
An Approach to Identifying and Quantifying Bias in Biomedical Data

M. Clara De Paolis Kaluza, Shantanu Jain, Predrag Radivojac

Northeastern University, Boston, MA 02115, U.S.A.

Data biases are a known impediment to the development of trustworthy machine learning
models and their application to many biomedical problems. When biased data is suspected,
the assumption that the labeled data is representative of the population must be relaxed
and methods that exploit a typically representative unlabeled data must be developed. To
mitigate the adverse effects of unrepresentative data, we consider a binary semi-supervised
setting and focus on identifying whether the labeled data is biased and to what extent.
We assume that the class-conditional distributions were generated by a family of compo-
nent distributions represented at different proportions in labeled and unlabeled data. We
also assume that the training data can be transformed to and subsequently modeled by
a nested mixture of multivariate Gaussian distributions. We then develop a multi-sample
expectation-maximization algorithm that learns all individual and shared parameters of the
model from the combined data. Using these parameters, we develop a statistical test for
the presence of the general form of bias in labeled data and estimate the level of this bias
by computing the distance between corresponding class-conditional distributions in labeled
and unlabeled data. We first study the new methods on synthetic data to understand their
behavior and then apply them to real-world biomedical data to provide evidence that the
bias estimation procedure is both possible and effective.
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1. Introduction

The development and application of machine learning methods have become commonplace
in biomedical sciences and have the potential to transform clinical care.1,2 Many of those
predictive modeling approaches take place in a binary semi-supervised setting; that is, where
the prediction outcome is dichotomized and the available data for training and evaluation
contains samples of labeled and unlabeled examples. One such scenario is the prediction of
the effect of genomic variants as pathogenic or benign, where labeled data contains pathogenic
(positive) and benign (negative) variants from databases such as ClinVar3 and the unlabeled
data is often a large reference set of observed variants such as gnomAD.4

A traditional approach in semi-supervised learning is to assume that the labeled data is
representative of unlabeled data, thus requiring little sophistication during model develop-
ment, model selection, and performance evaluation. However, a distinguishing feature of real
biomedical data is that the labeled examples may not be representative of the unlabeled data;
that is, the labeled data may be biased.5 Data biases can have adverse effects on the ability of
models to be optimized for the unlabeled data at hand and can also lead to poor estimation
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Fig. 1: An illustration of bias in labeled data. Left: unbiased (unobserved, dash-dotted lines) distri-
butions of positive (f+) and negative (f−) classes that comprise the (observed, solid line) unbiased
mixture distribution f = αf+ + (1 − α)f−, drawn here with α = 0.3. Right: the same unbiased
observed mixture f together with biased observed distributions of positive (f ′

+) and negative (f ′
−)

classes. The objective of this work is to use datasets from (f, f ′
+, f

′
−) to estimate the existence and

extent of the differences between f+ and f ′
+ and between f− and f ′

−.

of a classifier’s performance on a reference distribution.6 More generally, biased data presents
an obstacle to the development of trustworthy methods that are necessary for the societal
acceptance of machine learning-based predictive technologies.7,8

Learning under sample selection bias is a well-known problem.9 Early approaches relaxed
the assumption of fully representative data by assuming the same class-conditional distribu-
tions in labeled and unlabeled data, thus reducing the problem of posterior estimation to
estimation of class priors in unlabeled data.10,11 Other approaches consider situations where
at least one class-conditional distribution from which the labeled data is generated is repre-
sentative of its unlabeled counterpart.12–15 While such methods have advanced the treatment
of sample selection bias, we are not aware of methods that can identify whether and to what
extent labeled data differs from unlabeled data for a general form of bias.

The objective of this work is to develop a statistical test for identifying biased labeled data
while simultaneously quantifying the level of bias. We assume that the real-world data can be
transformed and subsequently modeled using nested mixtures of multivariate Gaussian distri-
butions; that is, with both positive and negative samples being Gaussian mixtures themselves.
We then model these class-conditional distributions in both labeled and unlabeled data by
the shared underlying component distributions, but permit the proportions at which the data
is sampled from those component distributions to differ between labeled and unlabeled data.
We finally develop an expectation-maximization (EM) algorithm that learns both individual
and shared parameters from the combined data which allows us to identify and quantify bias.
Our experiments on synthetic and real-world data demonstrate the ability of this procedure
to detect bias and provide useful information to data scientists in their workflows.

