0 are identifiable. In the typical case, when a skew nor-
mal family itself is identifiable, that is, there exists a bijection between the set of all skew normal
densities in the family and its parameter space, the underlying skew normal parameters are identi-
fiable. It is easy to show that SN and MSN are indeed well-behaved identifiable families; however,
CFUSN is not identifiable. This can be easily seen by noting that the characteristic function of
CFUSN does not change by permuting the columns of Δ.

Also note that there is a bijection between the alternate and canonical parameterization
for all the three families (see Table 1). Thus, identifiability w.r.t. one parameterization implies
identifiability w.r.t. the other parameterization as well.

We next give a nontrivial example that shows unidentifiability for two-component SN mix-
tures in the general case when 0 is allowed to be the entire SN family, except f1 = SN(𝜇1, 𝜔1, 𝜆1),
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where 𝜆1 ≠ 0. Notice that SN(𝜇1, 𝜔1, 0) ∈ 0. Next, we show that  (0, 𝑓1) also con-
tains SN(𝜇1, 𝜔1, 0), which proves unidentifiability because  (0, 𝑓1) ∩ 0 ≠ ∅. For f0 =
SN(𝜇1, 𝜔1, − 𝜆1) ∈ 0,

1∕2𝑓1(x) + 1∕2𝑓0(x) =
1
𝜔1

𝜙

(
x − 𝜇1

𝜔1

) (
Φ

(
𝜆1(x − 𝜇1)

𝜔1

)
+ Φ

(
−𝜆1(x − 𝜇1)

𝜔1

))
= 1

𝜔1
𝜙

(
x − 𝜇1

𝜔1

)
(because ∀x ∈ ℝ,Φ(x) + Φ(−x) = 1)

= SN(𝜇1, 𝜔1, 0).

Thus, SN(𝜇1, 𝜔1, 0) ∈  (0, 𝑓1).
In Theorems 2,4 3, and 4, we show that restricting f0 to a certain subset, 0, of SN, MSN, and

CFUSN families, respectively, gives a sufficient (but not a necessary) condition for the identifia-
bility of the mixture family  (0, 𝑓1). The restricted skew normal family, 0, is defined in terms
of the Γ parameter defined in Table 1. It is satisfying that the Γ parameter arises naturally in the
stochastic representation of all three families. Note that, in the theorem statements, we define the
family and state that it is identifiable, instead of specifying it as a sufficient condition, because
the former is more natural stylistically. Further note that any subset of an identifiable family is
also identifiable by definition of identifiability. In particular, if  (0, 𝑓1) is identifiable, a family
 ( , 𝑓1), where  ⊆ 0, is also identifiable.

Theorem 2 (Using the alternate parameterization for SN in Table 1).
The family of pdfs  (0, 𝑓1) with f1 = SN(𝜇1, 𝜔1, 𝜆1) and

0 = {SN(𝜇, 𝜔, 𝜆) ∶ Γ ≠ Γ1} (5)

is identifiable.

Proof. Consider a partition of 0 by sets 1
0 , 2

0 , defined as follows:

1
0 = {SN(𝜇, 𝜔, 𝜆) ∶ Γ > Γ1}

2
0 = {SN(𝜇, 𝜔, 𝜆) ∶ Γ < Γ1}.

We now show that, for any given pair of pdfs 𝑓0, 𝑓0 from 0, the conditions of Theorem 1 are
satisfied. Let Γ0,Δ0 (Γ̈0, Δ̈0) be the parameters corresponding to f0 (𝑓0), as defined in Table 1.

• If f0 is from 1
0 (Γ0 > Γ1), we choose the CF transform as Ψ. First, select some t ≠ 0

in ℝ. Applying Lemma C.4 (Statements 1.a. and 1.b.), we obtain limc→∞
CF(ct;𝑓0)
CF(ct;𝑓1)

= 0

and limc→∞
CF(ct;𝑓0)
CF(ct;𝑓1)

∉ (−∞, 0). Therefore, the sequence T = {tn}, tn = nt satisfies the
conditions of Theorem 1.

• If f0 is from 2
0 (Γ1 > Γ0), we choose the MGF transform as Ψ. First, we select

some t ≠ 0 in ℝ with Δ0t ≤ 0. Applying Lemma C.4 (Statement 2), we obtain
limc→∞

MGF(ct;𝑓0)
MGF(ct;𝑓1)

= 0. Moreover, owing to the fact that an MGF is always positive, we know

4We were able to prove identifiability for a larger SN mixture family, obtained by using b
0 = {SN(𝜇, 𝜔, 𝜆) ∶ (𝜇,Γ, |Δ|) ≠

(𝜇1,Γ1, |Δ1|)}, which subsumes {SN(𝜇, 𝜔, 𝜆) ∶ Γ ≠ Γ1} of Theorem 2 (see supplementary material). Because the stronger
result could not be extended to the multivariate families, we did not include it in the main text.
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that limc→∞
MGF(ct;𝑓0)
MGF(ct;𝑓1)

∉ (−∞, 0). The sequence T = {tn}, tn = nt satisfies the conditions
of Theorem 1.

Thus, all the conditions of Theorem 1 are satisfied, and consequently,  (0, 𝑓1) is
identifiable.

Looking at the expression for the variance of SN distribution, 𝜔2
(

1 − 2
𝜋
𝛿2

)
(Lin, Lee, & Yen,

2007) and observing its similarity with Γ = 𝜔2(1 − 𝛿2), we argue that Γ quantifies the disper-
sion of the distribution—in fact, when 𝜆 = 0, the variance is equal to Γ. Moreover, increasing 𝜔

and/or decreasing 𝜆 has the same effect on Γ and variance, that is, both increase. Thus, loosely
speaking, the condition for identifiability in Theorem 2 is about the difference in the dispersion
of the components. In terms of 𝜔 and 𝜆, conditions (1) 𝜔1 > 𝜔0 with 𝜆1 < 𝜆0 or (2) 𝜔1 < 𝜔0
with 𝜆1 > 𝜆0 are both subsumed by Γ1 ≠ Γ0.

Theorem 3 (Using the alternate parameterization for MSN in Table 1).
The family of pdfs  (0, 𝑓1) with f1 = MSNK(𝜇1,Ω1, 𝜆1) and

0 = {MSNK(𝜇,Ω, 𝜆) ∶ Γ ≠ Γ1}

is identifiable.

Proof. Consider a partition of 0 by sets 1
0 , 2

0 , defined as follows:

1
0 = {MSNK(𝜇,Ω, 𝜆) ∶ Γ ⪰ Γ1,Γ ≠ Γ1},

2
0 = 0 ⧵ 1

0 ,

where ≻ is the standard partial order relationship on the space of matrices. More specifically,
A ≻ B implies that A − B is positive definite. Note that 2

0 also contains pdfs whose Γ matrix
is unrelated to Γ1 by the partial ordering.

We now show that, for any given pair of pdfs 𝑓0, 𝑓0 from 0, the conditions of Theorem 1
are satisfied. Let Γ0,Δ0 (Γ̈0, Δ̈0) be the parameters corresponding to f0 (𝑓0), as defined
in Table 1.

• If f0 is from1
0 , we choose the CF transform asΨ. We pick some t ∈ ℝK with t′(Γ̈0−Γ1)t ≠ 0

and t′(Γ0 − Γ1)t > 0; the existence of such a t is guaranteed by Lemma C.2. Applying
Lemma C.5 (Statements 1.a. and 1.b.), we obtain limc→∞

CF(ct;𝑓0)
CF(ct;𝑓1)

= 0 and limc→∞
CF(ct;𝑓0)
CF(ct;𝑓1)

∉
(−∞, 0). Notice that the sequence T = {tn}, tn = nt satisfies the conditions of Theorem 1.

• If f0 is from 2
0 , we choose the MGF transform as Ψ. We pick some l ≠ 0 in ℝk such that

l′(Γ1 − Γ0)l > 0; existence of such an l is guaranteed byΓ0  Γ1. If the scalar valueΔ′
0l ≤ 0,

we choose t = l; otherwise, we choose t = −l. It is easy to see that t′(Γ1 − Γ0)t > 0 and
Δ′

0t ≤ 0. Applying Lemma C.5 (Statement 2), we obtain limc→∞
MGF(ct;𝑓0)
MGF(ct;𝑓1)

= 0. Moreover,

owing to the fact that an MGF is always positive, we know that limc→∞
MGF(ct;𝑓0)
MGF(ct;𝑓1)

∉ (−∞, 0).
The sequence T = {tn}, tn = nt satisfies the conditions of Theorem 1.

Thus, all the conditions of Theorem 1 are satisfied and consequently  (0, 𝑓1) is
identifiable.

Here again, Γ quantifies the dispersion of MSN distribution, observing its similarity with the
expression for variance: Ω − 2

𝜋
ΔΔ′ (Azzalini & Capitanio, 1999). Thus, the difference in the

dispersions of the components is beneficial for identifiability.
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Notation 1 (Notation for the CFUSN identifiability result used in Theorem 4, Lemma C.3,
Lemma C.6).

