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Perspective

Deciphering the impact of genomic variation 
on function

IGVF Consortium*✉

Our genomes influence nearly every aspect of human biology—from molecular  
and cellular functions to phenotypes in health and disease. Studying the differences 
in DNA sequence between individuals (genomic variation) could reveal previously 
unknown mechanisms of human biology, uncover the basis of genetic predispositions 
to diseases, and guide the development of new diagnostic tools and therapeutic 
agents. Yet, understanding how genomic variation alters genome function to 
influence phenotype has proved challenging. To unlock these insights, we need a 
systematic and comprehensive catalogue of genome function and the molecular  
and cellular effects of genomic variants. Towards this goal, the Impact of Genomic 
Variation on Function (IGVF) Consortium will combine approaches in single-cell 
mapping, genomic perturbations and predictive modelling to investigate the 
relationships among genomic variation, genome function and phenotypes. IGVF  
will create maps across hundreds of cell types and states describing how coding 
variants alter protein activity, how noncoding variants change the regulation of  
gene expression, and how such effects connect through gene-regulatory and 
protein-interaction networks. These experimental data, computational predictions 
and accompanying standards and pipelines will be integrated into an open resource 
that will catalyse community efforts to explore how our genomes influence biology 
and disease across populations.

Since the initial sequencing of the human genome, genetic studies have 
been immensely productive1–3. Exome and genome sequencing stud-
ies have identified hundreds of millions of genomic variants, includ-
ing single-nucleotide variants (SNVs), small insertions and deletions 
(indels) and larger structural variants4,5 (Fig. 1). Comparisons within 
families, case–control cohorts and population-scale biobanks have 
revealed hundreds of thousands of associations between such variants 
and phenotypes in both health and disease6–12.

Our next challenge is to understand how genomic variation affects 
molecular and cellular processes to influence organismal pheno-
type (Fig. 1). At a molecular level, genomic variation can affect the 
temporal-spatial and quantitative expression of genes or the acti
vity and localization of proteins. Altered gene expression or protein 
activity can, in turn, affect other genes and proteins, for example via 
gene-regulatory and protein–protein interaction networks. Changes 
in such molecular networks affect the properties of cells and tissues, 
and in doing so can influence organismal phenotypes. Here we use 
‘genome function’ to refer to these processes encoded by the genome, 
and note that this does not necessarily imply ‘function’ in terms of 
evolutionary selection13,14.

Previous and ongoing efforts have produced breakthroughs in 
mapping various aspects of genome function, including locating 
and annotating millions of noncoding regulatory elements in the 
human genome15,16; mapping associations between genomic variants 
and effects on gene or protein expression across dozens of human  
tissues17–19; profiling hundreds of cell types and states through 

single-cell measurements of gene expression20,21; applying saturation 
mutagenesis to analyse coding variants in selected disease genes22–24; 
and characterizing how genes and proteins interact genetically or physi-
cally in molecular networks25–27. These efforts, as well as disease-specific 
consortia and other studies, have also demonstrated how mapping the 
effects of genomic variation on genome function can reveal molecular 
mechanisms in human biology and disease, guide genetic diagnosis and 
clinical management, and facilitate the development of novel therapies 
(Fig. 1 and Box 1; reviewed in refs. 1,28,29).

Yet, connecting genomic variants to functions and phenotypes con-
tinues to prove challenging and slow. The molecular mechanisms that 
underlie most genetic associations for common diseases remain to 
be established2,29, genetic diagnosis for rare diseases continues to be 
hindered by the preponderance of variants of uncertain significance7,30 
(VUSs), and the effects of genomic variation across diverse groups and 
populations remains poorly studied31,32. New approaches are needed 
to accelerate research throughout the community and thereby unlock 
the vast unrealized potential for understanding human biology and 
improving human health33,34.

Advances in experimental and computational genomics now promise 
to overcome some of the key challenges:
(1)	�Regulatory elements and genes can have cell-type or context- 

dependent activities, which have been challenging to analyse com-
prehensively. Emerging single-cell technologies now enable the 
generation of comprehensive maps of chromatin state and gene 
expression in nearly any cell type in the body20,21, and computational 
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analysis of these datasets can help to locate candidate regulatory 
elements, identify transcription factor binding regions and foot-
prints, and delineate gene-regulatory networks35–38.

(2)	�Previously it has been difficult to uncover the causal relationships 
between genomic variation and genome function, including owing 
to challenges of linkage disequilibrium between common variants. 
New approaches in statistical fine-mapping now enable improved 
interpretation of genome-wide association studies (GWAS) and 
quantitative trait loci (QTL) studies39–42, and high-throughput tech-
nologies for designed genomic perturbations, such as with CRISPR 
screens43–50 and massively parallel reporter assays51–57 (MPRAs), 
provide a powerful means to systematically characterize the effects 
of variants, elements and genes.

(3)	�The scale of the problem is immense. With billions of possible 
single-nucleotide genomic variants, 20,000 genes, and thousands 
of cell types, we cannot expect to experimentally map the effects 
of all possible variants on all aspects of genome function in all pos-
sible contexts. To address this, recent studies have highlighted the 
possibility of training computational models that can generalize to 
make predictions about genome function for untested variants, cell 
types and/or contexts58–64.

(4)	�Previous efforts have largely focused on particular types of genome 
variation or individual diseases. Integrative analysis of coding and 
noncoding variation in molecular networks and comparisons across 

diverse cellular contexts and diseases could greatly accelerate  
progress28,65–67.

(5)	�Finally, recent successes by CASP68 (critical assessment of protein 
structure prediction), ENCODE15 (Encyclopedia of DNA Elements) 
and others17,21,69 have highlighted how uniting a diverse community 
of investigators under a common framework can catalyse advances 
throughout the global scientific community by developing uniform 
standards and analysis pipelines, creating uniformly processed, 
artificial intelligence-readable datasets that are amenable to pre-
dictive modelling, and enabling the comparison and synthesis of 
alternative strategies.

With these challenges and opportunities in mind, the National 
Human Genome Research Institute (NHGRI) launched the IGVF Con-
sortium in 2021, with the goal of developing a systematic understand-
ing of the effects of genomic variation on genome function and how 
these effects shape phenotypes. The Consortium consists of more than 
120 laboratories that are collaborating on five key activities to address 
the above challenges: (1) Mapping Centres: to analyse regulatory ele-
ment and gene activity at single-cell resolution across hundreds of 
cell types; (2) Functional Characterization Centres: to systematically 
characterize the molecular and cellular effects of introducing variants 
or perturbing elements and genes; (3) Predictive Modelling Projects: 
to develop and apply computational approaches to comprehensively 
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Fig. 1 | Genomic variation influences genome function and phenotype. 
Genomic variation includes SNVs, indels and structural variants, which can 
alter protein-coding sequences or noncoding sequences. Genome function 
encompasses the cell-type-specific activities and interactions among regulatory 

elements, genes and proteins within molecular networks that underlie cellular 
phenotypes. Organismal phenotypes include quantitative and binary traits in 
health and disease.
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model the impact of genomic variation on genome function and guide 
experimental design; (4) Regulatory Network Projects: to advance 
network-level understanding of the influence of genetic variation 
and genome function on cellular and organismal phenotypes; and 
(5) a Data and Administrative Coordinating Centre: to lead develop-
ment of resources and infrastructure to share IGVF data, standards 
and pipelines with the scientific community. IGVF membership and 
activities are expanding further via affiliate membership, a process 
by which any researcher or research project can apply to join IGVF 
to drive its vision and execution. Through these activities, the IGVF 
Consortium aims to generate a catalogue that can be broadly deployed 
for exploring genome function and the effect of genetic variation on 
human biology and diseases in diverse populations. Below we describe 
the goals, strategies and anticipated deliverables of the IGVF (Box 2).

Map–perturb–predict framework
To create a comprehensive catalogue of the effects of genomic vari-
ation, IGVF has developed a strategy that integrates three comple-
mentary components (Fig. 2). One component will be to quantify 
the activity of regulatory elements and the expression of genes via 
single-cell mapping. Another will conduct systematic perturbations 
of variants, regulatory elements and genes. A third will seek to general-
ize results to new, unstudied genomic variants and cellular contexts 
via predictive modelling. Integration of these three components in 

a map–perturb–predict framework will create substantial synergy 
across the consortium.

