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Abstract

A key challenge impeding the widespread deployment of machine
learning is overcoming the impact of statistical biases in the data.
Models trained on unrepresentative data can perform worse than
anticipated and differentially affect cross-sections of the population.
Therefore, evaluating and vetting models based on an appropriate
notion of fairness is often indispensable, making accurate estima-
tion of fairness metrics a critical step to safeguard against deploy-
ment of unfair algorithms. It is often assumed that a fairness metric
computed from the observed data is accurate. However, in presence
of selection bias, also referred to as distributional shifts, fairness
metric estimates too can have systematic application-specific errors.

In this work, we demonstrate this phenomenon and, relying
on access to an unbiased unlabeled data, derive a semi-supervised
approach to mitigate estimation errors emerging from the biased
labeled data. Specifically, we introduce a novel selection bias model
called “sub-class-conditional invariance" (SCC-invariance), that of-
fers a flexible framework to effectively capture distributional shifts
in the real-world data, particularly compared to traditional models
such as label shift and covariate shift. Assuming a finite Gaussian
mixture form for each class-conditional distribution, we then derive
an Expectation-Maximization algorithm to estimate model param-
eters and correction weights necessary for computing unbiased
estimates. We focus on three widely used fairness metrics—equal
opportunity, predictive equality, and predictive parity—and demon-
strate the effectiveness of our approach in improving their estimates
on synthetic data. Finally, we apply our bias mitigation approach to
clinical genetics and study the fairness of pathogenicity predictors
across ancestral groups.
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1 Introduction

In the era of artificial intelligence (AI), public and private insti-
tutions are increasingly leveraging machine learning algorithms
to automate decisions that profoundly impact individuals’ lives.
These decisions span high-stakes applications in criminal justice,
hiring, lending, medicine, advertising, recommendation systems,
and exposure to personalized content on social media [3, 17, 29, 31],
shaping access to resources, opportunities, and rights. In spite of the
immense incentives of Al in cost-savings terms and consistency of
data-driven decisions, some of these advantages are not realized in
practice. A machine learning algorithm is only as good as the data
it is trained on and the fairness embedded in the optimization func-
tion [1]. A seemingly neutral algorithm, when trained or evaluated
on unrepresentative data, may replicate or exacerbate the problems
of data collection, posing a significant challenge in eliciting fair
decisions from Al systems and often undermining public trust in
technology.
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Various theoretical and practical approaches have been explored
to improve algorithmic fairness. Fairness metrics such as demo-
graphic parity, equal opportunity and predictive equality have been
derived to quantify different notions of fairness, appropriate in
different contexts. These metrics are often incorporated during (in-
processing) or after (post-processing) model training to enhance
its fairness properties [29, 32, 36]. More importantly, fairness met-
rics play a crucial role in evaluating and vetting machine learning
models prior to deployment in the real world. They also act as the
final safeguard to ensure that models meet ethical principles and
legal regulations, mitigate bias, and promote fair outcomes.

Most fairness metrics are estimated from labeled data. Such es-
timates are unbiased only if the distribution of the labeled data
accurately reflects the target population on which the model will
be applied. However, the idiosyncrasies in the generation or col-
lection of the labels often leads to a distributional shift, broadly
referred to as sample selection bias; e.g., a healthcare dataset that
includes mostly data from urban hospitals might not represent rural
healthcare needs. Selection bias could come in different forms such
as sampling bias (over-representation or under-representation of
certain groups or features in the population), self-selection bias
(when the individuals who provide data differ systematically from
those who do not), temporal bias (distribution changes over time),
observer bias (emerging from subjective interpretation of data col-
lectors/labelers), attrition bias (certain groups are systematically
more likely to drop out or be excluded during data collection),
survival bias (when only some types of cases are selected), etc.

Computing a fairness metric from labeled data under selection
bias can give a statistically biased estimate, with significant system-
atic errors that do not vanish with increasing dataset sizes. When
the estimate of a fairness metric is significantly off, a model not
satisfying fairness constraints could be incorrectly deemed fit for
deployment, and, conversely, a model that satisfies a fairness con-
straint could be deemed unfit. Mitigating such errors is imperative
to accurately evaluating and vetting machine learning models.

