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Abstract

Positive-unlabeled learning is often studied under the as-
sumption that the labeled positive sample is drawn randomly
from the true distribution of positives. In many application
domains, however, certain regions in the support of the posi-
tive class-conditional distribution are over-represented while
others are under-represented in the positive sample. Although
this introduces problems in all aspects of positive-unlabeled
learning, we begin to address this challenge by focusing on
the estimation of class priors, quantities central to the estima-
tion of posterior probabilities and the recovery of true classifi-
cation performance. We start by making a set of assumptions
to model the sampling bias. We then extend the identifiability
theory of class priors from the unbiased to the biased setting.
Finally, we derive an algorithm for estimating the class pri-
ors that relies on clustering to decompose the original prob-
lem into subproblems of unbiased positive-unlabeled learn-
ing. Our empirical investigation suggests feasibility of the
correction strategy and overall good performance.

Introduction

Learning from positive and unlabeled data refers to a bi-
nary classification problem in which all labeled examples
are positive and unlabeled examples contain a mix of pos-
itive and negative examples (Denis 1998; Denis, Gilleron,
and Letouzey 2005; du Plessis, Niu, and Sugiyama 2014;
Hsieh, Natarajan, and Dhillon 2015; Chang et al. 2016).
Over the past two decades, there has been growing inter-
est in this form of semi-supervised learning with a broad
range of applications in text mining, biology, and social net-
works, to name a few (Liu et al. 2003; Ward et al. 2009;
Tran 2013). Positive-unlabeled learning has also been stud-
ied and well-understood in numerous problems including
matrix completion (Hsieh, Natarajan, and Dhillon 2015),
hypothesis testing (Geurts 2011), approximation of poste-
rior distributions (Jain et al. 2016) and performance evalu-
ation (Menon et al. 2015; Jain, White, and Radivojac 2017;
Ramola, Jain, and Radivojac 2019).

A standard and major assumption in the positive-
unlabeled setting is that one is presented with unbiased i.i.d.
samples for both positives and unlabeled data. This assump-
tion, however, may not hold in practice and may have ma-
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jor consequences in all aspects of learning and predictor
deployment. For example, during the process of scientific
discovery, examples selected for labeling may reflect social
biases, the priorities of funding agencies, limitations of in-
strumentation, or individual preferences of researchers. In
molecular biology, one can more easily crystallize small
proteins than large proteins which biases the Protein Data
Bank resource to be more representative of smaller struc-
tured molecules, because highly flexible proteins are diffi-
cult to crystallize (Dunker et al. 2001). Similarly, one can
more easily collect protein-protein interaction (PPI) data for
proteins that are expressed in the yeast nucleus via yeast
two-hybrid experiments (Fields and Song 1989). This leads
to biases in interaction networks with respect to positives
that in this case reflect two over-represented groups of pro-
tein pairs: (1) those containing small structured proteins co-
crystallized with their partners and (2) those containing pro-
teins easily expressed in a yeast’s nucleus. As link predic-
tion is a perennial task in PPI networks, estimating the size
of the PPI network based on incomplete data as well as
estimating missing interactions will likely propagate initial
biases unless corrective measures are applied. In fact, the
strategies for mitigating the effects of sample selection bias
have long been studied in machine learning (Heckman 1979;
Zadrozny 2004; Huang et al. 2006; Cortes et al. 2008;
Hsieh, Niu, and Sugiyama 2019); however, very few au-
thors have considered a positive-unlabeled setting (Youngs,
Shasha, and Bonneau 2015).

The focus of this work is on nonparametric estimation of
class priors; i.e., the fractions of positive and negative ex-
amples in unlabeled data, given a sample of positives and a
sample of unlabeled examples. This problem has been con-
sidered in the past decade with well-developed identifiabil-
ity theory (Blanchard, Lee, and Scott 2010; Jain et al. 2016)
and several well-performing estimation algorithms (Elkan
and Noto 2008; Sanderson and Scott 2014; Jain et al. 2016;
Ramaswamy, Scott, and Tewari 2016; du Plessis, Niu, and
Sugiyama 2017; Bekker and Davis 2018). However, both
theory and algorithms considered only the case when both
positives and unlabeled data are i.i.d. samples from the un-
derlying data distributions. We intend to relax this assump-
tion and investigate the case where only a biased set of pos-
itive examples is available, whereas the unlabeled data re-
mains unbiased.
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Most semi-supervised learning techniques rely on unbi-
ased unlabeled data for bias correction strategies, typically
via sampling or re-weighting, but consider situations where
at least one of the samples from class-conditional distribu-
tions is unbiased (Zadrozny 2004; Huang et al. 2006; Cortes
et al. 2008; Hsieh, Niu, and Sugiyama 2019). In class-prior
estimation, several authors have considered the case of bi-
ased class proportions in the labeled data (Latinne, Saerens,
and Decaestecker 2001; Vucetic and Obradovic 2001) and
developed iterative correction methods. The expectation-
maximization (EM) approach by Latinne, Saerens, and De-
caestecker (2001) can also be reformulated as minimization
of Kullback-Leibler divergence between labeled and unla-
beled distributions resulting in optimization of a convex ob-
jective (du Plessis and Sugiyama 2012). This formulation
further allows distribution matching to be generalized to
other distance functions (du Plessis and Sugiyama 2012).
All of these techniques consider labeled data that contains
both positives and negatives.