• 𝜃 is used as a placeholder for CFUSN parameters.
• Matrix as a multiset: a matrix U is also used to denote the multiset (to allow duplicates)

containing its column vectors. |U| represents its cardinality.
• Null(S): Given a matrix S, Null(S) denotes its null space.
• ∁A: Given a set A, ∁A denote its complement.
• U(t) ∶ U(t) = {u ∈ U ∶ u′t ≠ 0}, where t ∈ ℝK and U is a multiset of vectors in ℝK ; that

is, the multiset containing those vectors in U that are not orthogonal to t.

• V(c; 𝜃, 𝜃, t) ∶=
exp(𝜄(𝜇−𝜇)′t) exp(− 1

2
c2t′(Γ−Γ)t)

c(|Δ(t)|−|Δ(t)|) , where 𝜃 and 𝜃 are place holders for CFUSN
parameters, c ∈ ℝ and t ∈ ℝK .

• Ξ(U,V , t) ∶=
(
𝜄
√

2
𝜋

)(|U(t)|−|V(t)|) ∏
v∈V(t)v′ t∏
u∈U(t)u′ t

, where 𝜄 is the imaginary number.

• RN(c, x) ∶=
∑N

n=1
(2n−1)!!

c2nx2n +  (
c−2(N+1)) + (exp(−c2x2∕4)) as c → ∞, where !! is the standard

double factorial notation.

Theorem 4 (Using Notation 1 and the alternate parameterization for CFUSN in Table 1).
The family of pdfs  (0, 𝑓1) with f1 = CFUSNK,M(𝜇1,Ω1,Λ1) and

0 =
{

CFUSNK,M(𝜇,Ω,Λ) ∶ Γ ≠ Γ1,Γ1 − Γ ≠ kvv′, for any v ∈ Δ and any k ∈ ℝ+}
,

is identifiable.5

Proof. (Notation (1) is used throughout the proof).
First, we describe a few properties of the V function used at multiple places in the proof. Note
that

V(c; 𝜃0, 𝜃1, t) = V(c; 𝜃0, 𝜃, t)V(c; 𝜃, 𝜃1, t),
where 𝜃 is an arbitrary CFUSN parameter. Reasoning about the asymptotic behaviour of
V(c; 𝜃0, 𝜃1, t) as c → ∞, note that the limit is primarily determined by the sign of the quadratic
form t′(Γ0 − Γ1)t and is either 0 or ∞. However, if t′(Γ0 − Γ1)t = 0, then the limit is deter-
mined by the sign of |Δ0(t)| − |Δ1(t)| and is still 0 or ∞; if |Δ0(t)| − |Δ1(t)| = 0 as well, then
V(c; 𝜃0, 𝜃1, t) oscillates between −1 and 1 (undefined limit), unless (𝜇0 − 𝜇1)′t = 0, in which
case the limit is 1.

We give a proof by contradiction supposing that the family is not identifiable. Thus,
 (0, 𝑓1)∩0 ≠ ∅; that is, there exist f0 and 𝑓0 in0, such that, with the characteristic function
as the linear transform,

C̈F0(ct) = aCF1(ct) + (1 − a)CF0(ct), ∀t ∈ ℝK ,∀c ∈ ℝ and 0 < a < 1. (6)

We will show that Equation (6) leads to a contradiction for all possible choices of f0 and 𝑓0
from 0. Consider a partition of 0 by sets 1

0 , 2
0 , defined as follows:

1
0 = {CFUSNK,M(𝜇,Ω,Λ) ∶ Γ1  Γ},

2
0 = 0 ⧵ 1

0 ,

5Though CFUSN is not an identifiable family itself, a given CFUSN density uniquely determines its Γ parameter
(Lemma C.8). Because 0 is defined in relationship to only the Γ1 parameter of f1, the theorem statement is meaningful,
even though f1 might admit multiple representations in the other parameters.



JAIN ET AL. Scandinavian Journal of Statistics 965

where ⪰ is the standard partial order relationship on the space of matrices. Precisely, A ⪰ B
implies that A − B is positive semidefinite.

Now, consider the following cases that cover all the contingencies.

• If f0 is from1
0 (Γ1  Γ0), we proceed as follows. Equation (6) implies that, for CF0(ct) ≠ 0,

C̈F0(ct)
CF0(ct)

= a CF1(ct)
CF0(ct)

+ (1 − a)

⇒

C̈F0(ct)
CF0(ct)

V(c; 𝜃1, 𝜃0, t)
= a

CF1(ct)
CF0(ct)

V(c; 𝜃1, 𝜃0, t)
+ 1 − a

V(c; 𝜃1, 𝜃0, t)

⇒
1

V(c; 𝜃1, �̈�0, t)

C̈F0(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

A

= a
CF1(ct)
CF0(ct)

V(c; 𝜃1, 𝜃0, t)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

B

+ 1 − a
V(c; 𝜃1, 𝜃0, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

C

.

If limc→∞V(c; 𝜃1, 𝜃0, t) = ∞, term (C) goes to 0 as c → ∞. Applying Lemma C.6
(Statement 1.a.), the limit of term (B) as c → ∞ exists in ℂ ⧵ {0} (the set of nonzero com-
plex numbers), as well as the limit of the entire right-hand side (RHS) and, consequently,
the left-hand side (LHS). It follows that, because the limit of term (A) as c → ∞ exists in
ℂ ⧵ {0}, limc→∞

1
V(c;𝜃1,�̈�0,t)

should also exist in ℂ ⧵ {0} (so that the limit of entire LHS can
exist in ℂ ⧵ {0}). To summarize,

lim
c→∞

V(c; 𝜃1, 𝜃0, t) = ∞ ⇒ lim
c→∞

1
V(c; 𝜃1, �̈�0, t)

∈ ℂ ⧵ {0}. (7)

Now, we pick some t ∈ ℝK with t′(Γ0 − Γ1)t > 0 and t′(Γ̈0 − Γ1)t ≠ 0; existence of such a t
is guaranteed by Γ̈0 ≠ Γ1 and Γ1  Γ0, as shown in Lemma C.2. Because t′(Γ0 − Γ1)t > 0,
limc→∞V(c; 𝜃1, 𝜃0, t) = ∞ but limc→∞

1
V(c;𝜃1,�̈�0,t)

is either 0 or ∞ as t′(Γ̈0 − Γ1)t ≠ 0, which
contradicts Equation (7).

• If f0 is from 2
0 , we proceed as follows.

− If (Γ0 = Γ̈0), we use Equation (6) to get

C̈F0(ct)
CF0(ct)

= a CF1(ct)
CF0(ct)

+ (1 − a)

⇒

C̈F0(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
= a

CF1(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
+ 1 − a

V(c; �̈�0, 𝜃0, t)

⇒

C̈F0(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
= 1 − a

V(c; �̈�0, 𝜃0, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

A

+ 1
V(c; �̈�0, 𝜃1, t)

a
CF1(ct)
CF0(ct)

V(c; 𝜃1, 𝜃0, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

B
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

. (8)

If limc→∞V(c; �̈�0, 𝜃1, t) = ∞, term (C) goes to 0 as c → ∞ because the limit of
term (B) exists in ℂ ⧵ {0} by Lemma C.6 (Statement 1.a.). Applying Lemma C.6
(Statement 1.a.), the limit of RHS as c → ∞ exists in ℂ ⧵ {0}, as well as the limit
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of the entire LHS and consequently term (A); that is, limc→∞
1

V(c;�̈�0,𝜃0,t)
∈ ℂ ⧵ {0}.

To summarize,

lim
c→∞

V(c; �̈�0, 𝜃1, t) = ∞ ⇒ lim
c→∞

1
V(c; �̈�0, 𝜃0, t)

∈ ℂ ⧵ {0} (9)

and

lim
c→∞

V(c; �̈�0, 𝜃1, t) = ∞ ⇒ lim
c→∞

C̈F0(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
= lim

c→∞

1 − a
V(c; �̈�0, 𝜃0, t)

⇒ Ξ(Δ̈0,Δ0, t) = lim
c→∞

1 − a
V(c; �̈�0, 𝜃0, t)

(10)

(from Lemma C.6, Statement 1.a.).

Now,

t ∈ ∁Null(Γ1 − Γ0) ⇒ t′(Γ1 − Γ0)t > 0
⇒ lim

c→∞
V(c; �̈�0, 𝜃1, t) = ∞

⇒ lim
c→∞

1
V(c; �̈�0, 𝜃0, t)

∈ ℂ ⧵ {0} (from Equation 9)

⇒ |Δ0(t)| − |Δ̈0(t)| = 0 and (�̈�0 − 𝜇0)′t = 0,

where the last step follows because V(c; �̈�0, 𝜃0, t) = exp(𝜄c(�̈�0−𝜇0)′t)
c(|Δ̈0(t)|−|Δ0(t)|) when Γ0 = Γ̈0.