Single-cell mapping
Identifying noncoding regulatory elements and genes and mapping 
their activities across cell types and states is foundational for under-
standing where, when and how genomic variation might affect genome 
function. Yet, many previous efforts have lacked this level of resolu-
tion. We will collect single-cell data across hundreds of cell types and 
states (see below for biological systems and contexts). We will apply 
primarily single-nucleus assay for transposase-accessible chromatin 
with sequencing (snATAC-seq) and single-nucleus RNA sequencing 
(snRNA-seq), including in multiomic formats, to enable integration of 
IGVF data with other emerging datasets (Fig. 2). Individual projects will 
explore additional single-cell approaches including transcription factor 
binding, histone modifications, chromatin interactions, protein levels 
and activity, and clonal tracing. Key assays (including 10x Multiome, 

Box 1

Mapping the effect of genomic 
variation on genome function 
can reveal biological mechanisms 
and advance precision health
Selected examples are discussed below (see also refs. 1,28,29).

Learning basic and disease biology:
• �Expression QTL (eQTL) and gene-knockdown studies of a GWAS 

locus for coronary artery disease identified sortilin (SORT1) as a 
regulator of low-density lipoprotein (LDL) cholesterol levels and 
elucidated its molecular function in LDL uptake158,159.

• �Epigenomic maps and variant-to-function studies revealed a role 
for the transcription factor genes IRX3 and IRX5 in regulating 
adipocyte browning to influence obesity160,161.

• �Characterization of risk variants for inflammatory bowel disease 
has identified multiple genes involved in autophagy, including 
ATG16L1 and LRRK2, revealing new roles for these genes in 
myeloid and intestinal epithelial cells162,163.

Guiding genetic diagnosis:
• �Saturation genome editing of BRCA1 led to improved diagnosis of 

inherited risk for breast and ovarian cancer23.
• �Functional variant annotations improve the applicability of 

polygenic risk scores across populations117.

Guiding therapeutic development:
• �Designed mutagenesis of SMN2 identified an intronic 

splice-enhancing sequence that guided development of 
antisense oligonucleotides to treat spinal muscular atrophy164,165.

• �Dissection of a GWAS locus led to identification of BCL11A as 
a repressor of fetal haemoglobin and development of CRISPR 
editors for sickle-cell disease50,166,167.

Box 2

IGVF goals and approaches
•	 Characterize the effects of genomic variants, regulatory 

elements and genes on molecular and cellular phenotypes—by 
analysing naturally occurring or designed genomic perturbations 
across dozens of cellular models.

•	 Identify where and when regulatory elements and genes are 
active, with resolution for individual cell types and states—by 
applying single-cell mapping technologies across hundreds 
of biological samples including cellular models, tissues and 
environmental contexts.

•	 Predict the consequences of genomic variation on genome 
function and phenotype for previously unstudied variants and/
or cellular contexts—by developing predictive computational 
models that can generalize across contexts and establishing 
benchmarking pipelines to evaluate and calibrate their accuracy.

•	 Study diverse cellular and disease systems, types of genomic 
variation and aspects of genome function—by developing and 
applying a ‘map–perturb–predict’ framework in which single-cell 
mapping, genomic perturbations and predictive modelling are 
synergistically combined.

•	 Create an initial map that annotates the predicted effects of 
every possible SNV in the human genome on key aspects of 
genome function—by integrating models for how coding variants 
might alter protein function, how noncoding variants might 
affect gene expression and how noncoding and coding variants 
might connect within molecular networks.

•	 Advance our understanding of the effects of genomic variation 
on disease—by exploring how best to apply IGVF resources to 
inform genetic diagnosis and to identify biological mechanisms 
of disease risk.

•	 Ensure that these advances are applicable to and inclusive 
of people of diverse sexes, ancestries and populations—by 
studying individuals with different genetic backgrounds, 
assaying and predicting effects of variants observed in diverse 
populations, and studying diseases that disproportionately affect 
disadvantaged or under-represented populations.

•	 Catalyse research by others towards the long-term goal of 
understanding the effects of genomic variation—by partnering 
with the broader research community and developing resources 
and infrastructure to share IGVF data, methods, standards and 
pipelines.
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simultaneous high-throughput assay for transposase-accessible chro-
matin and RNA expression with sequencing70 (SHARE-seq) and split-pool 
combinatorial indexing single-cell RNA sequencing71 (Parse Evercode))  
will be directly compared and calibrated on the same samples, and the 
performance of computational analyses and predictive models will be 
assessed as a function of sequencing depth. These data will provide a 
foundation for interpreting the effects of functional characterization 
experiments and building cell-type-specific maps of variant effects.

Genomic perturbations
Perturbation experiments will be crucial for understanding the causal 
relationships among variants, regulatory elements, genes and pheno-
types, but until recently have been challenging to apply at sufficient 
scale. New enabling technologies include high-throughput screens 
using CRISPR genetic or epigenetic perturbations or over-expression 
strategies22,23,43–50, reporter assays for enhancer or promoter activi-
ties51–57, and fine-mapping of different types of QTLs17,42,72 including 
single-cell eQTLs73–75. IGVF plans to conduct more than two million 
experimental perturbations, including to directly study the effects of 
naturally occurring or designed DNA variants, and to perturb regula-
tory elements and genes to build maps of genome function (Fig. 2). 
We will characterize the effects of these perturbations using diverse 

assays, including measurements of chromatin accessibility76, gene 
expression77–79, protein expression and activity25,80–83, and molecular 
and cellular phenotypes84. These data will enable direct characteriza-
tion of variants of interest, such as those associated with disease, and 
provide data to train or evaluate predictive models of variant effects.

Predictive modelling
Genome function is complex, and we cannot expect to experimen-
tally map the effects of all possible variants on all possible activities 
in all possible cellular contexts. Predictive models will be needed to 
make predictions that generalize across contexts—for example, to 
link genetic variants to effects on transcription factor binding and 
chromatin accessibility57,61–64, connect regulatory elements to their 
target genes64,85,86, or identify causal genes and cell types enriched for 
heritability for complex diseases or traits87–92. We will leverage advances 
in machine learning and artificial intelligence to tackle key prediction 
problems, such as mapping aspects of genome function, interpreting 
the impact of genomic variation and guiding the design of future experi-
mental assays such that the data produced will be maximally informa-
tive for subsequent predictive modelling. To systematically evaluate 
and calibrate such models, we will build benchmarking pipelines that 
compare predictions to perturbation data, including from IGVF func-
tional characterization experiments as well as external sources such 
as QTLs, GWAS and genome sequencing studies87,88,93,94. In areas where 
data collection is already advanced, we will engage the external com-
munity by designing prediction challenges with held-out assessment 
datasets produced by IGVF.

Application areas
Together, these three activities will form an iterative map–perturb– 
predict framework that IGVF will apply to explore a wide array of cell 
types, cellular phenotypes and diseases (Table 1). Projects will apply 
distinct but overlapping sets of experimental assays and computational 
models, enabling a broad exploration of possible strategies and inte-
gration of insights across biological systems.

IGVF projects have flexibility to study diverse biological models, 
prioritized on the basis of relevance to human disease, expertise of 
consortium members, tractability and other considerations. Current 
models include human embryonic and iPS cells differentiated into line-
ages spanning all germ layers in 2D and 3D (for example, gastruloids, 
cardiomyocytes and neurons); primary cell types relevant to disease 
areas of interest (for example, smooth muscle cells for coronary artery 
disease); and human and mouse tissues in vivo to inform how cell–cell 
interactions and environment alter genome function (for example, 
liver and lung in the presence of bacterial lipopolysaccharide) (Table 1). 
Selected models include dynamic biological processes that will provide 
insights into how regulatory networks change over time, such as B cell 
activation and differentiation or fibroblast-to-iPS cell reprogramming.