In this work, we focus on a more restrictive case of
positive-unlabeled learning and begin to study class prior
estimation in the presence of a biased positive sample. We
introduce three important assumptions, called the “mixing
bias” assumption, “φ-irreducibility” assumption and “dis-
joint kernel support” assumption, that allow us to model the
bias, develop identifiability theory and propose theoretically
grounded bias-correction strategies for estimating class pri-
ors. We then conduct experiments and provide evidence that
our algorithms give considerable improvement in practice
over those that assume unbiased positives, even when the
assumptions are not fully satisfied.

The remainder of this work is structured as follows. The
Background section introduces notation and gives a brief
summary of the theory and algorithms for the unbiased case
of positives. The Theoretical Framework section gives rig-
orous identifiability results and the Estimation Algorithm
derives an estimation procedure for bias correction. Exper-
iments and Results summarize our empirical investigation,
summarizing the datasets, experimental protocols and re-
sults. Finally, the discussion and concluding remarks are
provided in Conclusions and Future Work.

Background

We consider a binary classification problem of mapping an
input space X to an output space Y = {0, 1} given a set
of positive examples and a set of unlabeled examples. Let
f, f1 and f0 capture the true distributions of the inputs, in-
puts from the positive class and the inputs from the negative
class, respectively. Let α be the proportion of positives in
the true distribution of inputs f . Using machine learning ter-
minology, the mixing proportion α is the class prior for the
positive class, f1 and f0 are the class-conditional distribu-
tions for the positive and negative classes, respectively, and
f is the distribution from which unlabeled data is sampled.
It follows that for any x ∈ X , f can be expressed as the
following two-component mixture

f(x) = αf1(x) + (1− α)f0(x). (1)

Generally, class prior (α) estimation is an ill-posed problem

due to unidentifiability, in the sense that there are multiple
values of α that lead to the same f for a given f1, obtained
by altering the value of f0. Furthermore, the set of all valid
α values is an interval of the form [0, α∗], where α∗ = af1f ;

af1f = sup{a ∈ [0, 1] : f = af1 + (1− a)h0, h0 ∈ PX }
(2)

and PX is the set of all densities (except for f1) defined on
X . The “irreducibility” assumption that f0 itself cannot be
expressed as a nontrivial mixture containing f1 as one of
the component makes the problem identifiable with α taking
its largest value (Blanchard, Lee, and Scott 2010; Jain et al.
2016). More formally,

af1f0 = 0⇒ α = α∗. (3)

Estimation Procedures

Over the past decade, several algorithms have been pro-
posed for class prior estimation in the case of a representa-
tive positive sample (Elkan and Noto 2008; Jain et al. 2016;
Ramaswamy, Scott, and Tewari 2016; du Plessis, Niu, and
Sugiyama 2017; Bekker and Davis 2018). We briefly de-
scribe the AlphaMax algorithm (Jain et al. 2016) that we
later use as a base algorithm in the experimental section. Al-
phaMax is a nonparametric class prior estimation algorithm
that first maximizes the log-likelihood of the positive unla-
beled data at multiple values ofα ∈ (0, 1) and then estimates
α∗ as an x-coordinate of the elbow of the maximum log-
likelihood versus α curve. Though, in principle, AlphaMax
approach can incorporate multidimensional data, it can be
computationally prohibitive and lead to suboptimal perfor-
mance when directly run on high-dimensional data. Fortu-
nately, there exist α∗-preserving univariate transforms that
can be used to reduce the data to a single dimension while
preserving α∗ in the transformed space (Jain et al. 2016).
Formally, for an α∗-preserving transform, τ : X → R, it
holds that

a
fτ,1
fτ

= af1f , (4)

where fτ and fτ,1 are density functions on R that are ob-
tained as counterparts of f and f1 after transforming the in-
puts using τ . In practice, AlphaMax is run on the univariate
data transformed by the score function of a so-called nontra-
ditional classifier—a classifier trained to discriminate posi-
tive examples against the unlabeled examples treated as neg-
atives (Elkan and Noto 2008). This nontraditional classifier
serves as an α∗-preserving transform.

Theoretical Framework

All approaches in positive-unlabeled learning assume that
an unbiased sample from f1 is accessible, however, in the
setting for this paper, the set of positively labeled examples
is biased. We illustrate this situation in Figure 1.

Assumptions for Identifiability

Let the positively labeled examples be an i.i.d. sample from
a biased density, f ′1. We formulate our problem under a
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Figure 1: Illustration of the positive-unlabeled problem with
bias. The upper panel shows positive (f1; blue) and negative
(f0; red) class-conditional distributions shown with dashed
lines because the samples from these distributions are not
available. The lower panel shows the unbiased mixture dis-
tribution (f = αf1 + (1 − α)f0, where α = 0.25; yellow)
and the biased class-conditional distribution of positives (f ′1;
blue). The distributions drawn with solid lines illustrate that
samples from these distributions are available. The objective
of this work is to recover α given a biased positive sample
and an unbiased unlabeled sample.