Consequently,

t ∈ ∁Null(Γ1 − Γ0) ⇒ V(c; �̈�0, 𝜃0, t) = 1 (11)
⇒ Ξ(Δ̈0,Δ0, t) = 1 − 𝛼 (from Equation 10).

To summarize, ∀t ∈ ∁Null(Γ1 − Γ0),|Δ0(t)| − |Δ̈0(t)| = 0
Ξ(Δ̈0,Δ0, t) = 1 − a.

Because 1 − 𝛼 ∈ (0, 1) ⊂ ℝ ⧵ {−1, 1}, from Lemma C.3, it follows that
Γ1 − Γ0 = kvv′, for some v ∈ Δ0 and some k ∈ ℝ+.

Thus, 𝑓0 ∉ 0 and, hence, the contradiction.
− If Γ0 ≠ Γ̈0,

Equation (6) implies that, for CF1(ct) ≠ 0,

C̈F0(ct)
CF1(ct)

= a + (1 − a)CF0(ct)
CF1(ct)

⇒

C̈F0(ct)
CF1(ct)

V(c; 𝜃0, 𝜃1, t)
= a

V(c; 𝜃0, 𝜃1, t)
+ (1 − a)

CF0(ct)
CF1(ct)

V(c; 𝜃0, 𝜃1, t)

⇒
1

V(c; 𝜃0, �̈�0, t)

C̈F0(ct)
CF1(ct)

V(c; �̈�0, 𝜃1, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

A

= (1 − a)
CF0(ct)
CF1(ct)

V(c; 𝜃0, 𝜃1, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

B

+ a
V(c; 𝜃0, 𝜃1, t)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

C

.

Notice that if limc→∞V(c; 𝜃0, 𝜃1, t) = ∞, then term (C) goes to 0. Applying
Lemma C.6 (Statement 1.a.), the limit of term (B) as c → ∞ exists in ℂ ⧵ {0}, as well
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as the limit of the entire RHS and, consequently, the LHS. It follows that, because
the limit of term (A) as c → ∞ exists in ℂ ⧵ {0}, limc→∞

1
V(c;𝜃0,�̈�0,t)

should also exist
in ℂ ⧵ {0} (so that the limit of entire LHS exists in ℂ ⧵ {0}). To summarize,

lim
c→∞

V(c; 𝜃0, 𝜃1, t) = ∞ ⇒ lim
c→∞

1
V(c; 𝜃0, �̈�0, t)

∈ ℂ ⧵ {0}. (12)

Now then, we pick some t ∈ ℝK with t′(Γ1 − Γ0)t > 0 and t′(Γ0 − Γ̈0)t ≠ 0; the
existence of such a t is guaranteed by Lemma C.2. t′(Γ1 − Γ0)t > 0 ensures that
limc→∞V(c; 𝜃0, 𝜃1, t) = ∞, but limc→∞V(c; 𝜃0, �̈�0, t) is either 0 or ∞ as t′(Γ0 − Γ̈0)t ≠
0, which contradicts Equation (12).

As before, Γ quantifies the dispersion of CFUSN distribution, observing its similarity with the
expression for variance: Ω − 2

𝜋
ΔΔ′ (Arellano-Valle & Genton, 2005). Thus, the difference in the

dispersions of the components is beneficial for identifiability.

Comment 1 (Extension of Theorem 4).
We speculate that Theorem 4 can be further strengthened by removing the conditionΓ1 − Γ ≠
kvv′ (for any v ∈ Δ and any k ∈ ℝ+) from the definition of 0. Removal of this condi-
tion breaks the current proof only in the case when Γ1 ⪰ Γ0 and Γ0 = Γ̈0. Notice that this
case implies that, for any t ∈ ℝK such that t ∈ ∁Null(Γ1 − Γ0) satisfies V(c; �̈�0, 𝜃1, t) =
Ω(ck1 exp(1∕2c2t′(Γ1 − Γ0)t)), for some integer k1 (from the definition of V), V(c; �̈�0, 𝜃0, t) =
1 and Ξ(Δ̈0,Δ0, t) = 1 − 𝛼 (as shown in Equation (11)). These implications reduce
Equation (8) to

a
CF1(ct)
CF0(ct)

V(c; 𝜃1, 𝜃0, t)
= V(c; �̈�0, 𝜃1, t)

⎛⎜⎜⎝
C̈F0(ct)
CF0(ct)

V(c; �̈�0, 𝜃0, t)
− Ξ(Δ̈0,Δ0, t)

⎞⎟⎟⎠
= Ω

(
ck1 exp

(1
2

c2t′ (Γ1 − Γ0) t
))

Ξ(Δ̈0,Δ0, t)

·

⎛⎜⎜⎜⎜⎜⎝

∏
𝛿0∈Δ̈0(t)

(
1 + RN

(
c, 𝛿′0t

)
− 𝜄

(
c

exp
(

1
2

c2(𝛿′0t)2
)
))

∏
𝛿0∈Δ0(t)

(
1 + RN

(
c, 𝛿′0t

)
− 𝜄

(
c

exp
(

1
2

c2(𝛿′0t)2
)
)) − 1

⎞⎟⎟⎟⎟⎟⎠
,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A

(using Lemma C.6, Statement 1.b.)

as c → ∞ for any positive integer N. Looking at the definition of RN (Notation 1), it seems that
the term (A) should be Ω(ck2) for some negative integer k2, except in a difficult-to-characterize
special case (when all the polynomial terms in the numerator and denominator of (A) cancel
out in the expression given by numerator − denominator). This would imply that the RHS is
Ω(ck1+k2 exp( 1

2
c2t′(Γ1 −Γ0)t)), which still goes to ∞ as c → ∞, yet the LHS is in ℂ ⧵ {0}, which

leads to a contradiction.



968 Scandinavian Journal of Statistics JAIN ET AL.

4 CONCLUSIONS

We give meaningful sufficient conditions that ensure identifiability of two-component mixtures
with SN, MSN, and CFUSN components. We proved identifiability in terms of the Γ parameter
that contains both the scale and the skewness information and has a consistent interpretation
across the three skew normal families as natural parameter in the stochastic representation and
as a measure of dispersion. Our results are strong in the sense that the set of parameter val-
ues not covered by the sufficient condition is a Lebesgue measure 0 set in the parameter space.
Ghosal and Roy (2011) study the identifiability of a two-component mixture with the standard
normal as one of the components and the second component itself given by an uncountable mix-
ture of skew normals. Treating G from their work as a point distribution, we can make a valid
comparison between our identifiability result and theirs, concluding the superiority of our results,
owing to a larger coverage of the parameter space by our conditions. The ability of skew nor-
mal families to capture asymmetry, the work-around for high-dimensional data using specialized
transforms, and our identifiability results position skew normal mixtures favorably as a para-
metric model for mixing proportion estimation. Previous work on finite skew normal mixture
estimation (without a sample from the component) additionally provides a promising direction
for developing practical algorithms (Lachos et al., 2010; Lin, 2009; Lin et al., 2007).
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APPENDIX A

MSN MGF AND CF

Azzalini and Capitanio (1999) and Kim and Genton (2011) define the skewness parameter dif-
ferently in their definition of MSN pdf. Denoting their skewness parameter as 𝜆A, the pdf is
given by

𝑓 (x ∣ 𝜇,Ω, 𝜆A) = 2𝜙K(x − 𝜇 ∣ Ω)Φ
(
𝜆′A𝜔

−1(x − 𝜇)
)
, x ∈ ℝK ,

where 𝜔 = diag(
√
𝜔11,

√
𝜔22,…,

√
𝜔KK) and 𝜔ij is the entry in the ith row and jth column of Ω.

The relationship between the two parameterization can be obtained by observing that the corre-
sponding pdfs are equal when 𝜆′Ω−1∕2 = 𝜆′A𝜔

−1. It follows that 𝜆 = Ω1∕2𝜔−1𝜆A, and consequently,
𝛿 = Ω1∕2𝜔−1𝜆A

1+𝜆′A𝜔−1Ω𝜔−1𝜆A
= Ω1∕2𝜔−1𝜆A

1+𝜆′AΩz𝜆A
, where Ωz = 𝜔−1Ω𝜔−1. The CF and MGF in Azzalini and Dalla

Valle (1996) and Kim and Genton (2011) are expressed as MG(t) = 2 exp(t′𝜇 + t′Ωt∕2)Φ(𝛿′A𝜔t) and
CF(t) = exp(𝜄t′𝜇 − t′Ωt∕2)(1+ 𝜄ℑ(𝛿′A𝜔t)), where 𝛿A = Ωz𝜆A

1+𝜆′AΩz𝜆A
. Our formula for the CF and MGF in

Table 2 can be verified by observing that Δ = Ω1∕2𝛿 = Ω𝜔−1𝜆A
1+𝜆′AΩz𝜆A

= 𝜔Ωz𝜆A

1+𝜆′AΩz𝜆A
= 𝜔𝛿A.