2. Problem Formulation

We consider the binary classification problem where input features x ∈ RD are used to predict
class label y ∈ Y = {−,+}, where + and − represent the positive and negative class, respec-
tively. Let p(x, y) be the unknown joint distribution that governs how x appears in nature or
in a target population of interest and its relationship with y. We refer to p(x, y) as the unbi-
ased distribution, where we expect a classifier to perform optimally. Let f+(x) = p(x|y = +)

and f−(x) = p(x|y = −) denote the positive and negative class-conditional distributions, re-
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spectively. Let f(x) = p(x) denote the marginal distribution over x and α = p(y = +) be the
probability that a random point from p(x, y) is positive, the class prior for the positive class.
It can be shown that f is a mixture distribution with components f+ and f− and mixing
proportions α and 1− α, respectively; i.e.,

f(x) = αf+(x) + (1− α)f−(x). (1)

Let L+ and L− represent sets of positive and negative labeled examples, respectively and
U represent a set of unlabeled examples, available for training. Though we observe examples
drawn randomly from f(x) in U , unlike the standard classification setting, we might not observe
labeled examples drawn randomly from f+(x) and f−(x). Instead L+ and L− are drawn from
potentially biased class-conditional distributions f ′

+(x) and f ′
−(x), respectively (Fig. 1). We

use the term bias here in a purely statistical sense; the labeled positives and negatives in
the observed data are systemically different from those in the unlabeled data such that they
cannot be interpreted to be drawn i.i.d. from the same distribution. In this work, we are
interested in detecting and quantifying the extent to which the examples in L+ and L− differ
from the positives and negatives in U , without the knowledge of the class labels in U .

2.1. Assumptions

If f ′
+(x) and f ′

−(x) are arbitrarily different from f+(x) and f−(x), respectively, detecting
and quantifying the bias is an intractable problem. Fortunately, for most practical settings
the biased and unbiased distributions are related. In this work, we employ a (G)aussian
(c)omponent-based “(m)ixing (b)ias” assumption (MB-GC),16 relating the biased and un-
biased distributions. Formally, we assume both f+(x) and f ′

+(x) can be expressed as mixtures
with the same K+ shared Gaussian component distributions, but with differing mixing pro-
portions. f−(x) and f ′

−(x) are assumed to be related in the same manner with K− shared
Gaussian components. Mathematically,

f∗(x) =
∑
k∈K∗

w∗
kϕ

∗
k(x) and f ′

∗(x) =
∑
k∈K∗

v∗kϕ
∗
k(x), (MB-GC)

where ∗ is a placeholder for + or −; K∗ = {1, 2, . . . ,K∗}; w∗ = [w∗
k]k∈K∗ and v∗ = [v∗k]k∈K∗ are

probability vectors; i.e., w∗
k, v

∗
k ≥ 0,

∑
j∈K∗ w∗

j = 1 and
∑

j∈K∗ v∗j = 1; and ϕ∗
k(x) = ϕ(x;µ∗

k,Σ
∗
k)

is the D-dimensional Gaussian density function with mean µ∗
k and covariance Σ∗

k. We use the
shorthand µ∗ = {µ∗

k}k∈K∗ and Σ∗ = {Σ∗
k}k∈K∗ to group the parameters.

It is important to mention that a parametric approximation of the distributions becomes
a universal nonparametric approximator as K+,K− → ∞.17 However, picking a large number
of components may lead to a complex model prone to overfitting and identifiability issues. We
therefore restrict ourselves to a relatively small number of components, up to eight, in each
class-conditional representation, as in the parametric paradigm.

Since Gaussian mixture models are effective up to a moderate number dimensions, for
high-dimensional data, we employ the MB-GC assumption after dimensionality reduction.
Conceptually, we interpret the input feature x ∈ RD as a low-dimensional representation
of Dr-dimensional raw features (Dr > D) in such cases. It is conceivable that neither the
raw features nor the dimensionality-reduced features appear exactly as Gaussian mixtures,
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especially with a small number of components. In spite of this limitation, we argue that
the modern representation learning approaches18,19 can be used to learn embeddings that do
satisfy that property, potentially making our assumptions and methods even more effective.