“mixing bias” assumption relating f ′1 and f1 via a K-
component mixture representations as follows.

f ′1(x) =
K∑
i=1

riφi(x), f1(x) =

K∑
i=1

γiφi(x), (5)

where φi(x) are density functions, ri, γi ∈ [0, 1],
∑K
i=1 ri =

1 and
∑K
i=1 γi = 1. The assumption enforces that f ′1 and

f1 are mixtures sharing the same components, but having
different mixing proportions.

For identifiability, we make a “φ-irreducibility” assump-
tion that f0 cannot be expressed as a nontrivial mixture con-
taining φi; i.e,

aφi

f0
= 0, for i = 1, 2, . . .K. (6)

For identifiability, we further make a “disjoint kernel sup-
port” assumption that φi’s have disjoint supports; i.e.,

Supp(φi) ∩ Supp(φj) = ∅, for i �= j. (7)

Identifiability

In this section we derive that the above assumptions make
the mixing proportion estimation a well-posed problem. Our
main result in this section is Theorem 1 which shows that if
f0 is irreducible with respect to φi for i = 1, 2, . . . ,K; i.e.,
aφi

f0
= 0, then α∗ can be uniquely identified.

To derive the results, we define a family of two-
component mixtures as follows.

F(P0,P1) = {αf1 + (1− α)f0}(α,f1,f0)∈(0,1)×P1×P0
,

(8)

where P1 and P0 are families of distributions on X from
where f1 and f0 can be picked, respectively.

Let Φ be a family of K unique distributions on X ; i.e.,
Φ = {φi}Ki=1. LetMΦ be a family of mixtures constructed
with components from Φ. In other words,MΦ is the convex
hull of Φ; i.e., for a = [ai]

K
i=1,

MΦ =

{
K∑
i=1

aiφi

}
a∈ΔK−1

,

where ΔK−1 is a unit K − 1 simplex. Thus, ai ∈ [0, 1] and∑K
i=1 ai = 1.
We restate the mixing bias assumption in terms ofMΦ as

follows
f ′1 ∈MΦ and P1 =MΦ.

For the purpose of identifiability theory, we assume that Φ
is known. The assumption relies on a presupposition that Φ
can be obtained from the decomposition of f ′1. Note that we
are not implying that there is a unique decomposition of f ′1
giving Φ, but that there is some decomposition which is ex-
pressive enough to reconstruct f1 (see Equation 5).

Next, we consider two choices for P0

1. Pall
Φ = PX \MΦ, the set of all possible distributions onX ,

except those in MΦ. Removing MΦ from PX , ensures
that a mixture in F(Pall

Φ ,MΦ

)
must have a component

outside Φ with nonzero proportion; i.e., F(Pall
Φ ,MΦ

) ∩
MΦ = ∅.

2. IΦ = Pall
Φ \ F

(Pall
Φ ,MΦ

)
. As shown in Lemma 1 (Ap-

pendix), f0 ∈ IΦ if and only if the φ-irreducibility as-
sumption in Equation 6 is satisfied.

F(Pall
Φ ,MΦ

)
is the largest conceivable set of non-

trivial mixtures under the mixing bias assumption. Since
IΦ ⊆ Pall

Φ , all mixtures in F(IΦ,MΦ) are also present in
F(Pall

Φ ,MΦ

)
; i.e., F(IΦ,MΦ) ⊆ F

(Pall
Φ ,MΦ

)
. However,

Theorem 1 shows that the two families contain exactly the
same distribution under the disjoint kernel support assump-
tion on Φ. In other words, we get the same set of mixtures
even after reducing the parameter space of f0 fromP0 to IΦ.
This is useful because, unlike F(Pall

Φ ,MΦ

)
, F(IΦ,MΦ) is

identifiable, as shown by the theorem.
Here the identifiability of F(Pall

Φ ,MΦ

)
and F(IΦ,MΦ)

is implicilty defined in terms of parameters (α, f1, f0) con-
tained in the parameter space (0, 1) × MΦ × Pall

Φ and
(0, 1)×MΦ × IΦ, respectively. A(f,Pall

Φ ,MΦ

)
is defined

as the set of all valid α values that allow f to be expressed as
a nontrivial two component mixture with components from
Pall
Φ and MΦ; i.e., A(f,Pall

Φ ,MΦ

)
=
{
α ∈ (0, 1) : f =

αf1 + (1− α)f0, f1 ∈MΦ, f0 ∈ Pall
Φ

}
Theorem 1. Given a Φ that satisfies the disjoint kernel sup-
port (Equation 7),

1. As sets, F(Pall
Φ ,MΦ

)
and F(IΦ,MΦ) are equal.1

1F(Pall
Φ ,MΦ

)
and F(IΦ,MΦ) are not equal as families as

they differ in terms of their underlying parameter space.
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2. Every f ∈ F(IΦ,MΦ) has a unique parametrization
(α∗, f∗1 , f

∗
0 ) ∈ (0, 1) × MΦ × IΦ, i.e., F(IΦ,MΦ) is

identifiable.
3. For an f ∈ F(Pall

Φ ,MΦ

)
having parametrization

(α∗, f∗1 , f
∗
0 ) ∈ (0, 1) × MΦ × IΦ, A(f,Pall

Φ ,MΦ

)
=

(0, α∗].
4. F(Pall

Φ ,MΦ

)
is unidentifiable.