APPENDIX B

CFUSN CHARACTERISTIC FUNCTION

Theorem B.1. The characteristic function of a K-dimensional CFUSNK,M(𝜇,Ω,Δ) with a K ×
M Δ matrix is given by

CF(t) = exp
{
𝜄t′𝜇 − 1

2
t′Ωt

} ∏
𝛿∈Δ

(1 + 𝜄ℑ(𝛿′t)),

where Δ is also used to represent the multiset containing its column vectors, 𝜄 is the imaginary
number, and ℑ(x) = ∫ x

0

√
2∕𝜋 exp(u2∕2)du.

Proof. We use the stochastic representation of X ∼ CFUSN(𝜇,Ω,Δ) obtained from Lin (2009),
given by X = ΔH + G, where H ∼ TN(0,M ,ℝM

+ ), the standard multivariate Normal dis-
tribution truncated below 0 in all the dimensions and G ∼ NK(𝜇,Γ) (multivariate normal
distribution) for Γ = Ω − ΔΔ′—a symmetric positive semidefinite matrix. It follows that the
CF of X can be expressed in terms of CFs of Normal distribution and truncated Normal dis-
tribution precisely for t ∈ ℝK CFX(t) = CFG(t) · CFΔH(t). Using the expression for the CF of
multivariate Normal,

CFX (t) = exp
{
𝜄t′𝜇 − 1

2
t′Γt

}
CFΔH(t). (B1)

The basic properties of a CF and its connection with the corresponding MGF give CFΔH(t) =
CFH(Δ′t) = MGFH(𝜄Δ′t). Using the expression for the MGF of a Truncated Normal derived in
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Tallis (1961, pp. 225) and replacing R (the covariance matrix in Tallis, 1961) by M , we get

CFΔH(t) = MGFH(𝜄Δ′t)

= exp
{
−1

2
t′ΔΔ′t

} (2𝜋)−M∕2∫ℝM
+

exp
{
− 1

2
(w − 𝜄Δ′t)′(w − 𝜄Δ′t)

}
dw

∫ℝM
+
𝜙M(u)du

(where 𝜙M is the pdf of N(0,M))

= 2M exp
{
−1

2
t′ΔΔ′t

}
∫ℝM

+

(2𝜋)−M∕2 exp

{
−1

2

M∑
i=1

(
wi − 𝜄𝛿′i t

)2
}

dw

(where w = [wi]M
i=1 and 𝛿i is the ith column of Δ)

= 2M exp
{
−1

2
t′ΔΔ′t

}
∫ℝM

+

(2𝜋)−M∕2
M∏

i=1
exp

{
−1

2
(

wi − 𝜄𝛿′i t
)2

}
dw

= 2M exp
{
−1

2
t′ΔΔ′t

} M∏
i=1

∫
∞

0
(2𝜋)−1∕2 exp

{
−1

2
(

wi − 𝜄𝛿′i t
)2

}
dwi.

Applying the substitution ui = −wi+𝜄𝛿′i t for the integral in the numerator changes the domain
of the integration from the real line to the complex plane. To define such an integral correctly,
one needs to specify the path in the complex plane across which the integration is performed.
Using the path from −∞+ 𝜄𝛿′i t to 𝜄𝛿′i t, parallel to the real line, we get

CFΔH(t) = 2M exp
{
−1

2
t′ΔΔ′t

} M∏
i=1

∫
𝜄𝛿′i t

−∞+𝜄𝛿′i t
(2𝜋)−1∕2 exp

{
−1

2
u2

i

}
dui

= 2M exp
{
−1

2
t′ΔΔ′t

} M∏
i=1

∫
𝜄𝛿′i t

−∞+𝜄𝛿′i t
𝜙(ui)dui.

Using Lemma 1 from Kim and Genton (2011) to simplify the integral term, we get

CFΔH(t) = 2M exp
{
−1

2
t′ΔΔ′t

} M∏
i=1

⎛⎜⎜⎝1
2
+ 𝜄

1√
𝜋 ∫

𝛿′i t√
2

0
exp

{
u2

i
}

dui

⎞⎟⎟⎠
= 2M exp

{
−1

2
t′ΔΔ′t

} M∏
i=1

(
1
2
+ 𝜄

1
2 ∫

𝛿′i t

0

√
2
𝜋

exp

{
v2

i

2

}
dvi

)
(

substituting vi = ui∕
√

2
)

= exp
{
−1

2
t′ΔΔ′t

} M∏
i=1

(
1 + 𝜄ℑ

(
𝛿′i t

))
= exp

{
−1

2
t′ΔΔ′t

} ∏
𝛿∈Δ

(1 + 𝜄ℑ(𝛿′t)).

Substituting the expression for CFΔH(t) in Equation (B1) completes the proof.
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APPENDIX C

SUPPORTING LEMMAS FOR IDENTIFIABILITY RESULTS

Lemma C.1. If 0 contains all pdfs on ℝK except f1, then  =  (0, 𝑓1) is not identifiable.

Proof. Because 0 contains all pdfs on ℝK except f1, we have  ⊆ 0 (note that 𝑓1 ∉  either,
because 𝛼 cannot be 1). Let a ∈ (0, 1) and b ∈ (0, a), h0 ∈ 0 and g0 = 𝑓 ( (a−b)∕(1−b), h0). As g0
is a mixture in  and  ⊆ 0, it follows that g0 is also in 0. Consequently, the mixture f(b, g0)
is in  . Therefore, 𝑓 (b, g0) = b𝑓1 +(1−b)g0 = b𝑓1 +(1−b)𝑓 ( (a−b)∕(1−b), h0); the last expression
is equivalent to f(a, h0). Thus, we have f(a, h0) = f(b, g0). However, b ≠ a, and hence,  is
not identifiable.

Lemma C.2. For K × K symmetric matrices A ≠ 0 and B ≠ 0, if either A ⪰ 0 or A  0, then
there exists a vector t ∈ ℝK such that t′Bt ≠ 0 and t′At > 0.

Proof. Suppose there does not exist any vector l ∈ ℝK such that l′Al > 0. Thus, for all l ∈ ℝK ,
l′Al ≤ 0. This immediately contradicts A  0. Hence, A  0 implies that there exists l ∈ ℝK

such that l′Al > 0. On the other hand, A ⪰ 0 implies l′Al ≥ 0 for all l ∈ ℝK . This, in
combination with l′Al ≤ 0 for all l ∈ ℝK , implies that l′Al = 0 for all l ∈ ℝK . This, however,
is impossible because A ≠ 0. To summarize, there exists l ∈ ℝK such that l′Al > 0 when
A ≠ 0 and either of A ⪰ 0 or A  0 is true. Now, we give a recipe to find t ∈ ℝK with t′Bt ≠ 0
and t′At > 0. Let l be some vector in ℝK with l′Al > 0 (existence of l already proved)

• If l′Bl ≠ 0, then choose t = l
• else (l′Bl = 0), let l1 ∈ ℝK be such that l′1Bl1 ≠ 0. Existence of such l1 is guaranteed

because B ≠ 0. We choose t = l + 𝜖l1, where 𝜖 > 0 is picked so that t ′Bt ≠ 0 and
t ′At > 0. To see that such an 𝜖 exists, notice first that t′Bt = (l + 𝜖l1)′B(l + 𝜖l1) = lBl′ +
2𝜖l′1Bl + 𝜖2l′1Bl1 = 2𝜖l′1Bl + 𝜖2l′1Bl1 ≠ 0 for any 𝜖 ≠ −2l′1Bl

l′1Bl1
. Second, t′At = (l + 𝜖l1)′A(l + 𝜖l1) =

lAl′ + 2𝜖l′1Al + 𝜖2l′1Al1 > 0 for a small-enough 𝜖 > 0. Thus, picking a small-enough
𝜖 ≠ −2l′1Bl

l′1Bl1
ensures t′Bt ≠ 0 and t′At > 0.

Notation C.1 (Notation for Lemma C.3).

• t ≡ l: Given vectors t, l ∈ ℝK , t ≡ l if ct = l for some c ≠ 0 in ℝ; that is, t and l have the
same direction or opposite direction.

• ℙ(U): Given a multiset of vectors U, ℙ(U) is a partition of U defined by the equivalence
relationship defined above; that is, vectors having the same or opposite direction are in the
same block of the partition.

• PC: Given P ∈ ℙ(U), PC denotes the canonical vector direction of P. Because P can
potentially contain vectors having an opposite direction, strictly speaking, there are two
canonical directions. However, for simplicity, we pick an arbitrary vector t ∈ P and define
PC as PC = t∕||t|| when a t ≠ 0 and PC = 0 otherwise. This abuse of notation does not
affect the result of Lemma C.3.

