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Chapter 10

Community-Wide Evaluation of Computational Function 
Prediction

Iddo Friedberg and Predrag Radivojac

Abstract

A biological experiment is the most reliable way of assigning function to a protein. However, in the era of 
high-throughput sequencing, scientists are unable to carry out experiments to determine the function of 
every single gene product. Therefore, to gain insights into the activity of these molecules and guide experi-
ments, we must rely on computational means to functionally annotate the majority of sequence data. To 
understand how well these algorithms perform, we have established a challenge involving a broad scientific 
community in which we evaluate different annotation methods according to their ability to predict the 
associations between previously unannotated protein sequences and Gene Ontology terms. Here we dis-
cuss the rationale, benefits, and issues associated with evaluating computational methods in an ongoing 
community-wide challenge.
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1 Introduction

Molecular biology has become a high volume information science. 
This rapid transformation has taken place over the past two decades 
and has been chiefly enabled by two technological advances: (1) 
affordable and accessible high-throughput sequencing platforms, 
sequence diagnostic platforms, and proteomic platforms and (2) 
affordable and accessible computing platforms for managing and 
analyzing these data. It is estimated that sequence data accumulates 
at the rate of 100 exabases per day (1 exabase  = 1018 bases) [35]. 
However, the available sequence data are of limited use without 
understanding their biological implications. Therefore, the develop-
ment of computational methods that provide clues about functional 
roles of biological macromolecules is of primary importance.

Many function prediction methods have been developed over 
the past two decades [12, 31]. Some are based on sequence align-
ments to proteins for which the function has been experimentally 
established [4, 11, 24], yet others exploit other types of data such as 
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protein structure [26, 27], protein and gene expression data [17], 
macromolecular interactions [21, 25], scientific literature [3], or a 
combination of several data types [9, 34, 36]. Typically, each new 
method is trained and evaluated on different data. Therefore, estab-
lishing best practices in method development and evaluating the 
accuracy of these methods in a standardized and unbiased setting is 
important. To help choose an appropriate method for a particular 
task, scientists often form community challenges for evaluating 
methods [7]. The scope of these challenges extends beyond testing 
methods: they have been successful in invigorating their respective 
fields of research by building communities and producing new ideas 
and collaborations (e.g., [20]).

In this chapter we discuss a community-wide effort whose goal 
is to help understand the state of affairs in computational protein 
function prediction and drive the field forward. We are holding a 
series of challenges which we named the Critical Assessment of 
Functional Annotation, or CAFA. CAFA was first held in 2010–
2011 (CAFA1) and included 23 groups from 14 countries who 
entered 54 computational function prediction methods that were 
assessed for their accuracy. To the best of our knowledge, this was 
the first large-scale effort to provide insights into the strengths and 
weaknesses of protein function prediction software in the bioinfor-
matics community. CAFA2 was held in 2013–2014, and more 
than doubled the number of groups (56) and participating meth-
ods (126). Although several repetitions of the CAFA challenge 
would likely give accurate trajectory of the field, there are valuable 
lessons already learned from the two CAFA efforts.

For further reading on CAFA1, the results were reported in 
full in [30]. As of this time, the results of CAFA2 are still unpub-
lished and will be reported in the near future. The preprint of the 
paper is available on arXiv [19].

2 Organization of the CAFA Challenge

We begin our explanation of CAFA by describing the participants. 
The CAFA challenge generally involves the following groups: the 
organizers, the assessors, the biocurators, the steering committee, 
and the predictors (Fig. 1a).

The main role of the organizers is to run CAFA smoothly and 
efficiently. They advertise the challenge to recruit predictors, coordi-
nate activities with the assessors, report to the steering committee, 
establish the set of challenges and types of evaluation, and run the 
CAFA web site and social networks. The organizers also compile 
CAFA data and coordinate the publication process. The  assessors 
develop assessment rules, write and maintain assessment software, 
collect the submitted prediction data, assess the data, and present 
the evaluations to the community. The assessors work together with 
the organizers and the steering committee on standardizing 
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submission formats and developing assessment rules. The biocura-
tors joined the experiment during CAFA2: they provide additional 
functional annotations that may be particularly interesting for the 
challenge. The steering committee members are in regular contact 
with the organizers and assessors. They provide advice and guidance 
that ensures the quality and integrity of the experiment. Finally, the 
largest group, the predictors, consists of research groups who 
develop methods for protein function prediction and submit their 
predictions for evaluation. The organizers, assessors, and biocurators 
are not allowed to officially evaluate their own methods in CAFA.