2.2. Quantifying Bias

Although various distance measures can be used,20 we quantify the bias between f+ and f ′
+

as the area under the ROC curve (AUC) of an optimal binary classifer, or a score function
s : RD → R, between them. Based on the probabilistic interpretation of AUC,21 it is the
probability that a randomly drawn example from f+ achieves a higher score than a randomly
drawn example from f ′

+, as per an optimal score function. Mathematically, for S being the
family of all real-valued score functions defined on RD,

AUC(f+, f
′
+) = maxs∈S AUCs(f+, f

′
+),

where, correcting for ties, AUCs(f+, f
′
+) = p(s(Xf+) > s(Xf ′

+
)) + 1

2p(s(Xf+) = s(Xf ′
+
)); Xf+ and

Xf ′
+
are random variables distributed according to f+ and f ′

+, respectively. Note that AUC
is symmetric; i.e., AUC(f+, f

′
+) = AUC(f ′

+, f+). It ranges from 0.5 to 1, with a higher value
indicating a larger difference between the two distributions and consequently a larger bias.
Typically, values between 0.5 and 0.6 are considered to be small enough that the distributions
can be interpreted to be practically indistinguishable. A value of 1 corresponds to a perfect
classifier; that is, a situation when the supports between f ′

+ and f+ are distinct. Thus, in this
work, a value of 0.5 indicates no bias and a value of 1 indicates maximum bias (Fig. 2).

If samples from f+ and f ′
+ were available, AUC(f+, f

′
+) could be estimated by first training

a classifier to separate the samples, and then computing AUC in the standard manner as the
area under the ROC curve. Though a sample from f+ is not readily available, such a sample
is procured using the approach presented in Methods. The bias between f− and f ′

− can be
quantified as AUC(f−, f

′
−) and estimated similarly.

3. Methods

In order to detect and quantify the bias, we derive an expectation-maximization (EM) algo-
rithm from multi-sample Gaussian mixtures. Under the MB-GC assumptions each of L+, L−

and U contain examples drawn i.i.d. from a Gaussian mixture. Formally,

∀x ∈ L∗, x ∼
∑
k∈K∗

v∗kϕ
∗
k(x) ∀x ∈ U, x ∼

∑
k∈K+

αw+
k ϕ

+
k (x) +

∑
k∈K−

(1− α)w−
k ϕ

−
k (x),

where the second equation for the distribution of U is obtained by combining MB-GC assump-
tions with Eq. 1 and ∗ is a placeholder for + or −. Note that the resultant distribution is a
mixture of K+ +K− components. The combined data log-likelihood is given by

L
(
θ;L+, L−, U

)
=
∑
x∈L+

log

(∑
k∈K+

v+k ϕ
+
k (x)

)
+
∑
x∈L−

log

(∑
k∈K−

v−k ϕ
−
k (x)

)

+
∑
x∈U

log

(∑
k∈K+

αw+
k ϕ

+
k (x) +

∑
k∈K−

(1− α)w−
k ϕ

−
k (x)

)
,
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where θ = {α,w+,w−,v+,v−,µ+,µ−,Σ+,Σ−} represent all unknown parameters. To obtain
the maximum likelihood estimates of the parameters, we derive the following update equations,
under the EM framework.

α̂ =
1

|U |
∑
x∈U

∑
k∈K+

ω+
k (x; θ̌), ŵ∗

k =
1

α̌∗|U |
∑
x∈U

ω∗
k(x; θ̌), v̂∗k =

1

|L∗|
∑
x∈L∗

ν∗k(x; θ̌)

µ̂∗
k =

∑
x∈U ω∗

k(x; θ̌)x+
∑

x∈L∗ ν∗k(x; θ̌)x∑
x∈U ω∗

k(x; θ̌) +
∑

x∈L∗ ν∗k(x; θ̌)
(EM-update)

Σ̂∗
k =

∑
x∈U ω∗

k(x; θ̌)(x− µ̌∗
k)(x− µ̌∗

k)
T +

∑
x∈L∗ ν∗k(x; θ̌)(x− µ̌∗

k)(x− µ̌∗
k)

T∑
x∈U ω∗

k(x; θ̌) +
∑

x∈L∗ ν∗k(x; θ̌)
,

where ˇ and ˆ are used to represent the current and updated parameters, respectively, during
an EM iteration; α+ = α and α− = 1− α; ω∗

k(x;θ) is the probability that a given x ∈ U comes
from ϕ∗

k; similarly, ν∗k(x;θ) is the probability that a given x ∈ L∗ comes from ϕ∗
k; i.e.,