In this work, we derive an approach to mitigate statistical bias
on fairness metrics estimated from labeled data under selection
bias. To this end, we rely on access to an unlabeled and unbiased
dataset, often available in many applications, to infer bias mitiga-
tion parameters. Access to such data is commonly assumed in the
domain adaptation literature and is referred to as the target domain
or the population of interest where the model will be deployed
[15, 44]. Such data is readily available in hiring, lending or genetics,
as considered in this paper (Section 7). As correcting for arbitrary
distribution shifts in the labeled data is an intractable problem,
correcting for selection bias requires making explicit assumptions
over the nature of the bias. Such assumptions are specified as a
selection bias model that constrains how the relationship among
the input features x and the target variable y changes due to se-
lection bias [16, 42, 49]. An ideal selection bias model should be
flexible enough to capture complex distribution shifts and yet lead
to tractable algorithms for bias correction.!

Covariate-shift [43] and label-shift [15, 24, 40, 47] are two domi-
nant selection bias models. However, they make strong assumptions

'We use the term “correction” to mean that bias can be eliminated only if the model
assumptions hold; otherwise, the correction can only mitigate bias to some extent but
cannot eliminate it completely.
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on the form of the distribution shift in the biased data. Covariate-
shift assumes that the probability of y given x (p(y|x)) remains
unaltered due to selection bias whereas label-shift assumes that
the probability of x given y (p(x|y)) is unaltered. Though they
give tractable algorithms for bias correction of predictors, these
assumptions do not capture the distribution shifts for most real-
world applications, limiting their practical appeal. Further, a sparse
joint-shift approach was developed to incorporate both covariate-
shift and label-shift models within a limited number of features [2].
Recently, more flexible selection bias models of Gaussian component-
based mixing bias (MB-GC) and partition-projected class-conditional
invariance (PCC-invariance) have been derived as more flexible
alternatives to covariate-shift and label-shift and have been demon-
strated as effective tools to detect and mitigate the effect of bias
in predictors [5, 50]. A salient aspect of these models is that they
account for shift, in both p(x|y) and p(y|x), simultaneously and yet
lead to a tractable algorithm for bias mitigation. MB-GC is based
on a Gaussian mixture model with a shared component structure
to account for selection bias, but it does not account for groups.
PCC-invariance accounts for groups, but assumes the feature space
to be composed of non-overlapping regions (partitions) that are
over- and under-represented due to selection bias. The utility of
these models has not been explored in the context of algorithmic
fairness.

We derive a generalization of these models, sub class-conditional
invariance (SCC-invariance), which assumes that the selection
bias and differences among groups emerges from over and under-
representation of overlapping regions in the feature space—an in-
tuitive and flexible model for real-world data. Next, making a para-
metric Gaussian mixture assumption, similar to MB-GC, we derive
two multi-sample EM algorithms to estimate model parameters.
Lastly, we derive two importance sampling based approaches that
incorporate the estimated parameters to give unbiased estimates of
a given fairness metric. A key aspect of one of our approaches is
that it can provide unbiased fairness metric estimates even without
group information in the labeled data. This makes it applicable in
scenarios where group information is withheld for privacy, pol-
icy, or ethical reasons. We demonstrate the effectiveness of our
approach on three fairness metrics—equal opportunity, predictive
equality, and predictive parity [32]—using synthetic data. We ap-
ply our approach to clinical genetics of rare Mendelian diseases to
assess the fairness of widely used pathogenicity prediction tools
across diverse populations.

2 Related Work

Fairness metrics in machine learning are broadly categorized into
individual fairness and group fairness. Individual fairness, as in-
troduced by Dwork et al. [10], emphasizes that similar individ-
uals should be treated similarly. In contrast, group fairness [14]
focuses on measuring disparities in outcomes between different
demographic groups. There are multiple ways of defining fairness
even within these broad categories. Some examples include equal
opportunity, demographic parity and predictive parity for group
fairness; Lipschitz fairness and counterfactual fairness for individ-
ual fairness. A comprehensive list of fairness metrics and their use
cases can be found in [30] and [46]. Accurately estimating fairness
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metrics on many real-world datasets is often challenging due to fac-
tors such as small sample sizes, class or group imbalances, missing
values and selection bias. Sample size and class imbalance can lead
to unreliable conclusions and exaggerated disparities [20]. Addition-
ally, fairness estimation becomes more complex in the presence of
missing values, where incomplete data can introduce biases that dis-
tort fairness evaluations [13, 48]. An even greater challenge arises
when protected attributes—such as race or gender—are unavailable
or censored, requiring specialized techniques to infer disparities
indirectly while maintaining robustness and reliability [11].