• t⟂: Given a vector t ∈ ℝK , t⟂ denotes the K − 1, the vector space orthogonal to t.
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Lemma C.3 (Using Notation 1 and C.1).
Let U,V be K × M matrices and S ≠ 0 be a K × K symmetric positive semidefinite matrix. Letℙ =
ℙ(U ∪ V). Suppose |U(t)| = |V(t) and Ξ(U,V, t) = r, ∀t ∈ ∁Null(S) and some r ∈ ℝ ⧵ {−1, 1}.
It follows that S = kvv′ for some v ∈ V and some constant k > 0; that is, S is a Rank 1 matrix
with all column (and row) vectors in the same or opposite direction as some column vector of V.

Proof.
Part 1 (Partitioning ℙ): First, we partition the elements of ℙ into three sets ℙ0, ℙ1, and ℙ2
defined below, showing that ℙ0 and ℙ2 cannot have more than one element and connect the
nonemptiness of ℙ2 with the desired result:

ℙ0 = {P ∈ ℙ ∶ PC ≡ 0},
ℙ1 = {P ∈ ℙ ∶ PC ≢ s for somes ≠ 0 in S},
ℙ2 = ℙ ⧵ (ℙ0 ∪ ℙ1).

Notice that ℙ0 is either a singleton or empty because all the 0 vectors in U ∪ V are collected
in a single component set in ℙ. If ℙ2 ≠ ∅, then any vector w in any P̃ ∈ ℙ2 is equivalent to all
nonzero column vectors in S, which implicitly means that all nonzero column vectors in S are
in the same or opposite direction (equivalent) and, consequently, S is Rank 1 matrix having
column vectors (and row vectors as S is symmetric) equivalent to w. In other words, S can be
expressed as S = k1ww′ for some constant k1 > 0 (k1 > 0 ensures S is positive semidefinite).
To summarize,

ℙ2 ≠ ∅ ⇒ S = k1ww′, for a w ∈ P̃ from ℙ2 and k1 > 0. (C1)

Moreover, any other vector that can appear inside ℙ2 is equivalent to w, and consequently, ℙ2
is also singleton set (if not empty).

Part 2 (t0,tP̄): We define the following vectors and prove their existence.

• t0 ∶ t0 ∈ ∁Null(S) such that P′
Ct0 ≠ 0,∀P ∈ ℙ ⧵ ℙ0. Existence of t0 is shown by using result

(A) (given below) with e = 0 and H = {PC ∶ P ∈ ℙ ⧵ ℙ0} ∪ {s} for some s ≠ 0 in S.
• tP̄: For a given P̄ ∈ ℙ1, tP̄ ∈ ∁Null(S) such that P̄′

CtP̄ = 0, P′
CtP̄ ≠ 0,∀P ∈ ℙ ⧵ ({P̄} ∪ ℙ0).

Existence of tP̄ is shown by using result (A) (given below) with e = P̄C and H = {PC ∶ P ∈
ℙ ⧵ ({P̄} ∪ ℙ0)}

⋃
{s}, where s ≠ 0 in S be such that s ≢ P̄C (such an s exists by definition

of ℙ1).

Result (A): For a given vector e and a finite multiset of nonzero vectors H in ℝK ,

e ≢ h,∀h ∈ H ⇒ ∃t ∈ ℝK such that e′t = 0 and h′t ≠ 0,∀h ∈ H.

To prove (A), notice that choosing t from e⟂ guarantees e′t = 0. Choosing t from ∁h⟂ ensures
h′t ≠ 0. It follows that if the set, G, obtained by removing h⟂, for all h ∈ H, from e⟂ is
nonempty, then any t ∈ G satisfies both h′t ≠ 0 and e′t = 0. To see that G is indeed
nonempty, notice that removing h⟂'s (finite number of K − 1 dimensional linear spaces) from
e⟂ (either K dimensional when e = 0 or K − 1 dimensional when e ≠ 0) reduces it only
by Lebesgue measure 0 set, provided e⟂ does not coincide with any of the h⟂'s, guaranteed by
e ≢ h for all h ∈ H.

Part 3 (Equal contribution from U,V ): Next, we show that any P ∈ ℙ has even an
number of elements with equal contribution from U and V; that is,|U ∩ P| − |V ∩ P| = 0,∀P ∈ ℙ. (C2)
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We break the argument into three exhaustive cases, picking P from ℙ0 or ℙ1 or ℙ2 as follows.

1. P̌ ∈ ℙ0: Because t0 ∈ ∁Null(S), |U(t0)| = |V(t0)|. Thus, the number of nonzero and,
consequently, zero entries in U′t0 and V′t0 are equal (U and V have the same number of
columns). The only source of 0's in U′ t0 and V′t0 are column vectors in P̌ and consequently,|U ∩ P̌| − |V ∩ P̌| = 0 follows.

2. P̄ ∈ ℙ1: Because tP̄ ∈ ∁Null(S), |U(tp̄)| = |V(tp̄)|. Thus, the number of nonzero and,
consequently, zero entries in U ′tP̄ and V ′tP̄ are equal (U and V have the same number of
columns). There are two possibilities for the source of 0s in U ′tP̄ and V ′tP̄:

a. column vectors in P̄ only (when ℙ0 = ∅). Thus, to satisfy |U(tp̄)| = |V(tp̄)|, |U ∩ P̄| −|V ∩ P̄| = 0 must be true.
b. column vectors in P̄ and the only element in ℙ0, P̌ (when ℙ0 is singleton). We

already know from case (1) that |U ∩ P̌| − |V ∩ P̌| = 0 is true, and consequently, to
satisfy |U(tp̄)| = |V(tp̄)|, |U ∩ P̄| − |V ∩ P̄| = 0 must be true as well.

3. P̃ ∈ ℙ2: Because P̃ is the only element in ℙ2, all other sets P ∈ ℙ ⧵ {P̃} belong to either ℙ0
or ℙ1 and are covered by cases (1) and (2); that is, |U∩ P| − |V∩ P| = 0. As a consequence,
P̃, being the only remaining set, |U ∩ P̃| − |V ∩ P̃| = 0 must be true because both U and V
have the equal number of column vectors.

Part 4: We rewrite the formula for Ξ(U,V, l) as follows:

Ξ(U,V , l) =
∏

P∈ℙ⧵ℙ0,P′
Cl≠0

∏
v∈V∩P

1
𝜄

√
𝜋

2
v′l∏

u∈U∩P
1
𝜄

√
𝜋

2
u′l

.

Taking the absolute value squared,

|Ξ(U,V , l)|2 =
∏

P∈ℙ⧵ℙ0,P′
Cl≠0

∏
v∈V∩P

𝜋

2
(v′l)2∏

u∈U∩P
𝜋

2
(u′l)2

=
∏

P∈ℙ⧵ℙ0,P′
Cl≠0

∏
v∈V∩P

𝜋

2
‖v‖2(P′

Cl
)2∏

u∈U∩P
𝜋

2
‖u‖2(P′

Cl
)2

=
∏

P∈ℙ⧵ℙ0,P′
Cl≠0

(
𝜋

2
(

P′
Cl

)2
)|V∩P|−|U∩P| ∏

v∈V∩P‖v‖2∏
u∈U∩P‖u‖2

=
∏

P∈ℙ⧵ℙ0,P′
Cl≠0

∏
v∈V∩P‖v‖2∏
u∈U∩P‖u‖2 (Using Equation (C2)) (C3)

=
∏

P∈ℙ1,P′
Cl≠0

∏
v∈V∩P‖v‖2∏
u∈U∩P‖u‖2 ·

∏
P∈ℙ2,P′

Cl≠0

∏
v∈V∩P‖v‖2∏
u∈U∩P‖u‖2

=
∏

P̄∈ℙ1,P̄′
Cl≠0

|Ξ(U,V , t0)|2|Ξ(U,V , tP̄)|2 ·
∏

P̃∈ℙ2,P̃′
Cl≠0

∏
v∈V∩P̃‖v‖2∏
u∈U∩P̃‖u‖2 (Using Equation (C3))

=
∏

P̃∈ℙ2,P̃′
Cl≠0

∏
v∈V∩P̃‖v‖2∏
u∈U∩P̃‖u‖2 (because Ξ(U,V , t0) = r and Ξ(U,V , tP̄) = r).
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Thus, ℙ2 = ∅ is a sufficient condition for |Ξ(U,V, l)|2 = 1, ∀l ∈ ℝK , but the condition r ∈
ℝ ⧵ {−1, 1} leads to a contradiction. Thus,

r ∈ ℝ ⧵ {−1, 1} ⇒ ℙ2 ≠ ∅
⇒ S = k1ww′, for a w ∈ P̃ from ℙ2 and some k1 > 0 (from Equation C1)
⇒ S = kvv′, for some v ∈ V ∩ P̃ and some k > 0;

existence of v is justified by Equation (C2) and the fact that P̃ is nonempty.