ω∗
k(x;θ) =

α∗w∗
kϕ(x;µ

∗
k,Σ

∗
k)∑

k∈K+ αw+
k ϕ
(
x;µ+

k ,Σ
+
k

)
+
∑

k∈K−(1− α)w−
k ϕ
(
x;µ−

k ,Σ
−
k

)
ν∗k(x;θ) =

v∗kϕ(x;µ
∗
k,Σ

∗
k)∑

k∈K∗ v∗kϕ
(
x;µ∗

k,Σ
∗
k

) .
Starting with an initial value, as discussed in Section 3.3, the parameters in θ are iteratively up-
dated using Eq. EM-update until convergence, when the relative change in the log-likelihood,
(L(θ̂;L+, L−, U)−L(θ̌;L+, L−, U))/L(θ̌;L+, L−, U), is less than a small predefined threshold (δ)
or until the number of iterations reaches a predefined maximum (I).

3.1. Estimating Bias

Once θ is estimated, we use the estimated value of w+ to infer the distribution of the unbiased
positives, f+, as per Eq. MB-GC. In order to estimate the bias in the labeled positive sample,
we first subsample from U , to procure a set, L̂+, representing estimated f+. To this end, we
use the responsibility, r+(x; θ) =

∑
k∈K+ ω+

k (x; θ), giving the probability that a given x ∈ U is
a positive. Precisely, ∀x ∈ U , if

Bernoulli
(
r+(x; θ)

)
=

{
1 add x to L̂+,

0 discard x,

where r+(x; θ) is used as the success probability of the Bernoulli distribution. Once L̂+ is
procured, we estimate the bias, AUC

(
f+, f

′
+

)
, by training a classifier between L+ and L̂+

treated as positives and negatives, respectively, and compute the AUC using the classifier’s
score function. The bias in L− can be similarly estimated using the responsibility r−(x; θ) =∑

k∈K− ω−
k (x; θ) to subsample L̂− from U and then computing the AUC for a classifier trained to

separate L̂− and L−. For a dataset S = (L+, L−, U), we denote the estimated bias as Biasest(S).

3.2. Detecting Bias

We focus the subsequent presentation on bias detection in L+ only; the detection of bias in
L− can be approached similarly. Due to model misspecification and errors in the parameter
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and bias estimation, a bias higher than 0.5 is likely to be estimated, when, in fact, the data
is unbiased. To mitigate this issue, we introduce a bias threshold, τ ∈ [0.5, 1], and interpret a
dataset to contain bias only if its estimated bias is above τ . A higher value of τ would decrease
the probability that an unbiased dataset is detected to have bias (type-1 error), e(τ). However,
it will also decrease the probability that a biased dataset is detected to have bias (power),
q(τ). To achieve a low type-1 error and a high power, we determine an appropriate value of τ
by controlling for type-1 error on synthetic datasets; see Synthetic Data.

Let Sub
syn and Sb

syn be two families of unbiased and biased synthetic datasets, respectively,
where each dataset is of the form (L+, L−, U) and bias is defined as per the current context.
Let esyn(τ) = |{Biasest(S)≥τ, S∈Sub

syn}|/|Sub
syn| and qsyn(τ) = |{Biasest(S)≥τ, S∈Sb

syn}|/|Sb
syn| be the fraction

of unbiased and biased synthetic datasets with estimated bias above τ , respectively. We define
τη = minτesyn(τ) ≤ η as a suitable threshold for which type-1 error computed w.r.t Sub

syn is η

(typically, η ∈ [0, 0.1]); i.e., esyn(τη) = η. The power computed w.r.t. Sb
syn at τη is qsyn(τη). Using

this framework, for any real-world dataset S = (L+, L−, U), we enable computing a p-value for
bias detection as p-value(S) = esyn(Biasest(S)), the proportion of unbiased synthetic datasets
estimated to have a bias above Biasest(S).

Note that estimates of type-1 error, power and p-value computed w.r.t. synthetic datasets
are representative of their true values to the extent that they capture the diversity of the
real-world datasets. In addition to explicitly diversifying the synthetic datasets to a feasible
extent, we address this issue by also estimating type-1 error and power w.r.t. selected unbiased
and biased real-world datasets, still using the synthetic data threshold; see Data and Results.