Proof.

• Statement 1 By definition, f = αf1 + (1 − α)f0 for
some α ∈ (0, 1), f1 ∈ MΦ and f0 ∈ Pall

Φ . Using Lemma
3 (Appendix), f0 can be expressed as ah1 + (1 − a)f∗0 ,
where a ∈ [0, 1), h1 ∈ MΦ and f∗0 ∈ IΦ. Thus, for
α∗ = α+(1−α)a, f∗1 = αf1+(1−α)ah1

α∗ , f = α∗f∗1 +(1−
α∗)f∗0 and consequently (α∗, f∗1 , f

∗
0 ) ∈ (0, 1) ×MΦ ×

IΦ parameterizes f . Thus, F(Pall
Φ ,MΦ

) ⊆ F(IΦ,MΦ),
however, F(IΦ,MΦ) ⊆ F

(Pall
Φ ,MΦ

)
is trivially true.

Thus, F(Pall
Φ ,MΦ

)
= F(IΦ,MΦ)

• Statement 2 Suppose an f ∈ F(IΦ,MΦ) has two dis-
tinct parametrizations (α, f1, f0), (α∗, f∗1 , f

∗
0 ) in (0, 1)×

MΦ × IΦ. It follows that α∗f∗1 + (1 − α∗)f∗0 = αf1 +
(1−α)f0. Since f1, f∗1 ∈MΦ, for some γ,γ∗ ∈ ΔK−1,
f1 =

∑K
i=1 γiφi and f∗1 =

∑K
i=1 γ

∗
i φi. The equation can

be expressed as(
K∑
i=1

(α∗γ∗i − αγi)+φi
)

+ (1− α∗)f∗0

=

(
K∑
i=1

(αγi − α∗γ∗i )+φi

)
+ (1− α)f0,

where a+ = max(0, a). Denoting ηi = α∗γ∗i − αγi, if
for some i ∈ {1, . . . ,K}, ηi �= 0, then by restricting the
formula above on Supp(φi) and dividing by φi(x), we get

|ηi| = −sign(ηi)
(
(1− α∗)

f∗0 (x)
φi(x)

− (1− α)f0(x)
φi(x)

)
.

If ηi > 0, we pick a sequence in Supp(φi) along which
the limit of f0(x)

φi(x)
goes to 0—such a sequence exists due

to Lemma 1 and 2 (Appendix). The limit of the RHS
along this sequence can not be positive, where as the LHS
is a positive number, hence a contradiction. Similarly if
ηi < 0, we pick the sequence such that f∗

0 (x)
φi(x)

goes to
0 and arrive at the same contradiction. Thus, ηi = 0,
∀i ∈ {1, . . . ,K} and (1 − α∗)f∗0 = (1 − α)f0. Tak-
ing an integral over X on both sides implies α∗ = α and
consequently f∗0 = f0. α∗ = α and f∗0 = f0 together
imply f∗1 = f1. Thus, the two parameterizations of f are
not distinct, hence a contradiction.
• Statement 3: For α ∈ (0, α∗],

f = α∗f∗1 (x) + (1− α∗)f∗0 (x)

= αf∗1 (x) + (1− α)
(
α∗ − α
1− α f∗1 (x) +

1− α∗

1− α f∗0 (x)
)

Since α∗ < 1,
(
α∗−α
1−α f

∗
1 (x) +

1−α∗
1−α f

∗
0 (x)

)
/∈ MΦ

(from Lemma 4 in the Appendix) and consequently, it is
an element of Pall

Φ . Thus, (0, α∗] ⊆ A(f,Pall
Φ ,MΦ

)
. Sup-

pose for some α ∈ (α∗, 1], f1 ∈ MΦ and f0 ∈ Pall
Φ , f =

αf1+(1−α)f0. It follows that αf1(x)+(1−α)f0(x) =
α∗f∗1 (x)+(1−α∗)f∗0 (x). Rearranging terms, adding and
subtracting α∗f1(x), and using the representation of f1
and f∗1 as elements ofMΦ,

(α− α∗)f1(x) + α∗
(

K∑
i=1

(γi − γ∗i )φi(x)
)

= (1− α∗)f∗0 (x)− (1− α)f0(x),
where γ,γ∗ ∈ ΔK−1. Note that there exists j ∈
{1, . . . ,K} such that γj ≥ γ∗j because otherwise∑K
i=1 γi < 1. Restricting the above equation to the sup-

port of φj ,

(positive constant)×φj(x) = (1−α∗)f∗
0 (x)− (1−α)f0(x).

Dividing both sides by φj(x) and taking limit over a se-
quence for which f∗

0 (x)
φj(x)

goes to 0 (such a sequence exists
by Lemma 1 and 2 in the Appendix), the RHS is a positive
number whereas the LHS is not positive. Hence a contra-
diction. Thus, an α > α∗ cannot be in A(f,Pall

Φ ,MΦ

)
and A(f,Pall

Φ ,MΦ

)
= (0, α∗].

• Statement 4: The statement follows from Statement 3.

Estimation Algorithm

Our approach to estimating the class prior with biased
positive-unlabeled data is to decompose the problem into
many unbiased positive-unlabeled subproblems by first par-
titioning the original dataset, then applying AlphaMax to all
data subsets in the partition and, lastly, combining the esti-
mates from the subproblem to obtain the final estimates. A
pseudo code of the method is given in Algorithm 1.