CAFA is run as a timed challenge (Fig. 1b). At time t0, a large 
number of experimentally unannotated proteins are made public by 
the organizers and the predictors are given several months, until time 
t1, to upload their predictions to the CAFA server. At time t1 the 
experiment enters a waiting period of at least several months, during 
which the experimental annotations are allowed to accumulate in 
databases such as Swiss-Prot [2] and UniProt-GOA [16]. These 
newly accumulated annotations are collected at time t2 and are 
expected to provide experimental annotations for a subset of original 
proteins. The performance of participating methods is then analyzed 
between time points t2 and t3 and presented to the community at 
time t3. It is important to mention that unlike some machine learning 
challenges, CAFA organizers do not provide training data that is 
required to be used. CAFA, thus, evaluates a combination of 
biological knowledge, the ability to collect and curate training data, 
and the ability to develop advanced computational methodology.

b Experiment timeline

a CAFA organization

AssessorsSteering Committee

Prediction Annotation growth Assessment

• Oversee the experiment

• Ensure integrity

Organizers

Predictors

• Develop methodology

• Submit predictions

• Collect predictions

• Evaluate methods

• Connect all parties

• Direct the experiment

t1t0 t2 t3

Biocurators

annotations (CAFA2)

• Provide functional

Fig. 1 The organizational structure of the CAFA experiment. (a) Five groups of participants in the experiment 
together with their main roles. Organizers, assessors, and biocurators cannot participate as predictors.  
(b) Timeline of the experiment
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We have previously described some of the principles that guide 
us in organizing CAFA [13]. It is important to mention that CAFA 
is associated with the Automated Function Prediction Special 
Interest Group (Function-SIG) that is regularly held at the 
Intelligent Systems for Molecular Biology (ISMB) conference 
[37]. These meetings provide a forum for exchanging ideas and 
communicating research among the participants. Function-SIG 
also serves as the venue at which CAFA results are initially pre-
sented and where the feedback from the community is sought.

3 The Gene Ontology Provides the Functional Repertoire for CAFA

Computational function prediction methods have been reviewed 
extensively [12, 31] and are also discussed in Chapter 5 [8]. Briefly, a 
function prediction method can be described as a classifier: an algo-
rithm that is tasked with correctly assigning biological function to a 
given protein. This task, however, is arbitrarily difficult unless the 
function comes from a finite, preferably small, set of functional terms. 
Thus, given an unannotated protein sequence and a set of available 
functional terms, a predictor is tasked with associating terms to a 
protein, giving a score (ideally, a probability) to each association.

The Gene Ontology (GO) [1] is a natural choice when looking 
for a standardized, controlled vocabulary for functional annota-
tion. GO’s high adoption rate in the protein annotation commu-
nity helped ensure CAFA’s attractiveness, as many groups were 
already developing function prediction methods based on GO, or 
could migrate their methods to GO as the ontology of choice. A 
second consideration is GO’s ongoing maintenance: GO is con-
tinuously maintained by the Gene Ontology Consortium, edited 
and expanded based on ongoing discoveries related to the function 
of biological macromolecules.

One useful characteristic of the basic GO is that its directed acy-
clic graph structure can be used to quantify the information provided 
by the annotation; for details on the GO structure see Chaps. 1 and 
3 [14, 15]. Intuitively, this can be explained as follows: the annota-
tion term “Nucleic acid binding” is less specific than “DNA binding” 
and, therefore, is less informative (or has a lower information con-
tent). (A more precise definition of information content and its use in 
GO can be found in [23, 32].) The following question arises: if we 
know that the protein is annotated with the term “Nucleic acid bind-
ing,” how can we quantify the additional  information provided by 
the term “DNA binding” or incorrect information provided by the 
term “RNA binding”? The hierarchical nature of GO is therefore 
important in determining proper metrics for annotation accuracy. 
The way this is done will be discussed in Sect. 4.2.