Notation C.2 (Landau's notation).
We use Landau's asymptotic notation in the next few lemmas, defined as follows. For
real-valued functions g and h defined on some subset of ℝ, g(c) = (h(c)) as c → ∞ if
lim supc→∞| g(c)

h(c)
| < ∞ and g(c) = Ω(h(c)) as c → ∞ if lim supc→∞| g(c)

h(c)
| > 0.

Lemma C.4 (Using the alternate parameterization for SN in Table 1).
Consider two univariate skew normal distributions, SN(𝜇, 𝜔, 𝜆) and SN(𝜇, 𝜔, 𝜆). Let c ∈ ℝ and
t ∈ ℝ ⧵ {0}.

1. Let CF and CF be the characteristic functions corresponding to the two distributions (refer
to Table 2).

1.a.
Γ − Γ > 0 ⇒ lim

c→∞

CF(ct)
CF(ct)

= 0

1.b.
Γ − Γ ≠ 0 ⇒ lim

c→∞

CF(ct)
CF(ct)

∈ {−∞, 0,∞},

provided the limit exists in ℝ (the extended real number line).
2. Let MGF and MGF be the moment-generating functions corresponding to the two distribu-

tions (refer to Table 2). For Δt ≤ 0,

Γ − Γ > 0 ⇒ lim
c→∞

MGF(ct)
MGF(ct)

= 0.

Proof. Here, we use Landau's (·) and Ω(·) notation, defined in Notation (C.2).
Statement 1.a.: Instead of working directly with CF(ct)

CF(ct)
, which can be complex, we circum-

vent the complication by working with the ratio's absolute value squared, which is always real.
Multiplying the ratio with its conjugate, we obtain an expression of its absolute value squared
as follows:|||||CF(ct)

CF(ct)

|||||
2

= CF(ct)
CF(ct)

(
CF(ct)
CF(ct)

)
= CF(ct)(CF(ct))

CF(ct)(CF(ct))
(property of complex conjugate of a fraction)

=
exp

(
−c2𝜔2

0t2) (1 + (ℑ(cΔt))2)

exp
(
−c2t2𝜔2

1t
)
(1 + (ℑ(cΔt))2)

.

Consider the ratio 1+(ℑ(cΔt))2

1+(ℑ(cΔt))2
from the previous expression. Using the asymptotic upper

bound (for the numerator) and lower bound (for the denominator), obtained in Lemma C.7
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(Statement 2c and 2d), we get

1 + (ℑ(cΔt)2

1 + (ℑ(cΔt))2 = (
c2 exp

(
c2(Δt)2 − c2(Δt)2))

= (
c2 exp

(
c2t2 (

Δ2 − Δ2))) .
Thus, |||||CF(ct)

CF(ct)

|||||
2

= exp
(
−c2t2 (

𝜔2 − 𝜔2)) (
c2 exp

(
c2t2 (

Δ2 − Δ2)))
= (

c2 exp
(
−c2t2 ((

𝜔2 − Δ2) − (
𝜔2 − Δ2))))

= (
c2 exp

(
−c2t2(Γ − Γ)

))
. (C4)

Consequently,

lim
c→∞

|||||CF(ct)
CF(ct)

|||||
2

= 0, when Γ − Γ > 0

and

lim
c→∞

CF(ct)
CF(ct)

= 0, when Γ − Γ > 0

follows.
Statement 1.b. Similar to the derivation of the asymptotic upper bound for the ratio in

Equation (C4), we derive the asymptotic lower bound by using Lemma C.7 (Statement 2c
and 2d); |||||CF(ct)

CF(ct)

|||||
2

= Ω
( 1

c2 exp
(

c2t2(Γ − Γ)
))

.

Consequently,

lim
c→∞

|||||CF(ct)
CF(ct)

|||||
2

= ∞, when Γ − Γ > 0

and

lim
c→∞

CF(ct)
CF(ct)

∈ {−∞,∞}, when Γ − Γ > 0

follows, provided the limit exists in ℝ. Combining the result with Statement 1.a. proves
Statement 1.b.

Statement 2 From the definition of SN MGF (Table 2), we get

MGF(ct)
MGF(ct)

= exp
(

c(𝜇 − 𝜇)t − c2

2
t2 (

𝜔2 − 𝜔2)) Φ(cΔt)
Φ(cΔt)

.

Consider the ratio Φ(cΔt)
Φ(cΔt)

from the previous expression. We apply the asymptotic upper
bound (for the numerator) and lower bound (for the denominator), obtained in Lemma C.7
(Statement 1.a. and 1.b.). Because Δt ≤ 0, the asymptotic upper bound is applicable.

Φ(cΔt)
Φ(cΔt)

= 
(

c exp
(
−c2

2
(
(Δt)2 − (Δt)2)))

= 
(

c exp
(
−c2

2
t2 (

Δ2 − Δ2)))
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Thus,

MGF(ct)
MGF(ct)

= exp
(

c(𝜇 − 𝜇)t − c2

2
t2 (

𝜔2 − 𝜔2))
(

c exp
(
−c2

2
t2 (

Δ2 − Δ2)))
= 

(
c exp

(
c(𝜇 − 𝜇)t − c2

2
t2 ((

𝜔2 − Δ2) − (
𝜔2 − Δ2))))

= 
(

c exp
(

c(𝜇 − 𝜇)t − c2

2
t2(Γ − Γ)

))
.

Because c2 term dominates the c term in the exponential above, the asymptotic upper bound
goes to 0 when Γ − Γ > 0, irrespective of the relation between 𝜇 and 𝜇. Consequently,

lim
c→∞

MGF(ct)
MGF(ct)

= 0, when Γ − Γ > 0.

Lemma C.5 (Using the alternate parameterization for MSN in Table 1).
Consider two K-dimensional skew Normal distributions,MSNK(𝜇,Ω, 𝜆), and MSNK(𝜇,Ω, 𝜆). Let
c ∈ ℝ and t ∈ ℝK.

1. Let CF and CF be the characteristic functions corresponding to the two distributions (refer
to Table 2).

1.a.
t′(Γ − Γ)t > 0 ⇒ lim

c→∞

CF(ct)
CF(ct)

= 0

1.b.
t′(Γ − Γ)t ≠ 0 ⇒ lim

c→∞

CF(ct)
CF(ct)

∈ {−∞, 0,∞},

provided the limit exists in ℝ (the extended real number line).

2. Let MGF and MGF be the moment-generating functions corresponding to the two distribu-
tions (refer to Table 2). For Δ′t ≤ 0,

t′(Γ − Γ)t > 0 ⇒ lim
c→∞

MGF(ct)
MGF(ct)

= 0.

Proof. Here, we use Landau's (·) and Ω(·) notation, defined in Notation (C.2).
Statement 1.a.: We use the approach in Lemma C.4. The expression for the squared absolute
value of the characteristic function ratio, obtained by multiplying the ratio with its conjugate,
is given by |||||CF(ct)

CF(ct)

|||||
2

=
exp

(
−c2t′Ωt

) (
1 + (ℑ(cΔ′t))2)

exp
(
−c2t′Ωt

) (
1 + (ℑ(cΔ′t))2

) .
Consider the ratio 1+(ℑ(cΔ′t))2

1+(ℑ(cΔ′t))2
from the previous expression. Using the asymptotic upper

bound (for the numerator) and lower bound (for the denominator), obtained in Lemma C.7
(Statements 2.c. and 2.d.), we get

1 + (ℑ(cΔ′t)2

1 + (ℑ(cΔ′t))2
=  (

c2 exp
(

c2(Δ′t)2 − c2(Δ′t)2))
=  (

c2 exp
(

c2t′(ΔΔ′ − ΔΔ′)t
))

.
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Thus, |||||CF(ct)
CF(ct)

|||||
2

= exp
(
−c2t′(Ω − Ω)t

) (
c2 exp

(
c2t′(ΔΔ′ − ΔΔ′)t

))
=  (

c2 exp
(
−c2t′

(
(Ω − ΔΔ′) − (Ω − ΔΔ′)

)
t
))

=  (
c2 exp

(
−c2 (

t′(Γ − Γ)t
)))

. (C5)

Consequently,

lim
c→∞

|||||CF(ct)
CF(ct)

|||||
2

= 0, when t′(Γ − Γ)t > 0,

and

lim
c→∞

CF(ct)
CF(ct)

= 0, when t′(Γ − Γ)t > 0

follows.
Statement 1.b. Similar to the derivation of the asymptotic upper bound for the ratio in

Equation (C5), we derive the asymptotic lower bound by using Lemma C.7 (Statements 2.c.
and 2.d.); |||||CF(ct)

CF(ct)

|||||
2

= Ω
( 1

c2 exp
(

c2 (
t′(Γ − Γ)t

)))
.