A particularly challenging scenario arises when the training data
itself is subject to sample selection bias. Du and Wu [8] derive an
approach to train fair classifiers robust to selection bias by em-
ploying a classification loss and a demographic parity-enhancing
penalty term, both computed as a weighted average. However, their
approach can only address selection bias under the restrictive co-
variate shift assumption. In contrast, our work shifts the focus from
training fair classifiers to accurately estimating fairness metrics
under sample selection bias. Our approach computes fairness met-
rics as an importance sampling-based weighted average but with
a more flexible selection bias model. We also consider other fair-
ness metrics (equal opportunity, predictive equality, and predictive
parity), since demographic parity can be directly computed on the
unbiased unlabeled data without any class labels.

Jiet al. [19] also derive an approach to improve fairness estima-
tion when only a small set of labeled data is available by incorpo-
rating the unlabeled data to reduce the variance of the estimates,
however, without considering the effect of selection bias. Their
approach leverages a Bayesian framework to utilize the unlabeled
data for improved fairness estimation. We use this approach as a
baseline to compare our methods. Chzhen et al. [4] explore equal
opportunity fairness in the presence of labeled and unlabeled data,
proposing a group-dependent threshold for a Bayes classifier to
achieve fairness. However, these studies assume access to unbiased
labeled data and are tailored to specific fairness metrics rather than
providing a general framework.

In this work, we address the problem of fairness estimation in
the presence of both labeled and unlabeled data under sample se-
lection bias. Unlike previous approaches, our correction methods
are applicable to a broad range of fairness metrics, making them
flexible and adaptable across different fairness criteria. By improv-
ing fairness estimation under biased data conditions, our work
contributes to the development of more reliable and generalizable
fairness assessments in machine learning.

3 Problem Formulation

We consider the binary classification problem to classify individu-
als belonging to protected groups (e.g., making hiring or lending
decisions). Let x € RP contain an individual’s attributes (input
features), used to predict the class label y € Y = {—, +}, where +
and — represent the positive and negative class, respectively. Let
ge G ={12,...,G} give the individual’s group. Let p(x, g,y) be
the unknown joint distribution that governs how x, g and y appear
in nature or in the target population where the classifier will be
deployed. We refer to p(x, g, y) as the unbiased distribution. For a
given binary classifier §(x) € Y, let FM(§) denote the true value
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of a fairness metric with respect to the unbiased distribution. Thus,
only a statistically unbiased estimate of FM(§j) accurately reflects a
classifier’s fairness when deployed in the real-world.

Let FM(g; £) denote an estimate of FM(§) computed using the
standard formula for the metric under consideration on the la-
beled dataset L. For most fairness metrics, this involves comput-
ing an average of the classifier output over the labeled dataset or
its subset. For example, equal opportunity is estimated as 1/| £}| -
erij’ §(x)=Y| L] 'er£;’ j(x), where L] is the subset of points
in £ from group g, labeled as positive. If £ is an unbiased sam-
ple from p(x, g,y), FM(7; £) gives an unbiased estimate of FM(g).
However, if £ suffers from selection bias, i.e., is not a random
sample from p(x, g, y), then FM(7; £) is not guaranteed to be an
unbiased estimate of FM(7). The labeled data in many applica-
tions is often not representative of the unbiased distribution due to
the idiosyncrasies of the labeling process, and consequently is not
guaranteed to give a statistically unbiased estimate of the fairness
metric.

Let £ be the labeled data sample, with or without group iden-
tities included, and p(x, g,y) or p(x,y), respectively, denote the
statistically biased distribution from which it is drawn. Let U de-
note an unbiased and unlabeled sample drawn from p(x, g). Our
main objective in this work is to derive approaches to obtain fair-
ness estimates using both £ and U, FM(y; £, U), such that it is
a better estimate of FM(g) than FM(g; £). We refer to a fairness
estimate with this property as a bias mitigated estimate. To this
end, we introduce a flexible selection bias model in the form of
probabilistic assumptions tying biased and unbiased distributions,
and derive semi-supervised approaches to obtain unbiased fairness
estimates under the assumptions.