Although the primary objective of IGVF is to characterize variation 
and function of the human genome, IGVF studies will also study and 
create resources for mouse models, such as for comparing the effects of 
variants, elements and genes across different genetic backgrounds, and 
for in vivo genomic perturbation experiments to understand how vari-
ants or genes affect cellular phenotypes in a tissue environment. IGVF 
will leverage the genetic diversity found in the Collaborative Cross95, 
which includes more than 15 million SNVs between the 8 founder strains. 
These strains include the reference C57BL/6J strain, mouse disease mod-
els such as NOD, and recombinant inbred Collaborative Cross strains. 
Current efforts include collecting single-cell mapping data across eight 
tissues in adult male and female mice to identify cell-type-specific cel-
lular programmes and QTLs and compare to matching human samples.

The map–perturb–predict framework will enable integration across 
biological systems and models. For example, to enable integrative anal-
ysis across all projects studying gene regulation, we will generate and 
harmonize multiomic snRNA-seq and snATAC-seq data as a reference 
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Fig. 2 | A map–perturb–predict framework to connect genome variation to 
genome function and phenotype. Top, IGVF projects will apply single-cell 
mapping, genomic perturbations and predictive modelling, which will interact 
in a synergistic and iterative manner (arrows). Examples of experimental 
approaches are shown, including 10x Multiome, SHARE-seq70 and Parse Evercode71, 
MPRAs52,56,57, self-transcribing assay of RNA reporters51 (STARR-seq), CRISPR 
interference and activation149 (CRISPRi/a), variant abundance by massively 
parallel sequencing22 (VAMP-seq), RNA FlowFISH85 and Cell Painting84. Bottom, 
IGVF projects will address a wide variety of biological questions and utilize 
diverse biological systems, models and samples using the model systems and 
samples shown in Table 1. ChIP–seq, chromatin immunoprecipitation with 
sequencing; scRNA-seq, single-cell RNA sequencing.
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map in each cellular model. To compare genomic perturbation datasets 
across projects, we will deploy consistent data processing pipelines, 
quantify reproducibility and assess power. To integrate information 
across experimental assays and cellular models, we will train predictive 
models that learn from diverse data types and can generalize to new, 
unstudied cell types.

Throughout, a unifying analysis framework will be to consider and 
evaluate which cellular models and assays provide the best ability to 
distinguish or enrich for genomic variants associated with disease. 
For example, studies of coding variation in known Mendelian disease 
genes will validate the relevance of their cellular assays by comparison 
to known pathogenic and benign variants. Studies of noncoding vari-
ants associated with a common, complex disease might select a cellular 
model whose regulatory elements are globally enriched for containing 
risk variants. Such comparisons to human genomic variation will pro-
vide an external benchmark applicable to evaluating many methods 
and design decisions throughout IGVF (see below).

A map of genome function and variant effects
IGVF will deliver a preliminary variant effect map that integrates three 
key aspects of genome function: gene expression, protein function and 
molecular networks (Fig. 3). This draft map would enable querying— 
for any possible SNV in the genome, is this variant measured or pre-
dicted to: (1) affect transcription factor binding, regulatory element 
activity and target gene expression in particular cell contexts, for non-
coding variants; (2) affect protein function, for coding variants; and 
(3) connect to other genes or proteins via gene-regulatory networks 
and/or protein-interaction networks, for both coding and noncoding 
variants?

For each of these aspects of genome function, computational models 
have shown promise but much work is needed to improve their accu-
racy. Towards this goal, this preliminary map will integrate annotations 
of the different aspects of genome function and establish benchmark-
ing pipelines to quantify the accuracy of all predictions against pertur-
bation data and external human genetics datasets. We will encode this 
map of genome function, along with benchmarks and external data, 
in a multi-relational knowledge graph96–99 as part of the IGVF Catalog. 
The IGVF Catalog will provide a foundation for an iterative and ongo-
ing effort extending beyond IGVF to improve the accuracy of this map 
over time (Fig. 3).

Effects on gene regulation
In the 99% of our genome that does not encode for proteins, noncod-
ing variants can affect genome function by altering gene expression, 
splicing, chromatin state or other aspects of gene regulation. Despite 
advances by ENCODE, GTEx and other projects, we still lack models 
that can make accurate causal inferences about how genomic varia-
tion affects gene regulation94,100,101. We will seek to build genome-wide 
annotations of key components of this cis-regulatory code: which SNVs 
affect transcription factor binding sites, regulatory element activ-
ity and gene expression in cis, in which cell types or states, with what 
magnitude and direction of effect?

To do so, IGVF plans to: (1) generate multiomic snRNA-seq and 
snATAC-seq data at a depth needed to identify candidate cis-regulatory 
elements, detect probable transcription factor binding sites35,102 
and predict enhancer–gene relationships36,37,64,86,88,93; (2) test more 
than a million noncoding variants in enhancer activity reporter  
assays51,52,56,57,103; (3) test thousands of noncoding variants for effects 
on expression through fine-mapping of eQTLs or direct CRISPR-based 
genome editing17,42–45,47; (4) measure more than 100,000 putative regula-
tory interactions between candidate regulatory elements and nearby 
genes, for example using dCas9-based epigenome editing85,104–107; and 
(5) perturb transcription factors to read out effects on gene expression 
using Perturb-seq77–79. These experiments will be conducted in multiple 

cellular models, so that the data can be used to develop predictive 
models that generalize across many cell types. These cellular models 
will include several that have been studied previously in ENCODE15 and 
GTEx17, to enrich and benefit from rich existing datasets.

Effects on protein function
For protein-coding sequences, our ability to interpret the functions of 
genomic variation is based on our knowledge of the genetic code for 
protein synthesis—which has enabled identification of open reading 
frames that encode novel proteins and understanding of nonsense or 
frameshift variants. However, most coding variants, including mis-
sense variants and in-frame indels, remain difficult to interpret, and 
we still lack a comprehensive understanding of how changes in protein 
sequence might affect different aspects of protein structure, expres-
sion, dynamics and activity.

We will improve the annotation of protein-coding missense variants  
by applying high-throughput technologies25,80–83 to experimentally 
characterize the effects of more than 200,000 missense variants on 
protein and cellular properties, including protein stability, subcel-
lular localization, cell viability, cell morphology and protein–protein 
interactions. These experiments will directly characterize thousands 
of variants in clinically relevant genes, such as those associated with 
Mendelian diseases, and provide data to refine or develop new models 
to predict the probable effects of coding variants in other genes across 
the genome.

 
Molecular networks and cellular phenotypes
Upon linking a variant to effects on gene expression or protein activ-
ity in cis, we will seek to annotate the sets of other genes and proteins 
linked to the variant in trans through molecular networks in a given 
cell type or state. Specifically, we will focus on defining three types 
of molecular networks: (1) gene expression programmes, described 
by sets of genes whose expression levels are correlated across single 
cells; (2) gene-regulatory networks that identify transcription factors 
that regulate specific target genes via specific noncoding regulatory 
sequences; and (3) sets of interacting proteins or protein complexes. 
We will also examine dynamic changes to these molecular networks 

Table 1 | Systems and diseases studied and types of samples 
used in IGVF projects

Systems and diseases

Cardiometabolic Immune and 
haematopoietic

Neurological and 
neurodevelopmental

Developmental 
and syndromic

• �Coronary artery 
disease

• Type 2 diabetes
• Lipid traits
• Blood pressure
• �Congenital 
heart defects

• �Systemic lupus 
erythematosus

• �Rheumatoid 
arthritis

• �Red blood cell 
traits

• Parkinson’s disease
• Alzheimer’s disease
• �Neurodevelopmental 
delay

• �Williams 
syndrome

• �DiGeorge 
syndrome

• �Hereditary 
cancers

Samples

Cell lines and 
primary cells

hPS cell 
differentiation 
and 
reprogramming

Organoids Tissues

• K562
• GM12878
• HUDEP-2
• HAP1
• �ENCODE cell 
lines

• B cells
• �Smooth muscle 
cells

• Cardiomyocytes
• �Endothelial 
cells

• �Fibroblast to iPS 
cells

• Macrophages
• Neurons
• Pancreatic cells
• Trophoblasts

• Cardioids
• Cerebral organoids
• Gastruloids

• Aorta
• Blood
• Bone marrow
• Brain
• Heart
• Liver

hPS cells, human pluripotent stem cells; iPS cells, induced pluripotent stem cells.
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across cell-fate or cell-state transitions and, to a more limited extent, 
explore links to downstream cellular phenotypes.