To motivate the above approach, we derive Theorem 2
which shows that α∗ can be expressed in terms of λ∗i ’s, the
class priors corresponding to the subproblems. The aim of
partitioning the dataset is to obtain a partition of the support
of f , B = {Bi}Ki=1, that satisfies Supp(φi) ⊆ Bi. Note that
the disjoint kernel support assumption on Φ is necessary for
the existence of such a partition. Under the disjoint kernel
support assumption and the mixing bias assumption, the re-
striction of both f1 and f ′1 on Bi after normalization as a
density is φi; i.e.,

φi =
f1(x)1Bi

(x)∫
Bi
f1(x)dx

=
f ′1(x)1Bi

(x)∫
Bi
f ′1(x)dx

.

Thus, the labeled examples in the ith data subset of the parti-
tion is distributed as per φi. Denoting the restriction of f on
the Bi after normalization as ψi, the unlabeled data in the
ith data subset is distributed as per ψi. Now, by represent-
ing ψi as a two component mixture containing φi, as one of
the components, one can identify λ∗i = aφi

ψi
, the maximum
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value of the proportion ascribed to φi in all such representa-
tions. Alternatively, it is the class prior when the input space
is restricted to Bi. However, unlike the unrestricted input
space, the distribution of labeled positives restricted to Bi,
φi, is unbiased because the mixing bias assumption only af-
fects the proportion of φi in f ′1. One can therefore estimate
λ∗i using existing algorithms such as AlphaMax, Elkan-Noto
or KM for class prior estimation in the standard positive-
unlabeled setting (Jain et al. 2016; Elkan and Noto 2008;
Ramaswamy, Scott, and Tewari 2016).

The estimate of λ∗i can be combined with an estimate of
pi given by the proportion of unlabeled examples lying in
the ith subset of the partition,

∑
x∈M

1Bi
(x)

|M| , to obtain an es-
timate of α∗ (Equation 9). λ∗i is also important for inferring
the unbiased positive and negative distributions. f1 can be
expressed as a convex combination of φi’s with γi =

λ∗
i pi
α∗ as

the weights (Equation 11); φi can be estimated as the density
of the positively labeled data in the ith data subset. f0 can be
expressed as a convex combination of ξi =

ψi−λ∗
i φi

1−λ∗
i

’s with
(1−λ∗

i )pi
1−α∗ as weights (Equation 11), where ψi is the restric-

tion of f on Bi after normalization and can be estimated
as the density of the unlabeled data in the ith data subset.
Though unbiased estimation of f∗1 and f∗0 is possible, we
only focus on estimation of α∗ in this paper.
Theorem 2. Let f ∈ F(IΦ,MΦ) and f ′1 ∈ MΦ. Let
(α∗, f∗1 , f

∗
0 ) be the unique parametrization of f in (0, 1) ×

MΦ × IΦ —as per Statement 2 in Theorem 1. Consider
a size K partition of Supp(f), B = {Bi}Ki=1, such that
Supp(φi) ⊆ Bi. Let ψi be the density function of the re-
striction of f on Bi; i.e., ψi(x) =

f(x)1Bi
(x)

pi
, where 1B is

the indicator function of set B and pi =
∫
Bi
f(x)dx. Let

λ∗i = aφi

ψi
and ξi =

ψi−λ∗
i φi

1−λ∗
i

. It follows that

α∗ =

K∑
i=1

λ∗i pi (9)

f∗1 =
1

α∗

K∑
i=1

λ∗i piφi. (10)

f∗0 =
1

1− α∗

K∑
i=1

(1− λ∗i )piξi. (11)

Proof. ∀x ∈ Bi, piψi(x) = f(x). It follows that

pi(λ
∗
iφi(x) + (1− λ∗i )ξi(x)) = α∗f∗1 (x) + (1− α∗)f∗0 (x)

Since f∗1 ∈ MΦ, f∗1 =
∑K
i=1 γiφi, for some γ ∈ ΔK−1.

Due to the disjoint kernel support assumption on Φ and
Supp(φi) ⊆ Bi, f∗1 (x) = γiφi(x) when x ∈ Bi. Thus,
after rearranging terms and dividing by φi(x), the equation
above can be expressed as

piλ
∗
i − α∗γi = (1− α∗)

f∗0 (x)
φi(x)

− pi(1− λ∗i )
ξi(x)

φi(x)
.

Taking the limit on both sides along a sequence in Supp(φi)
such that f∗

0 (x)
φi(x)

goes to 0 (such a sequence exists due to

Algorithm 1 Algorithm for class prior estimation with bi-
ased positives and unlabeled examples.