4 Selection Bias Model

If the selection bias in the labeled data arbitrarily alters the distribu-
tion of x, g and y, i.e,, p(x, g, y) is arbitrarily different from p(x, g, ),
correcting the statistical bias in the fairness metric estimate is not
possible. Fortunately, certain probabilistic assumptions from the
domain adaptation literature such as covariate shift and label shift
could make the problem tractable. However, these assumptions are
not flexible enough to model the selection bias in most real-world
data—covariate shift assumes p(y|x) = p(y|x) whereas label shift
assumes p(x|y) = p(x|y). Furthermore, these assumptions do not
explicitly account for groups.

4.1 Sub-class-conditional invariance

In this work we introduce a flexible sample selection bias model,
sub-class-conditional invariance (SCC-invariance) to improve on the
limitations from existing models by accounting for changes in both
p(x|y) and p(y|x). Decomposing the positive and negative class-
conditionals as mixture distributions with K* and K~ components,
respectively, we get

plxl+) = D wip(xl+ k), and p(xl-) = > oep(xl=k),
keK+ keK-

where Kt = {1, 2.. .K+} and K~ = {1,2...K "}, while p(x|+ k)
and p(x|-, k) denote the k* h component of the positive and negative
class-conditional, respectively. Probability vectors w = [wy]rcqc+
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and v = [vg]rcq- are the mixing proportions; and wy > 0, v >
0, Yreg+ wp = 1 and Y recq- v = 1. Note that we allow the
component distributions to overlap.

Under SCC-invariance, we assume that the class-conditional
distributions in the labeled data can also be expressed as mixtures
sharing the same components, however, with different mixing pro-
portions; i.e.,

Pl = D wep(xl+ k), and plxl-) = Y Gep(xl- k),
keK+ keK-

where w = [Wi]rex+ and 0 = [Og]req- are the mixing pro-
portions for the biased class-conditionals. In other words, SCC-
invariance represents a form of selection bias where certain regions
(possibly overlapping) in the feature space (represented by com-
ponent distributions) get undersampled whereas other regions get
oversampled. Note that these assumptions are identical to Gaussian
component based mixing-bias (MB-GC) [5] when the components
are Gaussian.

To capture the distributional similarities and differences between
groups and selection bias within a group, we extend the shared
component mixture assumption on the group class-conditionals.
Formally,

plxl+.9) = > wap(xl+k) and p(xl-g) = > vgp(x|- k),

keKt keK~
pxl+.g) = D Wap(xl+,k) and p(xI-9) = ) dgip(xl— k),
keKt keK~

where wy = | are the mixing pro-

Wok e ger and 05 = [ogk] g
portions for the unbiased group class-conditionals while w; =
[Woklkes+ and g = [Ogx]gexc- are the mixing proportions for
the biased group class-conditionals. In summary, the differences be-
tween the class-conditionals across the groups and within a group
(due to selection bias) are explained by the differing mixing propor-
tions, reflecting over and under sampling from components. Note
that SCC-invariance is identical to the PCC-invariance when the
components are non-overlapping [50].

In this work, we will consider a special case of the SCC-invariance
model, where all the components take a Gaussian form similar to
MB-GC; ie., p(x|+ k) = ¢(x; pif, B7) and p(x|— k) = ¢ (x; i, 2,
where ¢(x; p1, %) is the Gaussian density with mean p and covari-
ance Y. Thus, all the class-conditionals follow a Gaussian Mixture
Model (GMM). Gaussian mixtures are universal approximators of
continuous probability densities with enough components and are
considered to become nonparametric for K*, K~ — oo [12], making
them a reasonable choice for a flexible yet tractable selection bias
model. Under the Gaussian mixture assumption, SCC-invariance is
a generalization of MB-GC to account for groups. In Appendix F,
we demonstrate the practical advantage of SCC-invariance over
MB-GC.