To build these maps, we will collect longitudinal multiomic data 
across dynamic cellular processes including differentiation and  
reprogramming70,108–110, study how genes and proteins interact in 
molecular networks, including by mapping protein–protein interac-
tions25 and conducting large-scale Perturb-seq77–79, and assess how 
CRISPR-based perturbations or natural genetic variation across 
individuals affects cellular phenotypes including differentiation, 
gene expression programmes and cellular states. Such time-resolved 
datasets will be used to build dynamical regulatory models that incor-
porate feedback and feed forward loops and account for cell fate or 
state transitions.

We anticipate that many aspects of this map will be cell-type-specific, 
with annotations for each of the hundreds of cell types, states and 
contexts studied by IGVF. For example, predictive models that use 

snRNA-seq and snATAC-seq as inputs could be developed using data 
from cellular models, in which predictions can be directly evaluated 
with matching perturbation data, and applied to make cell-type-specific 
predictions in cell types from primary tissues36,37,86,111.

Exploring the effects of variation on disease
The map–perturb–predict framework and IGVF variant effect map 
will provide new resources for the community to study the impact of 
genomic variation on human diseases and phenotypes, but this goal 
presents additional challenges. For many diseases, an individual’s risk is 
likely to be determined by a combination of thousands of independently 
acting variants112,113—including for diseases presumed to follow Men-
delian inheritance patterns, where penetrance and expressivity may 
include a polygenic component114. A single variant may have pleiotropic 
effects on multiple genes and pathways, only one or several of which 
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Fig. 3 | The IGVF Catalogue of genome function and the effects of genomic 
variation. IGVF will create a catalogue that links genomic variation (top) to 
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methods applied by IGVF are shown in purple. Relationships where IGVF plans 
to develop and apply computational models to comprehensively annotate all 
possible SNVs across many cell types are in red. Relationships where IGVF plans 
to develop and apply computational methods in a more targeted fashion, for 
example in the context of certain cellular phenotypes or diseases are in orange. 
Examples of external resources or ontologies that could interact with and/or 
be incorporated into this catalogue are shown in blue. The listed set of edges 
represent current plans and are not exhaustive with respect to topics relevant 

to interpreting genomic variation. Citations: dbSNP150, ENCODE15, GENCODE151, 
Gene Ontology152 (GO), gnomAD4, GTEx17, HuBMAP20, Human Pangenome 
Reference Consortium147 (HPRC), Human Phenotype Ontology153 (HPO), IntAct 
Molecular Interaction Database154, MaveDB24, Mondo Disease Ontology155, 
Online Mendelian Inheritance in Man156 (OMIM), saturation genome editing23 
(SGE), UniProt157 and VAMP-seq22. caQTLs, chromatin accessibility QTLs; 
CRISPR KO, CRISPR-mediated knockout; MorPhiC, NHGRI Molecular 
Phenotypes of Null Alleles in Cells Consortium; PPIs, protein–protein 
interactions; pQTLs, protein QTLs; RVAS, rare variant association studies; 
scATAC-seq (or scATAC), single-cell assay for transposase-accessible chromatin 
with sequencing; scRNA-seq (or scRNA), single-cell RNA sequencing.
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may be important for disease1,17,88,89. Disease susceptibility can involve 
many different cell types, possibly at specific timepoints, with effects 
accumulating over decades or in specific environmental contexts115. 
The effects of genomic variation on genome function and phenotype 
can also differ across age, sex, populations and ancestry—for exam-
ple, owing to differences in allele frequencies116 or possible genetic or 
environment interactions117–121.

Towards addressing some of these challenges, we will focus on assess-
ing how IGVF maps and methods can be best applied to: (1) inform clini-
cal variant interpretation, particularly for rare diseases; (2) learn about 
molecular and cellular mechanisms underlying risk for common and 
rare diseases; and (3) ensure that lessons about the impact of genomic 
variation on genome function are applicable across diverse popula-
tions. Notably, each of these questions represents a major research 
area involving many strategies beyond those pursued in IGVF7–9,28,122–124, 
and these exploratory efforts will seek to integrate with other efforts 
in the field.

Informing genetic diagnosis
IGVF will apply variant effect maps of coding variation to inform the 
clinical interpretation of VUSs in genes with known and suspected 
links to Mendelian genetic diseases. Data from multiplexed assays of 
variant effect can be translated into powerful evidence for clinical vari-
ant interpretation—for example, moving 50% of VUSs in BRCA1, 70% in 
TP53, 74% in MSH2 and 90% in DDX3X into more definitive pathogenic 
or benign classifications81,125,126. These studies have improved genetic 
test results for cancer risk and ended diagnostic odysseys for families 
with neurodevelopmental disease.

To expand this approach, IGVF laboratories will experimentally 
measure the effects of hundreds of thousands of variants in known 
disease genes, with a particular focus on those where identification 
of loss-of-function variants is clinically actionable127,128. We will assess 
the extent to which experimental data or computational predictions 
correctly identify variants previously classified as either pathogenic 
or benign, and calibrate these analyses for clinical applications129,130. 
Clinicians routinely use experimental and predictive data to interpret 
the effects of coding variants, but do not yet do so for noncoding vari-
ants. Thus we will explore whether IGVF data and predictions could 
also improve the clinical interpretation of noncoding variants. IGVF 
will deliver variant effect maps and calibrated predictions that will 
ultimately substantially reduce the VUS burden in aetiological diagnosis 
of rare disease124. Integration of maps for both coding and noncoding 
variants could also aid in the development of next-generation polygenic 
risk score methodologies for better risk characterization in complex 
phenotypes117.

Molecular mechanisms of disease risk
Improved variant effect maps could be transformative for identify-
ing new biological mechanisms that influence genetic risk for dis-
ease. In particular, we will seek to understand how best to combine 
the map–perturb–predict framework and variant effect maps with 
human genetic data to nominate variants, genes, cell types and cellular 
programmes that influence disease risk.

We will study a variety of diseases and traits guided by the expertise 
of consortium members, including highly powered quantitative traits 
with simpler biological architectures, such as lipid and haematological 
traits, as well as complex diseases involving many cell types such as 
systemic lupus erythematosus, coronary artery disease and Alzhei-
mer’s disease. Comparison of strategies between these systems will 
be informative. For example, IGVF investigators are studying variants 
associated with lipid traits, where GWAS and whole-exome sequencing 
studies have already identified hundreds of associated noncoding and 
coding variants, and where certain key genetic pathways involved in 
lipid handling are already known11,131–133. By conducting CRISPR screens 
to identify variants and regulatory elements that affect lipid uptake in 

cellular models enriched for trait heritability, testing variant effects on 
enhancer activity in massively parallel reporter assays, and applying 
state-of-the-art predictive models, we will evaluate which combina-
tions of experiments and/or predictive models provide the best abil-
ity to predict disease-associated variation and known causal genes. 
To complement these high-throughput maps, certain projects will 
conduct detailed studies of mechanisms of particular GWAS loci or 
known disease genes, including in animal models. These combined 
efforts will reveal mechanisms of genetic risk for selected diseases, 
inform the molecular genetic architecture of complex traits and help 
to develop strategies to identify causal variants, genes and pathways 
for any complex disease.

Impact of variation across populations
IGVF aims to ensure that insights about the impact of genomic variation 
are applicable to and inclusive of people of diverse groups. To do so, we 
will promote diversity in functional genomics studies, experimentally 
study and computationally annotate variants observed in diverse popu-
lations, study diseases disproportionately affecting disadvantaged 
or under-represented populations, and explore the extent to which 
particular variants might exert the same or different effects due to 
interactions with genetic background or environment134–136.

We will use both experimental and computational strategies. In the 
current design phase, we have incorporated variants from diverse popu-
lations, including from the 1000 Genomes Project137, Millions Veterans 
Program138, and cross-ancestry GWAS meta-analyses131,139–142. Biologi-
cal models include iPS cells derived from individuals from different 
populations (including European, East Asian and African), and geneti-
cally diverse mouse lines from the Collaborative Cross143. Saturation 
mutagenesis will be employed to measure variant effects in clinically 
relevant protein-coding sequences to enable interpretation of variants 
observed in any individual144. We will deploy computational models 
to make context-specific predictions for SNVs across the genome, 
including methods to predict individual-specific effects of noncoding 
variants on chromatin state and gene expression61,63,64. These data and 
analyses will provide insights into variant effects across groups and 
provide a valuable resource for investigating the effects of variants 
discovered in diverse populations.