3.3. Implementation Details

Initialization Parameter estimates of our algorithm are likely sensitive to the initial param-
eters; it is known to be the case for the standard EM algorithm (GMM) for a single Gaussian
mixture sample.22,23 Because we have access to labeled data, we leverage it for parameter
initialization. However, in order to introduce more diversity to initialization across multiple
restarts, we do not use parameters estimates on only labeled data as our initial parameters;
e.g., by using parameters from GMM on each L∗. Instead, we initialize parameters in the
following steps. (1) Run GMM with K∗ components on L∗ to obtain initial estimates of v∗,
for ∗ ∈ {+,−} and save the location parameter estimates u∗ = {u∗k}k∈K∗ (2) Run k-means++24

on unlabeled data U with K+ +K− centers. Sort the centers based on the minimum distance
to any location in u+. Pick the top K+ centers to initialize µ+ and the remaining centers
as µ−. (3) Compute the distance from unlabeled points x ∈ U to each of the K+ +K− cen-
ters and assign them to the closest one. This gives an assignment for all points to a cluster
which has already been assigned as positive or negative. (4) Use the assignments to compute

α =
∑

k∈K+ |A+
k |

|U | , w∗
k =

|A∗
k|∑

k∈K∗ |A∗
k|
and Σ∗

k = 1
|A∗

k|
∑

x∈A∗
k
(xi−µ∗

k)(xi−µ∗
k)

T , where A+
k (A−

k ) indicate

points assigned to the k-th positive (negative) cluster.

Model Selection Parameter estimation with EM algorithms when the number of compo-
nents is unknown is not trivial and many methods exist for model selection.25,26 We employ the
one-fold cross-validation-based information criterion (CVIC)25 for model selection by running
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our EM optimization for various values of K+,K− and selecting the model that achieves the
highest log-likelihood on a validation set.

Hyper-parameters We assume K ≡ K+ = K− for convenience in experimentation. We use
the maximum number of iterations I = 2000 and the convergence threshold δ = 10−8 for
termination. We run the estimation on each dataset 20 times with different random seeds.

4. Data

4.1. Synthetic Data

To find appropriate bias thresholds and evaluate our method, we generate synthetic Gaussian
mixture datasets, following MB-GC assumptions, from known parameters. This allows us to
control bias directly and evaluate performance for different levels of bias in the dataset.

Here f+ and f− are both K-component Gaussian mixtures. Their parameters are deter-
mined by a given AUC(f+, f−) range (e.g., [0.65, 0.7]) and mutual irreducibility parameters,
support (σ = 0.01) and pairwise responsibility threshold (ρ = 0.9), governing the overlap be-
tween each pair of components. Let ϕi and ϕj be two of the 2K components and let Zi and Zj

be samples of 1000 examples each, drawn from ϕi and ϕj, respectively. If more than σ fraction
of points in Zi have ϕi(·) ≥ ρ(ϕi(·) + ϕj(·)) and, similarly, more than σ fraction of points in
Zj have ϕj(·) ≥ ρ(ϕi(·) + ϕj(·)), then ϕi and ϕj are considered to be approximately mutually
irreducible.27 Starting with random values for the location and shape parameters for each
component as well as the mixing proportions w+ and w− of the two mixtures (drawn from a
flat Dirichlet distribution), the parameters are perturbed until AUC(f+, f−), evaluated with
f+(·)/f−(·) as the score function (known to be optimal), lies in the desired range and all pairs of
the 2K components are approximately mutually irreducible w.r.t. σ and ρ.

We generate 1000 unbiased datasets for each combination of dimensions D ∈ {1, 2, 8, 16}
and number of components K ∈ {2, 4, 8}. The class prior α is sampled uniformly from the
range [0.01, 0.99] for each dataset. Seven AUC(f+, f−) ranges, [0.65, 0.7], [0.7, 0.75], . . . , [0.95, 1]
are approximately equally represented in the 1000 datasets for each setting. For the unbiased
datasets, f ′

+ and f ′
− are set equal to f+ and f−, respectively.