4.2 Parameter estimation

We derive two multi-sample Expectation Maximization (EM) al-
gorithms, MS-GMM-0; and MS-GMM-0,, to obtain maximum
loglikelihood estimates of the Gaussian mixture model (GMM) pa-
rameters by fitting the labeled (£) and unlabeled data (). The
parameters will be later used to compute importance sampling
weights (Table 1) to mitigate the bias in fairness metric estimates.
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Let LT ¢ £ and and £~ C £ contain all positive and negative
examples, respectively, in L. Let Uy € U and L; C L contain
all examples that belong to group g in U and L, respectively. Let
Ly € Lgand L; C Lg contain all positive and negative ex-
amples in £ belonging to group g, respectively. Next, we list all
the parameters of the model. For » € {+,—}, p* = [ ]xex+ and
= [ZZ] kegc+ contain the means and covariance matrices of the
Gaussian components in the mixture model. Let w (v) and w (9) be
the mixing proportions in the mixture formulation of the unbiased
and biased positive (negative) class-conditionals, respectively, as
defined earlier. Let wy (v4) and wy (d4) be the mixing proportions
of the unbiased and biased positive (negative) class-conditionals,
respectively, for group g. Let « = p(y = +) and @ = p(y = +) be
the proportion of positives in the unbiased and biased distributions,
respectively. Let ay = p(y = +|g) and &g = p(y = +|g) be the
proportion of positives in the unbiased and biased distributions for
group g, respectively. Let n = [ng]ge g and 5j = [fjg]4e g contain the
proportion of group g individuals, p(g) and p(g), in the unbiased
and biased distributions, respectively. Notice that & can be estimated
directly from L as the fraction of positives in it (I £*|/| £|) and &, by
computing the fraction in group wise manner (1£;1/] £,|). Similarly,
n and 7} can be estimated from the fraction of group g individuals
in the U (1Uyl/|U|) and L (1Lgl/| £]), respectively, provided they
contain the group information. All of the remaining parameters are
hidden and cannot be directly estimated with simple formulas.

Let ©;1 = {wy, Wy, 0y, 0, 2} ge g U {u*,u~,Z*, 7} denote a sub-
set of the hidden parameters. Note that w,w, v, and « can be in-
ferred from n, 7}, &, and the parameters in ©; as follows.

_ 2geg %glgWg _ Ygeg (1 —ag)ngvg

w= , o= ., o= agn
Lgeg 'l Lgeg (1 - ag)ny g;g 7

2geg GgllgWg 2geg (1= a9)ilg0g

Zgeg %y Ygeg(1-ag)ig
MS-GMM-O;: Our first algorithm, MS-GMM-@1, iteratively esti-
mates © using the following update equations, derived under the
EM framework [6, 28] (Appendix C). Here % € {+, —} and symbols
accented with “and " denote the old parameters, before the applying
the updates, and the new parameters, respectively.

Z 1 Z Z ﬁgk(x)’

Qg — ——
xeUy ke K+

U]
o D R, g e 3 A ()
+ gk "> 4 5 gk
|‘£g| xeL} ag|(ug| xeUy

(1)

0=

w=

1 .
R

xeU,

z 1 - .
b 5 A e

xeLy

Sgeq | Zve rp Al (0% + Teeqs, 7y (x)x]

5

Sgeg|Txe £ (0 + aens, 5 ()]

Sgeq|Zve sy A (07 @ 5 + Ty, 75, (05 © %]

>

Sge6 | Zrey A0+ Teea, 7 ()|

where X}, = x — i'; ® denotes the outer product between two vec-

tors; ﬁ;k (x) and ﬁ;‘k (x) are computed with the old value of the
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parameters in ©; in the formula for p;k (x) and Il';k (x), respec-
tively, given below. Let p;rk (x) (pg‘k (x)) denote the probability that
a random positive (negative) labeled example from group g comes
from the kP positive (negative) component. Let ”_;k (x) (”;k (x))

be the probability that a random unlabeled example from group g
comes from the k" positive (negative) component. Mathematically,

Worpp ()
£ () = plklx,g,+) = ——FE—
Pt =plking 0 = S
gk Py (x)
(0 = plklx.g,-) = ————
Pk (x) = p(klx. g, -) NMix(x Gy )
agwordi (%)