Data release and resources
A major goal of IGVF is to catalyse future research to understand the 
relationships between genome function, genomic variation and phe-
notype. To do so, we will build the IGVF Data Resource to enable bio-
medical researchers across diverse disciplines to access and apply IGVF 
datasets, predictions and methods (https://igvf.org).

For researchers who want to explore data and predictions, we will 
create the IGVF Catalog. The IGVF Catalog will consist of one or more 
web portals that enable searching for information about specific vari-
ants, genomic loci or genes, and will draw from processed data, analysis 
products and computational predictions generated by IGVF as well as 
external data sources (Fig. 3). To support users who want programmatic 
access to perform integrative analyses or to develop web applications, 
we will also provide an application programming interface to the under-
lying knowledge graph.

For researchers who want to access raw or processed data, we will 
develop the IGVF Data Portal. The Data Portal will provide web-browser 
and programmatic access to uniformly processed datasets, analysis 
products and rich metadata, enabling users to develop new compu-
tational methods, analyse IGVF data in new ways, or compare their 
data to IGVF standards. The IGVF Data Portal will follow principles of 
making data FAIR145 (findable, accessible, interoperable and reusable). 
Data will be stored in cloud file buckets to facilitate computing on the 
data in place. Some IGVF data may not have consent for public sharing— 
such data will be deposited in the NHGRI Analysis, Visualization and 

https://igvf.org


54  |  Nature  |  Vol 633  |  5 September 2024

Perspective
Informatics Lab (AnVIL) platform to provide access control in adher-
ence to National Institutes of Health (NIH) policy146.

For researchers who want to apply IGVF methods and strategies to 
additional systems, the Data Portal will also share documentation on 
IGVF standards, protocols and best practices for experimental design, 
data analysis and predictive modelling. These resources will include 
computational methods, data formats and consensus data processing 
pipelines for key assays and analysis products, such as for snRNA-seq 
and snATAC-seq, CRISPR experiments, MPRAs, eQTL studies, and  
others. Data analysis tools will include approaches to assess replicates, 
quantify experimental noise and assess power. All data processing code 
will be released with open-source licenses to enable others to analyse 
similar data in an identical fashion, and we will strive to make sure that 
it can be run on computer resources that are accessible to researchers 
throughout the global research community.

For all researchers, we will provide training and support on how to 
access these IGVF resources. Up-to-date information on where to find 
instructional streaming videos, online notebooks and tutorials, and 
schedules for seminars and webinars are available at www.igvf.org. 
Altogether, we expect that these resources will enable a wide range of 
scientific activities, expanding far beyond the specific studies under-
taken by the IGVF Consortium.

Finally, IGVF is committed to rapid release of data and results. Data 
and predictions will be released upon quality control and no later than 
manuscript submission, and manuscripts will be posted on preprint 
servers prior to manuscript submission.

Collaborations and community
Understanding genomic variation and genome function is a grand 
challenge that demands global and interdisciplinary collaboration. 
IGVF welcomes collaboration with and input from the broader scien-
tific community. Researchers interested in joining IGVF can apply for 
affiliate membership. Affiliate members can participate fully in working 
groups and other IGVF collaborations, and thereby drive the vision, 
goals, and execution of consortium activities. Further information is 
available at https://igvf.org/affiliate-membership/.

IGVF is actively coordinating with other consortia, including Clin-
Gen8, the Genomics Research to Elucidate the Genetics of Rare dis-
eases (GREGoR) consortium, and the Atlas of Variant Effects (AVE) 
Alliance144. These collaborations will facilitate the open exchange and 
interoperability of genomic data and resources, for example to use 
common variant naming schema, genome and transcriptome builds, 
and analysis pipelines.

Similarly, IGVF activities will benefit from close interactions with 
efforts to characterize human genomic variation and assemblies, such 
as the Human Pangenome Reference Consortium147 (HPRC), with efforts 
to catalogue disease-associated variation across ancestries, including 
All of Us148 and TOPMed10 (Trans-Omics for Precision Medicine), with 
efforts to build atlases using single-cell tools, such as the Human Cell 
Atlas21 and HuBMAP20 (Human Biomolecular Atlas Program), and with 
efforts to compare and evaluate strategies for interpreting genetic 
variation associated with disease, such as the International Common 
Disease Alliance28.

Outlook
With the rapid expansion of human genetics studies linking variation 
to disease, the interpretation of the impact of genomic variation on 
function is currently a rate-limiting step for delivering on the prom-
ise of precision medicine. The IGVF Consortium will pursue a unique, 
coordinated strategy for accelerating progress (Box 2).

Success for IGVF will involve creating resources and generating 
scientific advances not possible through individual efforts. Key out-
comes include: (1) insights into genome biology and advances in genetic 

diagnosis enabled by the map–perturb–predict framework and variant 
effect maps; (2) an interoperable ecosystem of data, predictions, and 
models that will be used by IGVF and the broader scientific community 
to derive insights into genome function, genomic variation, and phe-
notype; (3) massive, uniformly processed datasets spanning single-cell 
and functional characterization assays that directly assay large swaths 
of the genome and serve as an enduring, foundational resource for 
developing predictive models; (4) a catalogue that provides web and 
programmatic access to look up integrative predictions and experi-
mental data regarding variants, genomic elements and genes across 
many cell types and contexts; and (5) new methods and strategies for 
studying genome variation and function, derived through systematic 
comparisons of methods. Altogether, these activities will set in motion 
community efforts to expand on this framework by collecting addi-
tional datasets, training improved models, generating more accurate 
maps and expanding the approach to additional cell types and aspects 
of genome function.

Although ambitious, IGVF activities do have limitations in scope. IGVF 
aims for systematic analysis of certain aspects of genome function, 
but others—including effects on nuclear organization, RNA splicing, 
localization and translation, protein signalling and metabolism, and 
cellular phenotypes, cell–cell interactions and tissue organization—are 
of great interest but will require efforts beyond the current membership 
of the consortium. IGVF projects span a great breadth of cellular models 
and disease areas, but are not necessarily designed for comprehensive 
analysis of any single disease. IGVF will use cellular models to develop 
predictive models that are applicable to understanding variants in 
many systems, but systematic analysis to map epistatic interactions 
among variants, environment, time and other variables will require 
deeper studies and alternative approaches. IGVF welcomes interactions 
with or membership of projects that aim to explore or systematically 
address these areas of interest.

Many challenges lie ahead. Genomic technologies, both experimental 
and computational, are developing rapidly, and balancing the imple-
mentation of the newest scalable tools with continuing standards to 
ensure data interoperability will require attention. Although data gen-
eration technologies have increased throughput exponentially over the 
last 15 years, the amount of data needed to build accurate models of 
genome function is unknown, and fully realizing the goal of mapping 
the impact of genomic variation on function will require additional 
advances in both experimental and computational methods. For all of 
these challenges, the framework developed by the IGVF Consortium to 
develop and benchmark methods, refine best practices and standards, 
and share data and methods will drive scientific discoveries in human 
health and disease for years to come.
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43Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA. 
44Department of Pathology and Laboratory Medicine, University of California Los Angeles,  
Los Angeles, CA, USA. 45Department of Computational Medicine, University of California Los 
Angeles, Los Angeles, CA, USA. 46Department of Biostatistics, University of California Los 
Angeles, Los Angeles, CA, USA. 47Division of Biology and Biological Engineering, California 
Institute of Technology, Pasadena, CA, USA. 48Developmental Biology Program, Sloan Kettering 
Institute, New York, NY, USA. 49Center for Stem Cell Biology, Sloan Kettering Institute for 
Cancer Research, New York, NY, USA. 50Division of Cardiovascular Medicine, School of 
Medicine, Stanford University, Stanford, USA. 51Center for Cancer Systems Biology (CCSB), 
Dana-Farber Cancer Institute, Boston, MA, USA. 52Department of Genetics, Blavatnik Institute, 
Harvard Medical School, Boston, MA, USA. 53Department of Cancer Biology, Dana-Farber 
Cancer Institute, Boston, MA, USA. 54Department of Biomedical Informatics, Harvard Medical 
School, Boston, MA, USA. 55Division of Hematology/Oncology, Boston Children’s Hospital, 
Boston, MA, USA. 56Department of Biomedical Informatics and Medical Education, University  
of Washington, Seattle, WA, USA. 57Institute for Genomic Health, Icahn School of Medicine at 
Mount Sinai, New York, NY, USA. 58Department of Genetics and Genomic Sciences, Icahn 
School of Medicine at Mount Sinai, New York, NY, USA. 59Department of Bioengineering and 
Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San 
Francisco, CA, USA. 60Center for Genetic Epidemiology, Department of Population and Public 



Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles,  
CA, USA. 61Department of Quantitative and Computational Biology, University of Southern 
California, Los Angeles, CA, USA. 62Norris Comprehensive Cancer Center, Keck School of 
Medicine, University of Southern California, Los Angeles, CA, USA. 63Department of Genetics, 
Yale School of Medicine, New Haven, CT, USA. 64Department of Medicine, Brigham and 
Women’s Hospital and Harvard Medical School, Boston, MA, USA. 65Imaging Platform,  
Broad Institute of Harvard and MIT, Cambridge, MA, USA. 66Department of Stem Cell and 
Regenerative Biology, Harvard University, Cambridge, MA, USA. 67Department of Human 
Genetics, University of California Los Angeles, Los Angeles, CA, USA. 68Department of 
Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, 
Los Angeles, CA, USA. 69Center for Advanced Genomic Technologies, Duke University, 
Durham, NC, USA. 70Program in Bioinformatics and Integrative Biology, UMass Chan Medical 
School, Worcester, MA, USA. 71Livestrong Cancer Institutes, Department of Oncology,  
and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX,  
USA. 72Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for 
Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 
USA. 73Department of Pediatrics, University of California, San Diego, CA, USA. 74Department  
of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. 75Department of 
Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA. 

Characterization Awards (contact PI, MPIs (alphabetical by last name), other members 
(alphabetical by last name))

UM1HG011966
Jay Shendure7,8,76,77,78, Nadav Ahituv59, Martin Kircher40,41, Vikram Agarwal7,79, Andrew Blair59, 
Theofilos Chalkiadakis41, Florence M. Chardon7, Pyaree M. Dash41, Chengyu Deng59, 
Nobuhiko Hamazaki7, Pia Keukeleire40, Connor Kubo7, Jean-Benoît Lalanne7, Thorben Maass40, 
Beth Martin7, Troy A. McDiarmid7, Mai Nobuhara59, Nicholas F. Page59, Sam Regalado7, 
Max Schubach41, Jasmine Sims59, Aki Ushiki59 & Jingjing Zhao59

UM1HG011969
Lea M. Starita7,8, Douglas M. Fowler7,8, Sabrina M. Best7, Gabe Boyle7, Nathan Camp80, 
Silvia Casadei7, Estelle Y. Da81, Moez Dawood8,82, Samantha C. Dawson80, Shawn Fayer7, 
Audrey Hamm7, Richard G. James80, Gail P. Jarvik7, Abbye E. McEwen7,8,83, Nick Moore81, 
Lara A. Muffley7, Sriram Pendyala7, Nicholas A. Popp7, Mason Post7, Alan F. Rubin81, 
Jay Shendure7,8,76,77,78, Nahum T. Smith7, Jeremy Stone8, Malvika Tejura7, Ziyu R. Wang7, 
Melinda K. Wheelock7, Ivan Woo7 & Brendan D. Zapp7

UM1HG011972
Jesse M. Engreitz1,2,3,4, Thomas Quertermous50, Dulguun Amgalan1,2, Aradhana Aradhana1, 
Sophia M. Arana1, Michael C. Bassik1, Julia R. Bauman1, Asmita Bhattacharya1, 
Xiangmeng Shawn Cai1,2,84, Ziwei Chen34, Stephanie Conley1,2, Salil Deshpande85, 
Benjamin R. Doughty1, Peter P. Du1, James A. Galante1, Casey Gifford1,2,86,87, 
William J. Greenleaf1,88, Andreas R. Gschwind1, Katherine Guo1,2, Revant Gupta1, Sarasa Isobe89, 
Evelyn Jagoda3,50, Nimit Jain1,90, Hank Jones1,2, Helen Y. Kang1,2, Samuel H. Kim91, YeEun Kim92, 
Sandy Klemm1, Anshul Kundaje1,34, Ramen Kundu50, Soumya Kundu1,34, Mauro Lago-Docampo89, 
Yannick C. Lee-Yow1,2, Roni Levin-Konigsberg1, Daniel Y. Li50, Dominik Lindenhofer93, 
X. Rosa Ma1,2, Georgi K. Marinov1, Gabriella E. Martyn1,2, Chloe V. McCreery1, Eyal Metzl-Raz1, 
Joao P. Monteiro50, Michael T. Montgomery1,2, Kristy S. Mualim2,94,95, Chad Munger1,2, 
Glen Munson3, Tri C. Nguyen1,2, Trieu Nguyen50, Brian T. Palmisano50, Anusri Pampari34, 
Chong Y. Park50, Marlene Rabinovitch89, Markus Ramste50, Judhajeet Ray3, Kevin R. Roy1,96, 
Oriane M. Rubio2, Julia M. Schaepe84, Gavin Schnitzler50, Jacob Schreiber1, Disha Sharma50, 
Maya U. Sheth1,2,84, Huitong Shi50, Vasundhara Singh3, Riya Sinha97, Lars M. Steinmetz1,93,96, 
Jason Tan1,2,34, Anthony Tan1,2, Josh Tycko1, Raeline C. Valbuena1, Valeh Valiollah Pour Amiri1, 
Mariëlle J. F. M. van Kooten1, Alun Vaughan-Jackson1, Anthony Venida1, Chad S. Weldy50, 
Matthew D. Worssam50, Fan Xia1,2, David Yao1, Tony Zeng1,2, Quanyi Zhao50 & Ronghao Zhou1,2

UM1HG011989
Marc Vidal51,52, Michael A. Calderwood51,52,53, Anne E. Carpenter65, Zitong Sam Chen65, 
Beth A. Cimini65, Georges Coppin51,52,53,98, Atina G. Coté99,100,101, Marzieh Haghighi65, 
Tong Hao51,52,53, David E. Hill51,52,53, Jessica Lacoste99,100, Florent Laval51,52,53,98,102, Chloe Reno99,100, 
Frederick P. Roth99,100,101,103, Shantanu Singh65, Kerstin Spirohn-Fitzgerald51,52, Mikko Taipale99,100, 
Tanisha Teelucksingh99, Maxime Tixhon51,52,53,104, Anupama Yadav51,52,53 & Zhipeng Yang51,52,53

UM1HG011996
Gary C. Hon9,10,11, W. Lee Kraus9,10, Nikhil V. Munshi20,21, Daniel A. Armendariz9, 
Maria H. Chahrour22,23,24,25,26, Ashley E. Dederich105, Ashlesha Gogate22, Lauretta El Hayek22, 
Sean C. Goetsch20, Kiran Kaur22, Hyung Bum Kim9, Melissa K. McCoy105, Mpathi Z. Nzima9, 
Carlos A. Pinzón-Arteaga106, Bruce A. Posner105, Daniel A. Schmitz21, Sushama Sivakumar20,21, 
Anjana Sundarrajan9, Lei Wang9, Yihan Wang9, Jun Wu21, Lin Xu106,107, Jian Xu108, Leqian Yu21, 
Yanfeng Zhang106, Huan Zhao9 & Qinbo Zhou106

UM1HG012003
Hyejung Won18,109, Michael I. Love18,19, Karen L. Mohlke18, Jessica L. Bell18,109, 
K. Alaine Broadaway18, Katherine N. Degner18,109, Amy S. Etheridge18, Stefanija Giric18, 
Beverly H. Koller18, Yun Li18,19, Won Mah18,109, Wancen Mu19, Kimberly D. Ritola109,110, 
Jonathan D. Rosen18, Sarah A. Schoenrock18,109 & Rachel A. Sharp18,109