// maxK specifies the maximum number of clusters.
Require: M, C, maxK
Ensure: α∗

// Partition the biased positive set by k-means clustering.
// The number of clusters is picked to be the one giving
// a clustering with the maximum Silhouette coefficient,
// up to a maximum of maxK. cPart[i] stores the
// positives in the ith cluster.
cPart← kMeansSilhouette(C,maxK)
// Obtain cluster centers. centers[i] contains the
// center of the ith cluster.
centers← mean(cPart)
// Assign the unlabeled examples to their closest cluster,
// using distance to the cluster centroid to measure
// closeness. mPart[i] stores the unlabeled examples
// in the ith cluster.
mPart← clusterAssignment(M,centers)
for i = 1, . . . ,length(cPart) do

// Estimate the class prior on the ith cluster data.
λ[i]← AlphaMax(mPart[i],cPart[i])
// Compute the proportion of unlabeled examples in
// the ith cluster.
p[i]← size(mPart[i])

size(M)

end for
// Estimate α∗ using Equation 9.
α∗ ← dotProduct(λ,p)

Lemma 1 and 2 in the Appendix), piλ∗i − α∗γi ≤ 0. Simi-
larly, taking the limit along a sequence in Supp(φi) such that
ξi(x)
φi(x)

goes to 0 (such a sequence exists due to Lemma 2 in
the Appendix), piλ∗i − α∗γi ≥ 0. Thus

piλ
∗
i = α∗γi (12)

It follows that
∑K
i=1 piλ

∗
i = α∗∑K

i=1 γi and consequently,
α∗ =

∑K
i=1 piλ

∗
i because γ ∈ ΔK−1. From Equation

12, γi =
piλ

∗
i

α∗ . Thus Equation 10 is true. Now, using
f =

∑K
i=1 piψi and the expression for f∗1 in f∗0 =

f−α∗f∗
1

1−α∗ ,
Equation 11 can be derived.

Partitioning the Data

We start the partitioning by using k-means algorithm to clus-
ter the positively labeled set, C, with the number of clusters
chosen to maximize the Silhouette coefficient (de Amorim
and Hennig 2015). The unlabeled sample, M, is subse-
quently partitioned by assigning examples to clusters based
on their distance to already computed cluster centroids. In
an ideal scenario, the clustering will lead to a partition of
the dataset that is consistent with the partition induced by
the support of densities in Φ; i.e., for all i ∈ {1, . . . ,K}, all
points in the dataset that lie in the support of φi should be in
the same data subset of the partition.

In general, however, the partitioning approach is not guar-
anteed to produce an ideal partition. Fortunately, even if the
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partition is not ideal, α∗ can be estimated reasonably well,
as shown in the next section. The efficacy of the estimation
depends on the difference between f1 and its best approxi-
mation obtained by taking a convex combination of the den-
sities corresponding to the labeled examples in the data sub-
sets generated from the partitioning.

Experiments and Results

Datasets

Our experiments were carried out on twelve real-life datasets
from the UCI Machine Learning Repository (Lichman
2013). When necessary, the original data was converted to
binary classification problems on real-valued inputs as fol-
lows. Categorical features were encoded by one-hot encod-
ing. Regression problems were converted into classification
problems based on the mean of the target variable; i.e., ex-
amples with target values higher than the mean were labeled
as positive and the remaining examples were labeled as neg-
ative. Multi-class classification problems were converted to
binary by combining original classes.

To generate biased positive examples and unlabeled data,
the positive examples were clustered using k-means, where
the number of clusters, K, was determined based on the
Silhouette coefficient. For high-dimensional data (dimen-
sion greater than 50), we reduced the dimension to 50 by
taking Gaussian Random Projections (Dasgupta 2000) be-
fore applying k-means clustering. Next, for the ith cluster,
a random number ζi was picked from Uniform(0, 1). Then,
ζi×cluster size� number of positives picked randomly from
the cluster were added to the biased positives set, C. Once
sampling was completed for all clusters, C contained the
final set of biased positives. The remaining positives were
kept in a pool from which the positives for the unlabeled data
were drawn randomly. The distribution of the positives in
the pool can interpreted as the unbiased distribution of posi-
tives. Next, a random number was picked as the class prior,
α from Uniform(0, 1). The size of the unlabeled sample was
picked as |M| = min(10000, �#pool/α�, �#neg/(1−α)�), where
#neg and #pool were the number of negative examples in the
dataset and the pool size, respectively. This allowed us to
pick the largest size of the unlabeled sample while ensuring
that enough positives and negatives were available to attain
α as the class prior. Then, �α|M|� positives and �(1−α)|M|�
negatives were picked randomly from the pool and the neg-
ative sample, respectively, and added to the unlabeled set,
M. Repeating this process, we generated 50 biased positive-
unlabeled datasets per original dataset.

We also generated unbiased positive-unlabeled datasets
from each of the twelve real-life datasets to assess the ef-
fect of bias correction when, in reality, the positive sample
was unbiased. To this end, we first picked a random num-
ber, ζ, from Uniform(0, 1) that determined the size of the
unbiased positive set. ζ ×#pos� examples were randomly
picked from the set of available positives into the unbiased
positive set, where #pos was the total number of positives.
The remaining positives were kept in a pool. Once the pool
was constructed, the value of α, the size of the unlabeled set,
and the examples sampled in the unlabeled set were obtained

in the same manner as for the biased case. Fifty unbiased
positive-unlabeled datasets were generated from each of the
original datasets.