+ = =
7k () =P +109) = e 6) + (1 - g NMix(x: 6 )

(1 - ag)vgrdy (x)
agNMix(x; 67) + (1 — ag)NMix(x; 65 )’

7 (6) = plk, ~Ix, 9) =

where 0; and é; denote the parameters of the unbiased and biased
class-conditionals for group g, respectively, as given in the caption
of Table 1, while NMix(x; 6;) and NMix(x; é;) are the unbiased and
biased class-conditional density functions for group g, respectively,
also defined in the caption of Table 1. The initial parameters, serving
as input to MS-GMM-@1, are given in Appendix E.1. The estimated
©1 allows computing weights ¢; (x) in Table 1. To compute ) (x)
estimates of parameters w and o are required, which can be obtained
by applying Eq. 1.

MS-GMM-0;: Our second algorithm, MS-GMM-03, estimates
0, = {w,0}U {wg, g, Ufg}geg u{pt,p, »* X7}, instead of O, by
ignoring the group information in £. MS-GMM-03 can not be used
to compute weights 1//; (x) (Table 1), however, it can still be used
to compute y, (x) for a valid fairness metric correction approach.
Since it does not require the group information in £, it can be used
when group annotations are missing from .L; for example, in our
clinical genetics data (Section 7). The parameter update equations
for MS-GMM-0;, are given by

T v = I )

xeL* xel~

Yixe s Pr(X)x+ Xgeg Zxeu, ﬁ;k (x)x
Zixe £t Pp(¥) + Lgeg Txett, Ty (%)
Yxel* /5;; (x)f;: ® f}: + deg ngruy ﬁ;k (x))?l’: ® 32;:
Sxes P00 + Sgeg Snett, 7y ()

where fc; ® and fr;‘k (x) are as defined above for MS-GMM-01. The
update rules for &g, Wy, and gy are the same as MS-GMM-©;.

— 3

2

/3]: (x) is computed with the old value of the parameters in 0, in
the formula for p;: (x) given below. Let pz (x) (P (x)) denote the
probability that a random positive (negative) labeled example comes
from the k" positive (negative) component. Mathematically,

e i)
P (x) = plklx, +) = NMix(x; 0%)
) ) 5k¢]; (x)

= k - N
pr (x) = p(klx, —) NMix(x;07)
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Weights | General formula | Under GMM assumption

B _p(xlvg) — NMix(x;07)

Vg (x) " p(xl%g) "~ NMix(x:6})

« _ plx]xg) _ NMix(x;6)

X | = p(x[+) ~ NMix(x:6%)
Table 1: Weights used in the unbiased estimation of fairness
metrics. * € {+,-}.at =aanda™ = (1 -a). 0" = {ut, =%, w}
and 0~ = {u7,X7,v} denote the parameters of the unbiased

class-conditionals under the Gaussian mixture assumption. Here
K= [plkesc- and T° = [E} Jkeg+ contain the means and covari-

ance matrices of the Gaussian components and o+ = {ut, =t w}
and 0~ = {u~,X7,0} denote the parameters of the biased class-
conditionals. 0; = {p", Z+,wg} and Qg_ = {p7,X7,04} denote
the parameters of the unbiased class-conditionals for group g.
9;' = {ut, 2+,M79} and 0, = {n™,27,94} denote the parame-
ters of the biased class-conditionals for group g. NMix(x; 0%) =
Zkegcr W (s i, 1) and NMix(x;07) = Ygeae- ok (x5, 2))
gives the positive and negative unbiased class-conditional density
functions, respectively, where ¢(x; p1, 2) is the Gaussian density
function with mean y and covariance ¥. NMix(x; 0*), NMix (x; 9;‘ )

and NMix(x; é; ) are similarly defined as Gaussian mixture densi-
ties using the corresponding parameters.

where §* and 6~ denote the parameters of the biased positive and
negative class-conditionals (marginalized over g), respectively, as
given in the caption of Table 1, while NMix (x; é+) and NMix(x; 0 )
are the corresponding class-conditional density functions, also de-
fined in the caption of Table 1. The initial parameters, serving as
input to MS-GMM-0, are given in Appendix E.1.