UM1HG012010
Luca Pinello4,32, Daniel Bauer55,111, Guillaume Lettre112,113, Richard Sherwood64, 
Basheer Becerra55,111, Logan J. Blaine32,54, Eric Che32,55,114, Lucas Ferreira54,55, 
Matthew J. Francoeur64, Ellie N. Gibbs64, Nahye Kim32,114,115, Emily M. King32,114,115,116, 

Benjamin P. Kleinstiver32,114,115, Estelle Lecluze112, Zhijian Li32,117, Zain M. Patel32,117, 
Quang Vinh Phan64, Jayoung Ryu32,54, Marlena L. Starr55 & Ting Wu55,111

UM1HG012053
Charles A. Gersbach69,118, Gregory E. Crawford69,119, Timothy E. Reddy15, Andrew S. Allen15, 
William H. Majoros15, Nahid Iglesias69,118, Alejandro Barrera15,69, Ruhi Rai69, Revathy Venukuttan69, 
Boxun Li69,118, Taylor Anglen69,120, Lexi R. Bounds69,118, Marisa C. Hamilton69, Siyan Liu69, 
Sean R. McCutcheon69,118, Christian D. McRoberts Amador69,121, Samuel J. Reisman69,120, 
Maria A. ter Weele69,118, Josephine C. Bodle69,118, Helen L. Streff69,118, Keith Siklenka15 & 
Kari Strouse15

76Howard Hughes Medical Institute, Seattle, WA, USA. 77Systems Immunology, Benaroya 
Research Institute, Seattle, WA, USA. 78Allen Discovery Center for Cell Lineage Tracing, Seattle, 
WA, USA. 79mRNA Center of Excellence, Sanofi Pasteur Inc, Waltham, MA, USA. 80Center of 
immunotherapy and Immunity, Seattle Children’s Research Institute, Seattle, WA, USA. 
81Bioinformatics Division, WEHI, Parkville, Victoria, Australia. 82Human Genome Sequencing 
Center, Baylor College of Medicine, Houston, TX, USA. 83Department of Laboratory Medicine 
and Pathology, University of Washington, Seattle, WA, USA. 84Department of Bioengineering, 
Stanford University School of Engineering, Stanford, CA, USA. 85Institute for Computational 
and Mathematical Engineering, Stanford University, Stanford, CA, USA. 86Department of 
Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. 87Institute for Stem Cell 
Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 
USA. 88Department of Applied Physics, Stanford University, Stanford, CA, USA. 89Division of 
Pediatric Cardiology and Cardiovascular Institute, Stanford University School of Medicine, 
Stanford University, Stanford, CA, USA. 90Altos Labs, Redwood City, CA, USA. 91Cancer Biology 
Program, Stanford University School of Medicine, Stanford, CA, USA. 92Immunology Graduate 
Program and Department of Pathology, Stanford University School of Medicine, Stanford, CA, 
USA. 93European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, 
Germany. 94Department of Biology, Stanford University, Stanford, CA, USA. 95Department of 
Plant Biology, Carnegie Institution for Science, Stanford, CA, USA. 96Stanford Genome 
Technology Center, Palo Alto, CA, USA. 97Department of Biomedical Informatics, Stanford 
University School of Medicine, Stanford, CA, USA. 98Laboratory of Viral Interactomes, GIGA 
Institute, University of Liège, Liège, Belgium. 99Donnelly Centre for Cellular and Biomolecular 
Research (CCBR), University of Toronto, Toronto, Ontario, Canada. 100Department of Molecular 
Genetics, University of Toronto, Toronto, Ontario, Canada. 101Lunenfeld-Tanenbaum Research 
Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada. 102TERRA Teaching and 
Research Centre, University of Liège, Gembloux, Belgium. 103Department of Computer 
Science, University of Toronto, Toronto, Ontario, Canada. 104Computational Biology and 
Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium. 105Department of Biochemistry, 
University of Texas Southwestern Medical Center, Dallas, TX, USA. 106Quantitative Biomedical 
Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern 
Medical Center, Dallas, TX, USA. 107Department of Pediatrics, Division of Hematology/
Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA. 108Children’s 
Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, 
TX, USA. 109Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA. 110Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, 
NC, USA. 111Department of Pediatrics, Harvard Medical School, Boston, MA, USA. 112Montreal 
Heart Institute, Montreal, Quebec, Canada. 113Département de Médecine, Université de 
Montréal, Montréal, Quebec, Canada. 114Department of Pathology, Massachusetts General 
Hospital, Boston, MA, USA. 115Center for Genomic Medicine and Department of Pathology, 
Massachusetts General Hospital, Boston, MA, USA. 116PhD Program in Biological and 
Biomedical Sciences, Harvard University, Boston, MA, USA. 117Broad Institute of MIT and 
Harvard, Boston, MA, USA. 118Department of Biomedical Engineering, Duke University, Durham, 
NC, USA. 119Department of Pediatrics, Duke University, Durham, NC, USA. 120Department of Cell 
Biology, Duke University Medical Center, Durham, NC, USA. 121Department of Pharmacology 
and Cancer Biology, Duke University Medical Center, Durham, NC, USA. 

Mapping Awards (contact PI, MPIs (alphabetical by last name), other members (alphabetical 
by last name))

UM1HG011986
Jason D. Buenrostro4,66, Bradley E. Bernstein4,53, Juliana Babu4,66, Guillermo Barreto Corona4, 
Kevin Dong4, Fabiana M. Duarte4,66, Neva C. Durand4, Charles B. Epstein4, Kaili Fan4,66,70, 
Nina P. Farrell4, Elizabeth Gaskell4, Amelia W. Hall4, Alexandra M. Ham4, Mei K. Knudson4, 
Eugenio Mattei4, Rachel E. Savage4,66, Noam Shoresh4, Siddarth Wekhande4, 
Cassandra M. White4 & Wang Xi4,66

UM1HG012076
Ansuman T. Satpathy122,123,124, M. Ryan Corces125,126,127, Serena H. Chang125,126,127,  
Iris M. Chin125,126,127, James M. Gardner128,129, Zachary A. Gardell125,126,127, Jacob C. Gutierrez122,124, 
Alia W. Johnson125,126,127, Lucas Kampman125,126,127, Maya Kasowski122,130, Caleb A. Lareau122,123,124, 
Vincent Liu122,124, Leif S. Ludwig131,132, Christopher S. McGinnis122,123,124, Shreya Menon125,126,127, 
Anita Qualls128,129, Katalin Sandor122,123,124, Adam W. Turner125,126,127, Chun J. Ye123,133,134, Yajie Yin122,124 
& Wenxi Zhang122

UM1HG012077
Ali Mortazavi29,30, Barbara J. Wold47,135, Sina Booeshaghi47, Maria Carilli136, Dayeon Cheong29, 
Ghassan Filibam29, Kim Green29,137, Ingileif Hallgrimsdottir47, Shimako Kawauchi30, 
Charlene Kim47, Heidi Liang30, Rebekah Loving47, Laura Luebbert47, Grant MacGregor29, 
Angel G. Merchan47, Lior Pachter47,75, Elisabeth Rebboah29, Fairlie Reese29,30, Narges Rezaie29,30, 
Jasmine Sakr30,138, Delaney K. Sullivan47, Nikki Swarna136, Diane Trout47, Sean Upchurch47, 
Ryan Weber29 & Brian A. Williams47



Perspective
122Department of Pathology, Stanford University, Stanford, CA, USA. 123Parker Institute for 
Cancer Immunotherapy, San Francisco, CA, USA. 124Gladstone-UCSF Institute of Genomic 
Immunology, San Francisco, CA, USA. 125Gladstone Institute of Neurological Disease, San 
Francisco, CA, USA. 126Department of Neurology, University of California San Francisco, San 
Francisco, CA, USA. 127Gladstone Institute of Data Science and Biotechnology, Gladstone 
Institutes, San Francisco, CA, USA. 128Department of Surgery, University of California San 
Francisco, San Francisco, CA, USA. 129Diabetes Center, University of California San Francisco, 
San Francisco, CA, USA. 130Sean N Parker Center for Allergy and Asthma Research, Stanford 
University, Stanford, CA, USA. 131Berlin Institute of Health at Charité—Universitätsmedizin 
Berlin, Berlin, Germany. 132Max-Delbrück-Center for Molecular Medicine in the Helmholtz 
Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany. 
133Institute for Human Genetics, Department of Medicine, Division of Rheumatology, University 
of California, San Francisco, CA, USA. 134Chan Zuckerberg Biohub, San Francisco, CA, USA. 
135Richard N. Merkin Institute for Translational Research, California Institute of Technology, 
Pasadena, CA, USA. 136Division of Chemistry and Chemical Engineering, California Institute of 
Technology, Pasadena, CA, USA. 137Department of Neurobiology and Behavior, UC Irvine, 
Irvine, CA, USA. 138Department of Pharmaceutical Sciences, UC Irvine, Irvine, CA, USA. 