When annotating a protein with one or more GO terms, the 
association of each GO term with the protein should be described 
using an Evidence Code (EC), indicating how the annotation is 
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supported. For example, the Experimental Evidence code (EXP) is 
used in an annotation to indicate that an experimental assay has been 
located in the literature, whose results indicate a gene product’s func-
tion. Other experimental evidence codes include Inferred by 
Expression Pattern (IEP), Inferred from Genetic Interaction (IGI), 
and Inferred from Direct Assay (IDA), among others. Computational 
evidence codes include lines of evidence that were generated by com-
putational analysis, such as orthology (ISO), genomic context (IGC), 
or identification of key residues (IKR). Evidence codes are not 
intended to be a measure of trust in the annotation, but rather a 
measure of provenance for the annotation itself. However, annota-
tions with experimental evidence are regarded as more reliable than 
computational ones, having a provenance stemming from experi-
mental verification. In CAFA, we treat proteins annotated with 
experimental evidence codes as a “gold standard” for the purpose of 
assessing predictions, as explained in the next section. The computa-
tional evidence codes are treated as predictions.

From the point of view of a computational challenge, it is impor-
tant to emphasize that the hierarchical nature of the GO graph leads 
to the property of consistency or True Path Rule in functional annota-
tion. Consistency means that when annotating a protein with a given 
GO term, it is automatically annotated with all the ancestors of that 
term. For example, a valid prediction cannot include “DNA binding” 
but exclude “Nucleic acid binding” from the ontology because DNA 
binding implies nucleic acid binding. We say that a prediction is not 
consistent if it includes a child term, but excludes its parent. In fact, 
the UniProt resource and other databases do not even list these parent 
terms from a protein’s experimental annotation. If a protein is anno-
tated with several terms, a valid complete annotation will automati-
cally include all parent terms of the given terms, propagated to the 
root(s) of the ontology. The result is that a protein’s annotation can 
be seen as a consistent sub-graph of GO. Since any computational 
method effectively chooses one of a vast number of possible consistent 
sub-graphs as its prediction, the sheer size of the functional repertoire 
suggests that function prediction is non-trivial.

4 Comparing the Performance of Prediction Methods

In the CAFA challenge, we ask the participants to associate a large 
number of proteins with GO terms and provide a probability score 
for each such association. Having associated a set of GO sub-graphs 
with a given confidence, the next step is to assess how accurate 
these predictions are. This involves: (1) establishing standards of 
truth and (2) establishing a set of assessment metrics.

The main challenge to establishing a standard-of-truth set for test-
ing function prediction methods is to find a large set of correctly 
annotated proteins whose functions were, until recently, unknown. 

4.1 Establishing 
Standards of Truth
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An obvious choice would be to ask experimental scientists to pro-
vide these data from their labs. However, scientists prefer to keep 
the time between discovery and publication as brief as possible, 
which means that there is only a small window in which new exper-
imental annotations are not widely known and can be used for 
assessment. Furthermore, each experimental group has its own 
“data sequestration window” making it hard to establish a com-
mon time for all data providers to sequester their data. Finally, to 
establish a good statistical baseline for assessing prediction method 
performance, a large number of prediction targets are needed, 
which is problematic since most laboratories research one or only a 
few proteins each. High-throughput experiments, on the other 
hand, provide a large number of annotations, but those tend to 
concentrate only on few functions, and generally provide annota-
tions that have a lower information content [32].

Given these constraints, we decided that CAFA would not ini-
tially rely on direct communication between the CAFA organizers 
and experimental scientists to provide new functional data. Instead, 
CAFA relies primarily on established biocuration activities around 
the world: we use annotation databases to conduct CAFA as a 
time-based challenge. To do so, we exploit the following dynamics 
that occurs in annotation databases: protein annotation databases 
grow over time. Many proteins that at a given time t1 do not have 
experimentally verified annotation, but later, some of proteins may 
gain experimental annotations, as biocurators add these data into 
the databases. This subset of proteins that were not experimentally 
annotated at t1, but gained experimental annotations at t2, are the 
ones that we use as a test set during assessment (Fig. 1b). In CAFA1 
we reviewed the growth of Swiss-Prot over time and chose 50,000 
target proteins that had no experimental annotation in the 
Molecular Function or Biological Process ontologies of GO. At t2, 
out of those 50,000 targets we identified 866 benchmark proteins; 
i.e., targets that gained experimental annotation in the Molecular 
Function and/or Biological Process ontologies. While a bench-
mark set of 866 proteins constitutes only 1.7 % of the number of 
original targets, it is a large enough set for assessing performance 
of prediction methods. To conclude, exploiting the history of the 
Swiss-Prot database enabled its use as the source for standard-of- 
truth data for CAFA. In CAFA2, we have also considered experi-
mental annotations from UniProt-GOA [16] and established 3681 
benchmark proteins out of 100,000 targets (3.7 %).