Algorithms

We ran two versions of our algorithm on the biased positive-
unlabeled datasets, namely, Corrected and Corrected*, as
well as standard class prior estimation for unbiased data that
we refer to as Uncorrected. Corrected is an exact implemen-
tation of Algorithm 1 with maxK intialized to 5. Corrected*
implements Algorithm 1 without clustering the data. In-
stead, the clustering of the positives used to generate the data
along with cluster assignments for the unlabeled examples
is given to it as input. This allowed us to separately study
the effects of suboptimal clustering. Note that for both Cor-
rected and Corrected*, we called AlphaMax on each cluster
separately to estimate λ∗i , which means that a different trans-
form was obtained by training a nontraditional classifier on
each cluster. We also ran AlphaMax directly on the entire
dataset, as a baseline (Uncorrected), to understand the effect
of bias on class prior estimation if no correction was applied.
Finally, we also ran Corrected, Corrected* and Uncorrected
with the Elkan-Noto algorithm (Elkan and Noto 2008) as
another base algorithm, instead of AlphaMax.

Results

The experimental results are summarized in Figure 2 and
Figure 3. For most biased datasets, both the Corrected* and
Corrected algorithms based on AlphaMax show smaller esti-
mation error compared to the Uncorrected algorithm (Figure
2). However, when the algorithms are based on Elkan-Noto,
Corrected* and Corrected do not always lead to better es-
timates. This can be explained since Elkan-Noto makes the
assumption of complete separation between the positive and
negative class-conditional distributions, which is rarely the
case in real-life datasets.

The algorithms were also ranked for each dataset based
on their absolute error. The algorithm with the smallest er-
ror was ranked number 1, whereas the one with the largest
error was ranked number 3. The average rank of an algo-
rithm was computed for each original dataset by taking the
mean of its ranks from all 50 biased datasets generated from
the original dataset. The left panel of Figure 3 shows each
algorithm’s boxplot, constructed with twelve average ranks,
one per original dataset, for the AlphaMax base algorithm.
Based on the average ranks, the three AlphaMax-based al-
gorithms can be ranked in decreasing order of overall per-
formance as (1) Corrected*, (2) Corrected, and (3) Uncor-
rected. Their average mean absolute errors (MAEs) across
the twelve datasets were 0.0900, 0.1579, and 0.2277, respec-
tively. The superiority of Corrected* over Corrected is ex-
pected because it used the same clustering that was used to
generate the data. However, Corrected is the more practical
algorithm among the two because the clustering that gener-
ates the biased data is rarely known.

The mean absolute error (MAE) and ranking were
also computed for AlphaMax-based Corrected and
Uncorrected procedures on the bias-free datasets.
The right panel of Figure 3 shows the boxplots of average
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Figure 2: Boxplots of absolute error in class prior estimation for three algorithms (C* = Corrected*, C = Corrected, and U =
Uncorrected) on twelve datasets. Each procedure was ran with AlphaMax and Elkan-Noto as the base estimator. Fifty biased
positive-unlabeled datasets were generated from each of the twelve original datasets for evaluating the three algorithms.

Figure 3: (Left) Boxplots of average rank for AlphaMax-
based Corrected*, Corrected, and Uncorrected algorithms
on datasets with bias. (Right) Boxplots of average rank for
AlphaMax-based Corrected and Uncorrected algorithms on
datasets without bias. Both panels also show the average
MAE for each algorithm over all datasets.

ranks for Corrected and Uncorrected algorithms on datasets
without bias. The algorithm with the smaller error ranked
number 1, whereas the one with the larger error ranked num-
ber 2. The twelve average ranks per boxplot were computed
in the same way as above. Although on the unbiased datasets
the average rankings of the Corrected algorithm was lower
than the Uncorrected algorithm (Figure 3, right), the com-
parison based on mean absolute error (MAE) shows that the
Corrected algorithm is only slightly inferior. The average
MAEs across the twelve datasets for the Corrected and Un-
corrected algorithms were 0.1176 and 0.0871, respectively.

Conclusions and Future Work

As demonstrated by our experiments, the existence of bias
in the labeled data can adversely affect the estimation of
class prior, the central quantity for many tasks in positive-
unlabeled learning. The effect of bias on class prior estima-

tion can be corrected under the mixing bias, disjoint kernel
support and φ-irreducibility assumptions both in theory and
in practice as shown by Theorems 1 and 2 and our experi-
mental results. The efficacy of the correction depends on the
data satisfying the above assumptions and also on the ability
of the algorithm to find a good partitioning. Though the cur-
rent partitioning strategy always satisfies the disjoint kernel
support assumption, it is not explicitly designed to satisfy
the mixing bias and φ-irreducibility assumptions. This can
be an interesting future research direction. Our experimental
results also show that in the absence of bias the estimates
from the corrected algorithm and the uncorrected algorithm
are comparable. Theorem 2 also shows the possibility of in-
ferring the unbiased distribution of positives and negatives.
Developing practical algorithms to do so would be critical
to other tasks in positive-unlabeled learning such as perfor-
mance estimation and estimation of posterior probabilities.

Appendix

Lemma 1. f0 ∈ IΦ if and only if ∀φi ∈ Φ, aφi

f0
= 0.