5 Bias-Mitigated Fairness Metric Estimates

When the labeled data is biased, the standard formulas used to
compute a fairness metric could have significant systematic errors
and cannot be trusted to evaluate or vet models. We derive two
importance sampling based approaches to improve the fairness
metric estimates, in spite of the selection bias. Most fairness metrics
can be expressed in terms of the group-wise true positive rate (TPR),
false positive rate (FPR) and the unbiased proportion of positives
within each group, a,. We first derive bias mitigation approaches
for TPR and FPR estimation. Proof provided in Appendix A.

5.1 Bias-mitigated TPR, FPR and PPV

Groups in labeled data (GIL) : To get unbiased estimates of a
classifier’s () TPR and FPR for group g, we first give an approach
that uses labeled points only from group g in a importance sampling
based weighted average formulation.

e— A es 1 h N
TPRy (5 L,U) S —— >\ i (0)§(x),
|£g| xe L}
9
_— 1 ~A_ R
FPRy(§; L, U) e V| Z Yy ()3 (x),
T

where 1,/;; (x) and 1/;9_ (x) are estimates of l//;(x) and ll/g_ (x), respec-
tively, obtained by substituting the estimated GMM parameters as
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defined in Table 1. Note that GIL can be implemented with esti-
mated ©; parameters but not ©3, thereby requiring MS-GMM-01
as an intermediate step and group information for the labeled data.

Groups not in labeled data (GNIL): Although GIL gives an
unbiased estimate relying solely on data points from group g, it
could have large variance. To reduce the variance and still obtain
an unbiased estimate, we give another correction approach that
uses the entire labeled dataset (including data points from other
groups) to compute group-wise TPR and FPR as follows

= . est 1 ~ ~

TPR, (§; L, U) 2 mZL B 09(x),

fp— ~ es 1 A— A

FPRy(4; £,U) 2 —— > 17 (0)§(x),
7 A

where 7 (x) and y (x) are estimates of ) (x) and y, (x), respec-
tively, obtained by substituting the estimated GMM parameters as
defined in Table 1.

Note that GNIL can be implemented with either ©; (using Eq.
1) or O3 estimates, thereby requiring either MS-GMM-0; or MS-
GMM-0; as an intermediate step. Using MS-GMM-@; it can be
implemented without group information in the labeled data.

Note that bias-mitigated estimates of many other evaluation
metrics can be obtained from TPR FPR and ag. For example, bias-
mitigated precision or Positive Predictive Value (PPV) for group g
can be obtained by substituting bias-mitigated TPR and FPR along
with a4 estimates from MS-GMM algorithms:

TPRyay
TPRyay + FPRy(1 - ay) ’

PPV, =

In theory, the importance sampling approach for bias mitigation
can be applied to any evaluation metric, by defining appropriate
weight functions. For example, bias-mitigated Expected Calibration
Error (ECE) can be estimated as shown in Appendix B.

5.2 Bias-mitigated fairness metrics

Mitigation of bias in fairness metric estimates follows directly from
reducing bias in TPR and FPR, along with estimate of &y from the
MS-GMM algorithms. In this work we focus on the notion of group
fairness, i.e., fairness evaluated for a group as a whole, instead of
at an individual level, and consider the following three metrics:

Equal opportunity (EO): requires that for each group the proba-
bility of making a positive prediction (e.g., hired) among individuals
belonging to the positive class (e.g., deserve to be hired) is identical.
In other words, the TPR for all the groups be identical. Considering
a two group setting, we measure EO, as the difference between the
TPR of the two groups; EO = TPRy, — TPRy,. The metric does not
consider individuals in the negative class.

Predictive Equality (PE): requires that for each group the prob-
ability of making a positive prediction (e.g., hired) among individ-
uals belonging to the negative class (e.g., not deserve to be hired)
is identical. In other words, the FPR for all the groups be identical.
Considering a two group setting, we measure PE, as the difference
between the FPR of the two groups; PE = FPRy, —FPRy,. The metric
does not consider individuals in the positive class.

Predictive Parity (PP): requires that for each group the proba-
bility of making a correct positive prediction (e.g., hired and deserve
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to be hired) among individuals predicted to have a positive outcome
(e.g., hired) is identical. In other words, the PPV for all the groups be
identical. Considering a two group setting, we measure PP, as the
difference between the PPV of the two groups; PP = PPV, —PPV,.
The metric considers individuals in both the positive and the nega-
tive class as well the proportion of each class with the groups.