Predictive Modeling Awards (contact PI, MPIs (alphabetical by last name), other members 
(alphabetical by last name))

U01HG011952
Alan P. Boyle27,28, Christopher P. Castro27, Elysia Chou27, Fan Feng27, Andre Guerra139, 
Yuanhao Huang27, Linghua Jiang27, Jie Liu27, Ryan E. Mills27,28, Weizhou Qian27, Tingting Qin27, 
Maureen A. Sartor27,139, Rintsen N. Sherpa27, Jinhao Wang27, Yiqun Wang27, Joshua D. Welch27, 
Zhenhao Zhang27 & Nanxiang Zhao27

U01HG011967
Andrew S. Allen15, William H. Majoros15, Sayan Mukherjee140,141,142, C. David Page15, 
Shannon Clarke15, Richard W. Doty15, Yuncheng Duan143, Raluca Gordan15,142, Kuei-Yueh Ko15, 
Shengyu Li15, Boyao Li15, Timothy E. Reddy15 & Alexander Thomson15

U01HG012009
Soumya Raychaudhuri64,74, Alkes Price16,39,74, Shamil Sunyaev54,64, Thahmina A. Ali38, 
Kushal K. Dey38, Arun Durvasula39,144, Manolis Kellis117,145, Evan Koch54 & Saori Sakaue64,74

U01HG012022
Predrag Radivojac43, Lilia M. Iakoucheva146, Tulika Kakati146, Sean D. Mooney56,  
Yile Chen56, Mariam Benazouz56, Vikas Pejaver57,58, Shantanu Jain43, Daniel Zeiberg43, 
M. Clara De Paolis Kaluza43 & Michelle Velyunskiy43

U01HG012039
Mark Craven31, Audrey Gasch147, Kunling Huang148, Yiyang Jin31, Qiongshi Lu31, Jiacheng Miao31, 
Michael Ohtake149, Eduardo Scopel147, Robert D. Steiner150,151,152 & Yuriy Sverchkov31

U01HG012064
Zhiping Weng70, Manuel Garber70, Xihong Lin16,17, Yu Fu70, Natalie Haas70, Xihao Li16,18,19, 
Nishigandha Phalke70, Shuo C. Shan70, Nicole Shedd70, Eric Van Buren16, Tianxiong Yu70, 
Yi Zhang153 & Hufeng Zhou16

U01HG012069
Anshul Kundaje1,34, Alexis Battle154,155,156,157, Ziwei Chen34, Salil Deshpande85, Jesse M. Engreitz1,2,3,4, 
Livnat Jerby1, Eran Kotler1, Soumya Kundu1,34, Andrew R. Marderstein122, Georgi K. Marinov1, 
Stephen B. Montgomery1,122,158, Surag Nair34, AkshatKumar Nigam1,34, Evin M. Padhi122, 
Anusri Pampari34, Aman Patel34, Jonathan Pritchard1, Ivy Raine1, Vivekanandan Ramalingam1, 
Kameron B. Rodrigues122, Jacob M. Schreiber1, Arpita Singhal34, Riya Sinha97, 
Valeh Valiollah Pour Amiri1 & Austin T. Wang34

139Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 
USA. 140Department of Statistical Science, Duke University, Durham, NC, USA. 141Department 
of Mathematics, Duke University, Durham, NC, USA. 142Department of Computer Science, 
Duke University, Durham, NC, USA. 143Department of Biology, Duke University, Durham, NC, 
USA. 144Department of Genetics, Harvard Medical School, Boston, MA, USA. 145MIT Computer 
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 
Cambridge, MA, USA. 146Department of Psychiatry, University of California San Diego,  
La Jolla, CA, USA. 147Department of Genetics, University of Wisconsin, Madison, WI, USA. 
148Department of Statistics, University of Wisconsin, Madison, WI, USA. 149Department of 
Computer Sciences, University of Wisconsin, Madison, WI, USA. 150Department of Pediatrics, 
University of Wisconsin, Madison, WI, USA. 151PreventionGenetics Inc., Part of Exact Sciences, 
Marshfield, WI, USA. 152Marshfield Clinic Health System, Marshfield, WI, USA. 153Department of 
Data Science, Dana-Farber Cancer Institute, Boston, MA, USA. 154Department of Biomedical 
Engineering, Johns Hopkins University, Baltimore, MD, USA. 155Malone Center for Engineering 
in Healthcare, Johns Hopkins University, Baltimore, MD, USA. 156Department of Computer 
Science, Johns Hopkins University, Baltimore, MD, USA. 157Department of Genetic Medicine, 
Johns Hopkins University, Baltimore, MD, USA. 158Department of Biomedical Data Science, 
Stanford University, Stanford, CA, USA. 

Network Projects (contact PI, MPIs (alphabetical by last name), other members 
(alphabetical by last name))

U01HG012041
Harinder Singh6, Jishnu Das6, Nidhi Sahni13,14, Marisa Abundis6, Deepa Bisht13, 
Trirupa Chakraborty6, Jingyu Fan6, David R. Hall6, Zarifeh H. Rarani6, Abhinav K. Jain13, 

Babita Kaundal13, Swapnil Keshari6, Daniel McGrail159, Nicholas A. Pease6, Vivian F. Yi6 & 
S. Stephen Yi71,72

U01HG012047
Hao Wu160, Sreeram Kannan161, Hongjun Song162, Jingli Cai163, Ziyue Gao160, Ronni Kurzion162, 
Julia I. Leu160, Fan Li160, Dongming Liang160, Guo-li Ming162, Kiran Musunuru163, Qi Qiu160, 
Junwei Shi164, Yijing Su162, Sarah Tishkoff160, Ning Xie160, Qian Yang162, Wenli Yang163, 
Hongjie Zhang160 & Zhijian Zhang162

U01HG012051
Danwei Huangfu48,49, Michael A. Beer165, Anna-Katerina Hadjantonakis48,49, Sharon Adeniyi48,49, 
Hyein Cho48,49, Ronald Cutler166, Rachel A. Glenn48,49,167, David Godovich48,49, Nan Hu48,49, 
Svetlana Jovanic48,49, Renhe Luo48,49, Jin Woo Oh165, Milad Razavi-Mohseni165, Dustin Shigaki165, 
Simone Sidoli166, Thomas Vierbuchen48,49, Xianming Wang48,49, Breanna Williams48,49, 
Jielin Yan48,49, Dapeng Yang48,49 & Yunxiao Yang165

U01HG012059
Maike Sander73, Hannah Carter12, Kyle J. Gaulton73, Bing Ren168,169, Weronika Bartosik168, 
Hannah S. Indralingam168, Adam Klie170, Hannah Mummey170, Mei-Lin Okino171, Gaowei Wang73, 
Nathan R. Zemke168, Kai Zhang168 & Han Zhu73

U01HG012079
Chongyuan Luo67, Kathrin Plath68, Noah Zaitlen172, Brunilda Balliu44,45,46, Jason Ernst45,68, 
Justin Langerman68, Terence Li67 & Yu Sun68

U01HG012103
Christina S. Leslie38, Alexander Y. Rudensky173,174, Preethi K. Periyakoil38, Vianne R. Gao38, 
Melanie H. Smith175, Norman M. Thomas38, Laura T. Donlin175,176, Amit Lakhanpal175, 
Kaden M. Southard38 & Rico C. Ardy38

159Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, 
OH, USA. 160Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. 
161Department of Electrical and Computer Engineering, University of Washington, Seattle,  
WA, USA. 162Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA. 
163Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 164Department 
of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA. 165Department of 
Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns 
Hopkins University, Baltimore, MD, USA. 166Department of Biochemistry, Albert Einstein 
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