One criticism of a time-based challenge is that when assessing 
predictions, we still may not have a full knowledge of a protein’s 
function. A protein may have gained experimental validation for 
function f1, but it may also have another function, say f2, associated 
with it, which has not been experimentally validated by the time t2. 
A method predicting f2 may be judged to have made a false- positive 
prediction, even though it is correct (only we do not know it yet). 
This problem, known as the “incomplete knowledge problem” or 
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the “open world problem” [10] is discussed in detail in Chapter 8 
[33]. Although the incomplete knowledge problem may impact the 
accuracy of time-based evaluations, its actual impact in CAFA has 
not been substantial. There are several reasons for this and are also 
discussed in, including the robustness of the evaluation metrics used 
in CAFA, and that the newly added terms may be unexpected and 
more difficult to predict. The influence of incomplete data and con-
ditions under which it can affect a time-based challenge were inves-
tigated and discussed in [18]. Another criticism of CAFA is that the 
experimental functional annotations are not unbiased because some 
terms have a much higher frequency than others due to artificial 
considerations. There are two chief reasons for this bias: first, high- 
throughput assays typically assign shallow terms to proteins, but 
being high throughput means they can dominate the experimentally 
verified annotations in the databases. Second, biomedical research is 
driven by interest in specific areas of human health, resulting in over-
representation of health-related functions [32]. Unfortunately, 
CAFA1 and CAFA2 could not guarantee unbiased evaluation. 
However, we will expand the challenge in CAFA3 to collect genome-
wide experimental evidence for several biological terms. Such an 
assessment will result in unbiased evaluation on those specific terms.

When assessing the prediction quality of different methods, two 
questions come to mind. First, what makes a good prediction? 
Second, how can one score and rank prediction methods? There is 
no simple answer to either of these questions. As GO comprises 
three ontologies that deal with different aspects of biological func-
tion, different methods should be ranked separately with respect to 
how well they perform in Molecular Function, Biological Process, 
or the Cellular Component ontologies. Some methods are trained 
to predict only for a subset of any given GO graph. For example, 
they may only provide predictions of DNA-binding proteins or of 
mitochondrial-targeted proteins. Furthermore, some methods are 
trained only on a single species or a subset of species (say, eukary-
otes), or using specific types of data such as protein structure, and 
it does not make sense to test them on benchmark sets for which 
they were not trained. To address this issue, CAFA scored methods 
not only in general performance, but also on specific subsets of 
proteins taken from humans and model organisms, including Mus 
musculus, Rattus norvegicus, Arabidopsis thaliana, Drosophila 
melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, 
Dictyostelium discoideum, and Escherichia coli. In CAFA2, we 
extended this evaluation to also assess the methods only on bench-
mark proteins on which they made predictions; i.e., the methods 
were not penalized for omitting any benchmark protein.

One way to view function prediction is as an information 
retrieval problem, where the most relevant functional terms should 
be correctly retrieved from GO and properly assigned to the amino 
acid sequence at hand. Since each term in the ontology implies 

4.2 Assessment 
Metrics
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some or all of its ancestors,1 a function prediction program’s task is 
to assign the best consistent sub-graph of the ontology to each 
new protein and output a prediction score for this sub-graph and/
or each predicted term. An intuitive scoring mechanism for this 
type of problem is to treat each term independently and provide 
the precision–recall curve. We chose this evaluation as our main 
evaluation in CAFA1 and CAFA2.

Let us provide more detail. Consider a single protein on which 
evaluation is carried out, but keep in mind that CAFA eventually 
averages all metrics over the set of benchmark proteins. Let now T 
be a set of experimentally determined nodes and P a non-empty set 
of predicted nodes in the ontology for the given protein. Precision 
(pr) and recall (rc) are defined as 
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where | P | is the number of predicted terms, | T | is the number of 
experimentally determined terms, and | P ∩ T | is the number of terms 
appearing in both P and T; see Fig. 2 for an illustrative  example of this 
measure. Usually, however, methods will associate scores with each 
predicted term and then a set of terms P will be established by defin-
ing a score threshold t; i.e., all predicted terms with scores greater 
than t will constitute the set P. By varying the decision threshold 
t ∈ [0, 1], the precision and recall of each method can be plotted as a 
curve (pr(t), rc(t))t, where one axis is the precision and the other the 
recall; see Fig. 3 for an illustration of pr–rc curves and [30] for pr–rc 
curves in CAFA1. To compile the precision–recall information into a 
single number that would allow easy comparison between methods, 
we used the maximum harmonic mean of precision and recall any-
where on the curve, or the maximum F1-measure which we call Fmax 
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where we modified pr(t) and rc(t) to reflect the dependency on t. 
It is worth pointing out that the F-measure used in CAFA places 
equal emphasis on precision and recall as it is unclear which of the 
two should be weighted more. One alternative to F1 would be the 
use of a combined measure that weighs precision over recall, which 
reflects the preference of many biologists for few answers with a 
high fraction of correctly predicted terms (high precision) over 
many answers with a lower fraction of correct predictions (high 
recall); the rationale for this tradeoff is illustrated in Fig. 3. 