Consequently,

lim
c→∞

|||||CF(ct)
CF(ct)

|||||
2

= ∞, when t′(Γ − Γ)t > 0,

and

lim
c→∞

CF(ct)
CF(ct)

∈ {−∞,∞}, when t′(Γ − Γ)t > 0

follows, provided the limit exists in ℝ. Combining the result with Statement 1.a. proves
Statement 1.b.

Statement 2 From the definition of MSN MGF (Table 2), we get

MGF(ct)
MGF(ct)

= exp
(

c(𝜇′ − 𝜇′)t − c2

2
t′(Ω − Ω)t

)
Φ(cΔ′t)
Φ(cΔ′t).

Consider the ratio Φ(cΔ′t)
Φ(cΔ′t)

from the previous expression. We apply the asymptotic upper
bound (for the numerator) and lower bound (for the denominator), obtained in Lemma C.7
(Statement 1). Because Δ′t ≤ 0, the asymptotic upper bound is applicable.

Φ(cΔ′t)
Φ(cΔ′t)

= 
(

c exp
(
−c2

2
(
(Δ′t)2 − (Δ′t)2)))

= 
(

c exp
(
−c2

2
t′(ΔΔ′ − ΔΔ′)t

))
.

Thus,
MGF(ct)
MGF(ct)

= exp
(

c(𝜇′ − 𝜇′)t − c2

2
t′(Ω − Ω)t

)


(
c exp

(
−c2

2
t′(ΔΔ′ − ΔΔ′)t

))
= 

(
c exp

(
c(𝜇′ − 𝜇′)t − c2

2
t′

(
(Ω − ΔΔ′) − (Ω − ΔΔ′)

)
t
))

= 
(

c exp
(

c(𝜇′ − 𝜇′)t − c2

2
(t′(Γ − Γ)t)

))
.
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Because c2 term dominates the c term in the exponential above, the asymptotic upper bound
goes to 0, irrespective of the relation between 𝜇 and 𝜇. Consequently,

lim
c→∞

MGF(ct)
MGF(ct)

= 0, when t′(Γ − Γ)t > 0.

Lemma C.6 (Using Notation 1 and the alternate parameterization for CFUSN in Table 1).
Consider two K-dimensional skew Normal distributions, CFUSNK,M(𝜇,Ω,Λ) and CFUSNK,M
(𝜇,Ω,Λ). Let c ∈ ℝ and t ∈ ℝK.

1. Let CF and CF be the characteristic functions corresponding to the two distributions (refer
to Table 2). Then,

1.a.

lim
c→∞

CF(ct)
CF(ct)

V(c; 𝜃, 𝜃, t)
= Ξ(Δ,Δ, t).

1.b. Using Landau's (·) notation, defined in Notation (C.2), and for any positive
integer N,

CF(ct)
CF(ct)

V(c; 𝜃, 𝜃, t)
− Ξ(Δ,Δ, t)

= Ξ(Δ,Δ, t)

⎛⎜⎜⎜⎜⎜⎝

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
))

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
)) − 1

⎞⎟⎟⎟⎟⎟⎠
.

Proof.

CF(ct)
CF(ct)

V(c; 𝜃, 𝜃, t)
= c(|Δ(t)|−|Δ(t)|) exp

(
− 1

2
c2t′(Ω − Ω)t

)
exp

(
− 1

2
c2t′(Γ − Γ)t

) ∏
𝛿∈Δ

(
1 + 𝜄ℑ(c𝛿′t)

)∏
𝛿∈Δ

(
1 + 𝜄ℑ(c𝛿′t)

)
= c|Δ(t)|

c|Δ(t)|
exp

(
1
2

c2t′ΔΔ′t
)

exp
(

1
2

c2t′ΔΔ′t
) ∏

𝛿∈Δ
(
1 + 𝜄ℑ(c𝛿′t)

)∏
𝛿∈Δ

(
1 + 𝜄ℑ(c𝛿′t)

)
= c|Δ(t)|

c|Δ(t)|
exp

(
1
2

c2∑
𝛿∈Δ(t)(𝛿

′t)2
)

exp
(

1
2

c2∑
𝛿∈Δ(t)(𝛿′t)2

) ∏
𝛿∈Δ(t)

(
1 + 𝜄ℑ(c𝛿′t)

)∏
𝛿∈Δ(t)

(
1 + 𝜄ℑ(c𝛿′t)

) (ℑ(x) = 0 when x = 0)

=

∏
𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

)
∏

𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

) . (C6)
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Using Lemma C.7 (Statement 2.a.), we get

lim
c→∞

CF(ct)
CF(ct)

V(c; 𝜃, 𝜃, t)
=

∏
𝛿∈Δ(t)

(
𝜄
√

2
𝜋

1
𝛿′t

)
∏

𝛿∈Δ(t)

(
𝜄
√

2
𝜋

1
𝛿′t

)
= Ξ(Δ,Δ, t).

This proves Statement (1.a).
Using Equation (C6),

CF(ct)
CF(ct)

V(c; 𝜃, 𝜃, t)
− Ξ(Δ,Δ, t) =

∏
𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

)
∏

𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

) − Ξ(Δ,Δ, t)

=

∏
𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄

√
2∕𝜋 1

𝛿′t

(
1 + RN(c, 𝛿′t)

))
∏

𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄

√
2∕𝜋 1

𝛿′t

(
1 + RN

(
c, 𝛿′t

))) − Ξ(Δ,Δ, t)

(Using Lemma (C.7), Statement 2.b.)

= Ξ(Δ,Δ, t)

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
))

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
)) − Ξ(Δ,Δ, t)

= Ξ(Δ,Δ, t)

⎛⎜⎜⎜⎜⎜⎝

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
))

∏
𝛿∈Δ(t)

(
1 + RN(c, 𝛿′t) − 𝜄

(
c

exp
(

1
2

c2(𝛿′t)2
)
)) − 1

⎞⎟⎟⎟⎟⎟⎠
.

This proves Statement (1.b.).

Lemma C.7. Let Φ be the standard normal cdf and ℑ(x) = ∫ x
0

√
2∕𝜋 exp(u2∕2)du. Let x be finite.

Then, using Landau's (·) and Ω(·) notation, defined in Notation (C.2), as c → ∞,
1.

1.a. For all x ∈ ℝ,

Φ(cx) = Ω
⎛⎜⎜⎜⎝

exp
(
− 1

2
c2x2

)
c

⎞⎟⎟⎟⎠ .
1.b. When x ≤ 0,

Φ(cx) = (
exp

(
−1

2
c2x2

))
.
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2.
2.a. For all x ≠ 0,

lim
c→∞

cℑ(cx)

exp
(

c2x2

2

) =
√

2∕𝜋
1
x
.

2.b. For all x ≠ 0,

cℑ(cx)

exp
(

c2x2

2

) =
√

2
𝜋

1
x

[
1 +

N∑
n=1

(2n − 1)!!
c2nx2n +  (

c−2(N+1)) +  (
exp

(
− c2x2∕4

))]
,

where !! is the standard double factorial notation.
2.c. For all x ∈ ℝ,

1 + (ℑ(cx))2 =  (
exp(c2x2)

)
.

2.d. For all x ∈ ℝ,

1 + (ℑ(cx))2 = Ω
(

exp(c2x2)
c

)
.

Proof.
Statement 1: From Feller (1968), 1 − Φ(z) ∼ z−1𝜙(z) as z → ∞, where 𝜙 is the standard
normal density function. Because Φ(− z) = 1 − Φ(z) for any z ∈ ℝ, it follows that, for x < 0,
Φ(cx) = 1 − Φ(−cx) ∼ c−1𝜙( −cx) as c → ∞ (treating x as a constant). Thus,

Φ(cx) ∼ c−1 exp(−c2x2

2
) as c → ∞, for x < 0. (C7)

Thus, for x < 0, Φ(cx) = 
(

exp(− c2x2∕2)
c

)
and, consequently, Φ(cx) = (exp(− c2x2∕2)),

which also holds true when x = 0. Thus, Φ(cx) = (exp(− c2x2∕2)) when x ≤ 0,
which proves Statement (1.b.). Moreover, it follows from Equation (C7) that, for x < 0,

Φ(cx) = Ω
(

exp(− c2x2∕2)
c

)
and because it is true for x ≥ 0 as well (because Φ(0) = 1∕2 and

Φ(cx) approaches 1 when x > 0), Φ(cx) = Ω
(

exp(− c2x2∕2)
c

)
for all x ∈ ℝ. This proves

Statement (1.a.).
Statement 2: Performing integration by parts on ℑ(cx) for x ≠ 0 gives

ℑ(x) = ∫
x

0

√
2
𝜋

exp
(

u2∕2
)

du

= ∫
x∕√2

0

√
2
𝜋

exp
(

u2∕2
)

du + ∫
x

x∕√2

√
2
𝜋

exp
(

u2∕2
)

du

=
√

2
𝜋

[
∫

x∕√2

0
exp

(
u2∕2

)
du + ∫

x

x∕√2

1
u

d
du

(
exp

(
u2∕2

))
du

]