To evaluate performance of bias estimation against known values of bias, we generate 1750
datasets for each dimension and number of components for varying levels of bias AUC(f+, f

′
+)

between 0.5 and 1 (Fig. 2b). First α, f+ and f− are generated as for the unbiased data, where
the seven AUC(f+, f−) ranges are equally represented across the 1750 datasets. A desired
range of bias is achieved by drawing random mixing proportions, v+, from a flat Dirichlet
distribution until AUC(f+, f

′
+) computed with the optimal score function f+(·)/f ′

+(·) is in the
target bias range. The five bias ranges [0.5, 0.6], [0.6, 0.7], . . . , [0.9, 1] are equally represented
across the datasets. For simplicity, f ′

− is set equal to f−.
Each dataset has 100,000 unlabeled points from f = αf++(1−α)f− and 5,000 labeled points

from each f ′
+ and f ′

− with the chosen parameters. Figure 2a shows examples of 1D distributions
for different values of AUC(f+, f−) within the range we use to sample synthetic data. These
examples illustrate the complexity of synthetic datasets; even for higher AUC(f+, f−), the
positive and negative distributions are not easily distinguished.
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(a) Positive f+ and negative f− classes (b) Bias in positive samples

Fig. 2: Synthetic data in one dimension. Examples of (a) low and high AUC(f+, f−) and (b) low and
high bias AUC(f+, f

′
+). Unlabeled mixtures f shown here with α = 0.5 in all cases.

4.2. Biomedical Data

We selected 8 biomedical datasets from the the UCI Machine Learning Repository28 to apply
our methods. The following datasets were used, with a note that for each we give the number of
examples, the fraction of examples from the positive class (α) and the number of features D in
parentheses: Activity recognition with healthy older people using a wearable sensor29 (52481,
0.29, 8), Epileptic Seizure Recognition30 (11500, 0.18, 178), Smartphone-Based Recognition
of Human Activities and Postural Transitions31 (10929, 0.16, 561), Mushroom28 (8124, 0.21,
126), HIV-1 protease cleavage32 (6590, 0.20, 160), Splice-junction Gene Sequences33 (3190,
0.24, 287), Parkinsons Telemonitoring34 (5875, 0.48, 20), and Physicochemical Properties of
Protein Tertiary Structure28 (45730, 0.13, 9).

Datasets were constructed by assigning one class as positive and the remaining as negative
for multi-class data or setting a threshold for regression data. For each problem, 100 unbi-
ased datasets were generated by selecting a subset of labeled points uniformly. We generate
250 biased datasets for each biological dataset through Markov sampling. First a point xi
is selected uniformly at random from the positive class. The same point is resampled with
some probability pstay and a new point xj is selected with probability 1− pstay. The transition
probability Pr(xj |xi) is proportional to the inverse of the squared Euclidean distance between
points ||xi − xj ||2. Since the true bias cannot be measured directly, we use the probability of
resampling pstay as a proxy for bias. Higher values of pstay correspond to higher bias in labeled
data since the feature space will be less uniformly sampled (Fig. 3). In each case, 20% of points
are held out as a validation set used for model selection. We reduce the dimensionality with
PCA for datasets with more than 8 features.

Fig. 3: Unbiased (far left) and biased samples from the dataset HIV32 with varying probability of
resampling a point pstay. Features are illustrated projected onto the first two principal components.
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5. Experiments

Empirical Null Distribution and Bias Threshold We use synthetic Gaussian mixture
datasets to determine the bias threshold for a range of dimensions D ∈ {1, 2, 8, 16} and number
of components K ∈ {2, 4, 8}. We consider bias in positive class, but the method for estimating
bias in the negative class or both would follow the same process. We run the EM optimization
on each unbiased dataset to estimate all unknown parameters, θ. We use the estimated pa-
rameters θ̂ to compute the estimated bias for the positive class, AUC(f̂+, f̂ ′

+), where ·̂ indicates
the parameters estimated by the optimization procedure and the distributions parameterized
by them. The true bias AUC(f+, f

′
+) for these datasets is exactly 0.5 since the distributions

are identical (no bias), but because there is error in the estimation θ̂, AUC(f̂+, f̂ ′
+) ≥ 0.5. For

each setting of dimension D and number of components K used to generate the datasets, we
determine τη(D,K) for η ∈ {0.05, 0.10} of datasets with AUC(f̂+, f̂ ′

+) ≥ τη(D,K).

Model Selection To apply the appropriate bias threshold τη(D,K) to any data it is impor-
tant to know the number of components that best represent the data and use the threshold
found for that setting (dimension is known). However, the true or best value of K is not gen-
erally known for any dataset. We evaluate the effect of unknown K for finding the threshold τη
by running the optimization on unbiased datasets for K ∈ {2, 4, 8} on all datasets, regardless
of which value was used to generate the data. For each dataset, we compute the estimated
parameters log-likelihood on a validation set and choose the model that maximizes the value.
The validation set is generated with the same parameters as the original dataset.