1
 Some types of edges in Gene Ontology violate the transitivity property (con-

sistency assumption), but they are not frequent.
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However, preferring precision over recall in a hierarchical setting 
can steer methods to focus on shallow (less informative) terms in 
the ontology and thus be of limited use. At the same time, putting 
more emphasis on recall may lead to overprediction, a situation in 
which many or most of the predicted terms are incorrect. For this 
reason, we decided to equally weight precision and recall. 
Additional metrics within the precision–recall framework have 
been considered, though not implemented yet.

Precision and recall are useful because they are easy to interpret: 
a precision of 1/2 means that one half of all predicted terms are cor-
rect, whereas a recall of 1/3 means that one third of the experimen-
tal terms have been recovered by the predictor. Unfortunately, 
precision–recall curves and F1, while simple and interpretable mea-
sures for evaluating ontology-based predictions, are limited because 
they ignore the hierarchical nature of the ontology and dependencies 
among terms. They also do not directly capture the information 
content of the predicted terms.  Assessment metrics that take into 
account the information content of the terms were developed in the 
past [22, 23, 29], and are also detailed in Chapter 12 [28]. In 
CAFA2 we used an information-theoretic measure in which each 
term is assigned a probability that is dependent on the probabilities 
of its direct parents. These probabilities are calculated from the fre-
quencies of the terms in the database used to generate the CAFA 
targets. The entire ontology graph, thus, can be seen as a simple 
Bayesian network [5]. Using this representation, two information-
theoretic analogs of precision and recall can be constructed. We refer 
to these quantities as misinformation (mi), the information content 
attributed to the nodes in the predicted graph that are incorrect, and 

Cell differentiation

Biological process

a Predicted function

Biological process

Apoptosis

b True function

Cellular
process

Cellular
process

Fig. 2 CAFA assessment metrics. (a) Red nodes are the predicted terms P for a particular decision threshold in 
a hypothetical ontology and (b) blue nodes are the true, experimentally determined terms T. The circled terms 
represent the overlap between the predicted sub-graph and the true sub-graph. There are two nodes (circled) 
in the intersection of P and T, where | P |  = 5 and | T |  = 3. This sets the prediction’s precision at 2/5=0.4 and 
recall at 2/3 = 0.667, with F1 = 2 x 0.4 x 0.667 / (0.4 + 0.667) = 0.5. The remaining uncertainty (ru) is the 
information content of the uncircled blue node in panel (b), while the misinformation (mi) is the total informa-
tion content of the uncircled red nodes in panel (a). An information content of any node v is calculated from a 
representative database as − logPr(v | Pa(v)); i.e., the probability that the node is present in a protein’s annota-
tion given that all its parents are also present in its annotation
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remaining uncertainty (ru), the information content of all nodes 
that belong to the true annotation but not the predicted annotation. 
More formally, if T is a set of experimentally determined nodes and 
P a set of predicted nodes in the ontology, then 

ru Pa mi Pa( , ) logPr( | ( )); ( , ) logPr( | ( )P T v v P T v v
v T P v P T

= - = -
Î - Î -
å å )),

where Pa(v) is the set of parent terms of the node v in the ontology 
(Fig. 2). A single performance measure to rank methods, the mini-
mum semantic distance Smin, is the minimum distance from the 
origin to the curve (ru(t), mi(t))t. It is defined as 
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where k ≥ 1. We typically choose k = 2, in which case Smin is the mini-
mum Euclidean distance between the ru–mi curve and the origin of 
the coordinate system (Fig. 3b). The ru–mi plots and Smin metrics 
compare the true and predicted annotation graphs by adding an 
additional weighting component to high-information nodes. In that 
manner, predictions with a higher information content will be 
assigned larger weights. The semantic distance has been a useful 
measure in CAFA2 as it properly accounts for term dependencies in 
the ontology. However, this approach also has limitations in that it 
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Fig. 3 Precision-recall curves and remaining uncertainty-misinformation curves. This figure illustrates the 
need for multiple assessment metrics, and understanding the context in which the metrics are used. (a) two 
pr-rc curves corresponding to two prediction methods M1 and M2. The point on each curve that gives Fmax is 
marked as a circle. Although the two methods have a similar performance according to Fmax, method M1 