=
√

2
𝜋

[
∫

x∕√2

0
exp

(
u2∕2

)
du −

exp
(

x2∕4
)

2 −1∕2 x
+

exp
(

x2∕2
)

x
+ ∫

x

x∕√2

exp
(

u2∕2
)

u2 du

]

=
√

2
𝜋

[
∫

x∕√2

0
exp

(
u2∕2

)
du −

exp
(

x2∕4
)

2 −1∕2 x
+

exp
(

x2∕2
)

x
+ ∫

x

x∕√2

1
u3

d
du

exp
(

u2∕2
)

du

]
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=
√

2
𝜋

[
∫

x∕√2

0
exp

(
u2∕2

)
du −

exp
(

x2∕4
)

2 −1∕2 x
−

exp
(

x2∕4
)

2 −3∕2 x3
+

exp
(

x2∕2
)

x

+
exp

(
x2∕2

)
x3 + ∫

x

x∕√2

3
exp

(
u2∕2

)
u4 du

]

=
√

2
𝜋

[
exp

(
x2∕2

)
x

+
N∑

n=1

(2n − 1)!! exp
(

x2∕2
)

x2n+1 + (2N + 1)!!∫
x

x∕√2

exp
(

u2∕2
)

u2(N+1) du

−
N∑

n=0

(2n − 1)!! exp
(

x2∕4
)√

2−(2n+1)x2n+1
+ ∫

x∕√2

0
exp

(
u2∕2

)
du

]

=
√

2
𝜋

exp
(

x2∕2
)

x

⎡⎢⎢⎢⎣1 +
N∑

n=1

(2n − 1)!!
x2n + (2N + 1)!!x

∫ x
x∕√2

exp
(

u2∕2
)

u2(N+1) du

exp
(

x2∕2
)

−
N∑

n=0

(2n − 1)!! exp
(
− x2∕4

)√
2−(2n+1)x2n

+ x
∫ x∕√2

0 exp
(

u2∕2
)

du

exp
(

x2∕2
) ⎤⎥⎥⎥⎦ .

Thus,

ℑ(cx) =
√

2
𝜋

exp
(

c2x2∕2
)

cx

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 +

N∑
n=1

(2n − 1)!!
c2nx2n +

A
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(2N + 1)!!cx
∫ cx

cx∕√2

exp
(

u2∕2
)

u2(N+1) du

exp
(

c2x2∕2
)

−

B
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

N∑
n=0

(2n − 1)!! exp
(
− c2x2∕4

)√
2−(2n+1)c2nx2n

+

C
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

cx
∫ cx∕√2

0 exp
(

u2∕2
)

du

exp
(

c2x2∕2
) +

⎤⎥⎥⎥⎥⎥⎥⎦
.

Notice that term (A) is of order (c−2(N+1)) because

lim
c→∞

A
c−2(N+1) = lim

c→∞
(2N + 1)!!x

∫ cx
cx∕√2

exp
(

u2∕2
)

u2(N+1) du

exp
(

c2x2∕2
)

c2N+3

= lim
c→∞

(2N + 1)!!x
d
dc
∫ cx

cx∕√2

exp
(

u2∕2
)

u2(N+1) du

d
dc

exp
(

c2x2∕2
)

c2N+3

(applying L'Hôpital's rule)
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= lim
c→∞

(2N + 1)!!

exp
(

c2x2∕2
)

c2(N+1)x2(N+1) · x −
exp

(
c2x2∕4

)
2N+1

c2(N+1)x2(N+1) · x∕√2

exp
(

c2x2∕2
)
((cx2)c2N+3−(2N+3)c2(N+1))

c4N+6

(applying Leibniz integral rule)

= lim
c→∞

(2N + 1)!!
c−2(N+1)x−(2N+1)

(
1 − exp

(
− c2x2∕4

) √
22N+1

)
c−2(N+1)(x2 − (2N + 3)c−2)

= lim
c→∞

(2N + 1)!! 1
x2N+1

1 − exp
(
− c2x2∕4

) √
22N+1

x2 − (2N + 3)c−2 = (2N + 1)!! 1
x2N+3 ;

term (B) is (exp(− c2x2∕4)) and so is term (C) because

lim
c→∞

C
exp

(
− c2x2∕4

) = lim
c→∞

x
∫ cx∕√2

0 exp
(

u2∕2
)

du
exp

(
c2x2∕4

)
c

= lim
c→∞

x
d
dc
∫ cx∕√2

0 exp
(

u2∕2
)

du

d
dc

exp
(

c2x2∕4
)

c

(applying L'Hôpital's rule)

= lim
c→∞

x
exp

(
c2x2∕4

)
· x√

2

exp
(

c2x2∕4
)((

cx2∕2
)

c−1
)

c2

(applying Leibniz integral rule)

= lim
c→∞

x2√
2(

x2∕2 − 1∕c2
)

=
√

2.

Consequently,

cℑ(cx)
exp

(
c2x2∕2

) =
√

2
𝜋

1
x

[
1 +

N∑
n=1

(2n − 1)!!
c2nx2n +  (

c−2(N+1)) +  (
exp

(
− c2x2∕4

))]
,

which proves Statement (2.b) and, consequently, Statement (2.a.).
Statement (2.a) implies that ℑ(cx) is ( exp( c2x2∕2)

c
) when x ≠ 0. Thus, 1 + (ℑ(cx))2 is (1)+

( exp(c2x2)
c2 ) and, consequently,(exp(c2x2))when x ≠ 0. Notice that the 1 + (ℑ(cx))2 is trivially

(exp(c2x2)) when x = 0 as well, which completes the proof of Statement (2.c).
Statement (2.a) also implies that ℑ(cx) is Ω( exp( c2x2∕2)

c
), when x ≠ 0. Thus, 1 + (ℑ(cx))2

is Ω(1) + Ω( exp(c2x2)
c2 ) and, consequently, Ω( exp(c2x2)

c2 ), when x ≠ 0. Notice that 1 + (ℑ(cx))2 is
trivially Ω( exp(c2x2)

c2 ) when x = 0 as well, which completes the proof of Statement (2.d).

Lemma C.8 (Using Notation 1 and the alternate parameterization for CFUSN in Table 1).
The CFUSNK,M(𝜇,Ω,Λ) family is identifiable in Γ; that is, CFUSNK,M(𝜇,Ω,Λ) = CFUSNK,M
(𝜇,Ω,Λ) ⇒ Γ = Γ.
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Proof. The antecedent is equivalent to ∀t ∈ ℝK

CF(t) = CF(t) ⇒ exp
{
𝜄t′𝜇 − 1

2
t′Ωt

} ∏
𝛿∈Δ

(
1 + 𝜄ℑ(𝛿′t)

)
= exp

{
𝜄t′𝜇 − 1

2
t′Ωt

} ∏
𝛿∈Δ

(
1 + 𝜄ℑ(𝛿′t)

)
⇒ exp

{
−1

2
t′(Γ − Γ)t

}
= c|Δ(t)|

c|Δ(t)| exp{𝜄t′(𝜇 − 𝜇)}

×

∏
𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

)
∏

𝛿∈Δ(t)

(
c

exp
(

1
2

c2(𝛿′t)2
) + 𝜄 c

exp
(

1
2

c2(𝛿′t)2
)ℑ(c𝛿′t)

)
(where Δ(t) is defined in Notation 1).

From Lemma C.7, the fraction with product terms on the RHS would converge to a nonzero
complex number in the limit as t → ∞. Looking at the other terms on the RHS, one can
see that the RHS can never grow/shrink exponentially. In contrast, the LHS grows/shrinks
exponentially, unless t′(Γ−Γ)t = 0. Because this is true for all t ∈ ℝK , the only way the growth
rate of RHS and LHS can be consistent is when Γ = Γ.

APPENDIX D

INEFFICACY OF GAUSSIAN MIXTURES IN MODELING UNIMODAL
SKEWED DATA
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FIGURE D1 Modeling skewed density with Gaussian mixtures: 10000 points were generated from an
SN density ( green) with 𝜇 = 1, 𝜔 = 1, and 𝛿 = 0.9. Gaussian mixtures were fitted to the data (red) using the
mclust package in R. The number of Gaussian components was fixed to 1, 2, 3, and 4. An SN curve (blue) was
also fitted to the data for comparison. SN = univariate skew normal family [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE D2 Modeling skewed density with Gaussian mixtures: 10000 points were generated from a Gumbel
density ( green) with location and scale parameters both set to 1. Gaussian mixtures were fitted to the data (red)
using the mclust package in R. The number of Gaussian components was fixed to 1, 2, 3, and 4. An SN curve
(blue) was also fitted to the data for comparison. SN = univariate skew normal family [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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