Bias Quantification and Detection To evaluate our method in detecting and estimating
bias, we run our EM optimization algorithm on synthetic and biological datasets with varying
amount of bias and report the estimated bias. For synthetic data where the true bias is known,
we evaluate power for each level of type-1 error, η ∈ {0.05, 0.10}. Ground truth biased datasets
B are those where the true bias AUC(f+, f

′
+) > 0.5, for K number of components. Predicted

biased datasets B̂ are those where AUC(f̂+, f̂ ′
+) ≥ τη(D, K̂) for K̂ selected through model

selection. Power is estimated as q(τ) = |B̂|/|B|.

6. Results and Discussion

Figure 4 illustrates the thresholds found for each dimension and number of components. When
the number of components, K, is smaller, parameter estimation more reliably estimates the
bias lower. As the number of dimensions and number of components increases, so does the
complexity of the optimization problem and the estimated value of bias. These results suggest
the utility of finding dimension- and component-specific thresholds, and the empirical null
distribution for ascertaining bias.

Results on quantification of bias on synthetic (Fig. 5) and biomedical (Fig. 6) data show
increasing estimated bias as true bias increases. Note that for biomedical datasets the true bias
is unknown and pstay is not a direct measurement of bias; different data sets have different levels
of compactness in their feature space. Since the sampling probability is proportional to the
inverse distance between points, the bias is also dependent on the density of points. Bias will
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Fig. 4: Bias (AUC(f+, f
′
+)) thresholds found from parameter estimation on unbiased data sets.

differ across datasets for the same value of pstay and estimated bias cannot be directly compared
between datasets. However, for each datasets bias should increase as the sampling less uniform,
i.e. pstay increases. In synthetic data, we see excellent power (Fig. 7) for the type-1 error of
0.05 across all levels of bias, dimensionality D and the number of components (K) per class-
conditional distribution. We also see for high-bias datasets (AUC(f+, f

′
+) ≥ 0.9) on datasets

with two components, that some datasets have a low estimated bias. Our investigation showed
that to generate datasets with high bias and few components, the mixing proportions w+

k or v+k
must be very skewed, making the optimization difficult, sometimes unrealistically so. For one
dimension, the average minimum value of the smallest w+

k for datasets with AUC(f+, f
′
+) ≥ 0.9

is 0.01, 0.07 for 0.8 ≤ AUC(f+, f
′
+) < 0.9, and 0.19-0.23 for AUC(f+, f

′
+) < 0.8.

Figure 7 shows the power for bias detection on synthetic datasets for type-1 error η ∈
{0.05, 0.10}. For each setting we see generally higher power in bias detection as the true bias
increases. For higher type-1 error, the detection achieves a higher power. Again there is a drop
in performance for K = 2 in high-bias datasets due to the challenging nature of these datasets.

For real datasets we also show that our estimation of α and negative bias is not generally
affected by increasingly biased samples of the positive class (Fig. 6, middle and bottom rows,
respectively). Our EM algorithm is still able to detect that the set of unbiased labels from
the negative class are truly unbiased (a low value of AUC(f̂−, f̂ ′

−)). The estimation for bias for
negative class in UCI results is consistently better than the estimation of bias for unbiased
positive samples because α is always less than or equal to 0.5. Higher estimated bias in nega-
tives seems to be correlated with overestimation of the class prior α, particularly exemplified
in the parkinsons dataset.

7. Conclusion

Despite a broad awareness that biased data may adversely impact the deployment of machine
learning tools in biomedicine, there is a surprising dearth of methods built to ascertain the
existence and the level of bias in available data. We set out to address this deficiency by devel-
oping and extensively evaluating a bias estimation method based on reasonable assumptions.
We used synthetic and real-world biomedical data to show that technologies for bias detection
and ultimately correction can be realistically implemented in future data processing pipelines.

Code

The source code for this project is available at https://github.com/claradepaolis/bi-est
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Fig. 5: Estimated bias on Gaussian mixtures with varying true bias AUC(f+, f
′
+). Bias thresholds

τ0.05, τ0.10 shown as dash-dotted and solid lines, respectively.

Fig. 6: Bias and parameter estimation for biomedical datasets. Each column shows results for samples
from each dataset. Top: Bias estimation for positive class for unbiased (leftmost) and biased sampled
datasets for increasing levels of pstay, corresponding to larger bias. Middle: Estimation of the class
prior α with true value shown as dashed line. Bottom: Bias estimation for negative class, which is
unbiased in each case.
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