Proof. (⇒) From Lemma 4 in (Jain et al. 2016), the set of
valid mixing proportions in the expression of f0 as a mix-
ture containing φi, denoted by A(f0, φi,Pall), is closed
from above. Thus, aφi

f0
is a valid mixing proportion. If

aφi

f0
> 0, there exists h0 ∈ PX \ {φi} such that f0 =

aφi

f0
φi +

(
1− aφi

f0

)
h0. However, this implies that f0 ∈

F(Pall
Φ ,MΦ), which contradicts f0 ∈ IΦ. Thus, aφi

f0
= 0.

(⇐) Suppose the consequent is true. If f0 ∈
F(Pall

Φ ,MΦ

)
, then for some a ∈ (0, 1), w ∈ ΔK−1 (the

4261



unitK−1 simplex), h1 =
∑K
i=1 wiφi ∈MΦ and h0 ∈ Pall

Φ ,
f0 = ah1 + (1 − a)h0. Let φi be such that wi > 0. Thus,

f0 = awiφi + (1− awi) (a
∑

j �=i wjφj+(1−a)h0)
1−awi

; i.e., f0 can
be expressed as a nontrivial two-component mixture con-
taining φi with nonzero weight. Thus, aφi

f0
> 0, which con-

tradicts the consequent. Thus, f0 /∈ F(Pall
Φ ,MΦ

)
and con-

sequently f0 ∈ IΦ.

Lemma 2. For any two density functions f and f1 on X ,
af1f = α if and only if there exists a sequence {xj}∞j=1 in

Supp(f1) such that limj→∞
f(xj)
f1(xj)

= α.

Proof. From Lemma 4 in (Jain et al. 2016), α =

inf
{
f(x)
f1(x)

: f1(x) > 0
}

and α = af1f are equivalent state-
ments.

Lemma 3. Any f0 ∈ Pall
Φ can be expressed as ah1 + (1 −

a)f∗0 , where a ∈ [0, 1), h1 ∈MΦ and f∗0 ∈ IΦ.

Proof. From Lemma 4 in (Jain et al. 2016), it follows that
there exists density ψ1 such that aφ1

ψ1
= 0 and f0 = aφ1

f0
φ1 +(

1− aφ1

f0

)
ψ1. Similarly there exists density ψ2 such that

aφ2

ψ2
= 0 and ψ1 = aφ2

ψ1
φ2 +

(
1− aφ2

ψ1

)
ψ2. Furthermore,

from Lemma 2, since aφ1

ψ1
= 0, there exists a sequence

{xj}∞j=1 in Supp(φ1) such that limj→∞
ψ1(xj)
φ1(xj)

= 0. Thus,

limj→∞
ψ2(xj)
φ1(xj)

= 0 and consequently, applying Lemma 2,

aφ1

ψ2
= 0. Continuing with the same argument on ψk−1 (for

k = 3, 4, . . . ,K), a two-component mixture decomposition
of ψk−1 with φk as one of the components leads to ψk as the
second component such that aφi

ψk
= 0 for i = 1, 2, . . . , k.

In particular, aφi

ψK
= 0 for i = 1, 2, . . . ,K. Note that from

Lemma 1, ψK ∈ IΦ. Now recursively substituting mixture
representations of ψk in f0 = aφ1

f0
φ1 +

(
1− aφ1

f0

)
ψ1, for

k = 1, 2, . . . ,K leads to a mixture representation of f0
as
∑K
i=1 aiφi +

(
1−∑K

i=1 ai

)
ψK , where ai ∈ [0, 1] and∑K

i=1 ai ∈ [0, 1]. However, if
∑K
i=1 ai = 1, then f0 ∈ MΦ

which leads to a contradiction. Thus,
∑K
i=1 ai < 1. Thus,

we can express f0 as ah1 + (1− a)f∗0 , where a =
∑K
i=1 ai,

h1 =
∑K

i=1 aiφi∑K
i=1 ai

and f∗0 = ψK .

Lemma 4. For h1 ∈ MΦ, f0 ∈ IΦ and a ∈ [0, 1), ah1 +
(1− a)f∗0 cannot be inMΦ.

Proof. If ah1 + (1 − a)f∗0 ∈ MΦ, then there exists∑K
i=1 γ̄iφi with γ̄ ∈ ΔK−1 such that ah1 + (1 − a)f∗0 =∑K
i=1 γ̄iφi. Since h1 is in MΦ, it can be expressed as

∑K
i=1 γiφi, for some γ ∈ ΔK−1. Thus,

a

K∑
i=1

γiφi + (1− a)f∗0 =

K∑
i=1

γ̄iφi

⇒
K∑
i=1

(aγi − γ̄i)φi = −(1− a)f∗0

If aγi = γ̄i for all i = 1, 2, . . . ,K, then a = 1. However,
a < 1. Thus, there exists an j ∈ {1, 2, . . . ,K} such that
aγj �= γ̄j . Restricting the above equation to the support of
φj leads to

(aγj − γ̄j) = −(1− a)f
∗
0 (x)

φj(x)
for all x in Supp(φj),

under the disjoint kernel support assumption. Since f0 ∈
IΦ, aφj

f∗
0

= 0 follows from Lemma 1. Thus, there exists a
sequence {xk}∞k=1 in Supp(φj) such that limit of the right
hand side along the sequence is 0. However, the left hand
side is a nonzero constant in the limit. Hence a contradiction.
Thus, ah1 + (1− a)f∗0 /∈MΦ
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