achieves its best performance at high recall values, whereas method M2 achieves its best performance at high 
precision values. (b) two ru-mi curves corresponding to the same two prediction methods with marked points 
where the minimum semantic distance is achieved. Although the two methods have similar performance in the 
pr-rc space, method M1 outperforms M2 in ru-mi space. Note, however, that the performance in ru-mi space 
depends on the frequencies of occurrence of every term in the database. Thus, two methods may score differ-
ently in their Smin when the reference database changes over time, or using a different database
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relies on an assumed Bayesian network as a generative model of pro-
tein function as well as on the available databases of protein func-
tional annotations where term frequencies change over time. While 
the latter limitation can be remedied by more robust estimation of 
term frequencies in a large set of organisms, the performance accura-
cies in this setting are generally less comparable over two different 
CAFA experiments than in the precision–recall setting.

5 Discussion

Critical assessment challenges have been successfully adopted in a 
number of fields due to several factors. First, the recognition that 
improvements to methods are indeed necessary. Second, the ability 
of the community to mobilize enough of its members to engage in 
a challenge. Mobilizing a community is not a trivial task, as groups 
have their own research priorities and only a limited amount of 
resources to achieve them, which may deter them from undertak-
ing a time-consuming and competitive effort a challenge may pose. 
At the same time, there are quite a few incentives to join a com-
munity challenge. Testing one’s method objectively by a third 
party can establish credibility, help point out flaws, and suggest 
improvements. Engaging with other groups may lead to collabora-
tions and other opportunities. Finally, the promise of doing well in 
a challenge can be a strong incentive heralding a group’s excellence 
in their field. Since the assessment metrics are crucial to the perfor-
mance of the teams, large efforts are made to create multiple met-
rics and to describe exactly what they measure. Good challenge 
organizers try to be attentive to the requests of the participants, 
and to have the rules of the challenge evolve based on the needs of 
the community. An understanding that a challenge’s ultimate goal 
is to improve methodologies and that it takes several rounds of 
repeating the challenge to see results.

The first two CAFA challenges helped clarify that protein func-
tion prediction is a vibrant field, but also one of the most challeng-
ing tasks in computational biology. For example, CAFA provided 
evidence that the available function prediction algorithms 
 outperform a straightforward use of sequence alignments in func-
tion transfer. The performance of methods in the Molecular 
Function category has consistently been reliable and also showed 
progress over time (unpublished results from CAFA2). On the 
other hand, the performance in the Biological Process or Cellular 
Component ontologies has not yet met expectations. One of the 
reasons for this may be that the terms in these ontologies are less 
predictable using amino acid sequence data and instead would rely 
more on high-quality systems data; e.g., see [6]. The challenge has 
also helped clarify the problems of evaluation, both in terms of eval-
uating over consistent sub-graphs in the ontology but also in the 
presence of incomplete and biased molecular data. Finally, although 
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it is still early, some best practices in the field are beginning to 
emerge. Exploiting multiple types of data is typically advantageous, 
although we have observed that both machine learning expertise 
and good biological insights tend to result in strong performance. 
Overall, while the methods in the Molecular Function ontology 
seem to be maturing, in part because of the strong signal in sequence 
data, the methods in the Biological Process and Cellular Component 
ontologies still appear to be in the early stages of development. 
With the help of better data over time, we expect significant 
improvements in these categories in the future CAFA experiments.

Overall, CAFA generated a strong positive response to the call 
for both challenge rounds, with the number of participants sub-
stantially growing between CAFA1 (102 participants) and CAFA2 
(147). This indicates that there exists significant interest in devel-
oping computational protein function prediction methods, in 
understanding how well they perform, and in improving their per-
formance. In CAFA2 we preserved the experiment rules, ontolo-
gies, and metrics we used in CAFA1, but also added new ones to 
better capture the capabilities of different methods. The CAFA3 
experiment will further improve evaluation by facilitating unbiased 
evaluation for several select functional terms.

More rounds of CAFA are needed to know if computational 
methods will improve as a direct result of this challenge. But given the 
community’s growth and growing interest, we believe that CAFA is a 
welcome addition to the community of protein function annotators.
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