The GIL and GNIL bias mitigation approaches for EO, PE and PP
follow directly from the corrections to TPR, FPR and PPV presented
in Section 5.1.

6 Experimental Evaluation
6.1 Synthetic data generation

To evaluate our proposed approaches to mitigating error in fairness
metric estimation when labeled data exhibits sample selection bias,
we construct challenging synthetic datasets. We use synthetic data
where the selection bias can be controlled and quantified precisely
via the data generation model parameters. Namely, the similarity be-
tween two mixture distributions can be quantified by the AUC-ROC
of an ideal classifier trained to classify points from each mixture.
For synthetic data with known mixture model parameters, the ideal
classifier comes from the (known) mixture posteriors.

We generate synthetic data by first picking K Gaussian com-
ponents to represent the positives and another K Gaussian com-
ponents to represent the negatives (K* = K~ = K in our experi-
ments). The base parameters, the mean and standard deviation of
the components, are determined such that the two class-conditional
distributions fall within a prescribed AUC(+, —) range. Note that
all group class-conditionals, biased or unbiased, share the same K
positive or negative components in their Gaussian mixture formu-
lation, and only vary in their mixing proportions, wy and v, for the
unbiased mixtures, p(x|+, g) and p(x|-, g), respectively, and wy and
94 for the biased mixtures, p(x|+, g) and p(x|-, g), respectively.

For a given pair of number of components, K € {2,4, 8}, and
dimension, D € {2, 8}, we generate 315 datasets (£ and U) equally
divided between three AUC(+, —) buckets, [0.65,0.75], [0.75, 0.85]
and [0.85,0.95], and having varying degree of selection bias. Inter-
preting AUC as a measure of separation between two distributions,
we measure the selection bias also as AUC, however, between the
biased and unbiased class-conditionals. For a given selection bias
bucket in Figure 1, biased and unbiased mixing proportions are
selected such that each group class-conditional’s selection bias is in
that bucket. The 315 datasets are divided among the top three selec-
tion bias buckets, having approximately 90 datasets each, and the
the bottom bucket with half the width, having 45 datasets. For each
dataset, we generate a total of 25,000 samples, where A € {0.5,0.1}
specifies the proportion of samples that are labeled. The ratio in
which the samples are distributed between the groups is determined
by the parameters 1 and 7 for the unlabeled and labeled data re-
spectively. For example, n = 0.2 indicates that 20% of the unlabeled
samples belong to g1 and 80% belong to g». For our experiments, we
consider two different configurations: (i) equal: n = f = 0.5, where
the samples are split equally between the groups for labeled and
unlabeled data, and (ii) minority: n = 0.1 and 7 = 0.05, where g; is
severely underrepresented in the unlabeled data and this effect is
further magnified in the labeled data.
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Figure 1: Mean absolute error of fairness metric estimates for synthetic data and 95% confidence interval error bars for increasing levels of
selection bias. Results for equal-size groups (top row) and when the minority group is under-represented in labeled data, n = [0.1,0.9],1; =
[0.05,0.95] (bottom row). Solid (unfilled) bars represent datasets where the proportion of data with labels is A = 0.5 (1 = 0.1). Corrections that
use ground-truth parameters are designated by an asterisk (GIL* and GNIL*). Each bar summarizes the errors across data generated with 1) 2
and 8 dimensions 2) 2,4 and 8 positive and negative components and 3) the 3 AUC(+, —) buckets. Each bar in lowest selection bias interval,
(0.55, 0.6], contain results from 6x45 datasets and those in the remaining three selection bias intervals contain 6x90 datasets.

6.2 Results Comparison with baseline: In all settings, our GNIL-based
approaches show an improvement over Ji et al. [19]. Our GIL-based
approach also shows an improvement in most settings, except when
proportion of labeled data is low (A = 0.1) and additionally, the
minority group is significantly under-represented (bottom row,

Figure 1 compares the mean absolute error in the estimation of
equal opportunity (EO), predictive equality (PE), and predictive
parity (PP) across different values of selection bias for seven meth-
ods: 1) Uncorrected: standard approach, 2) Ji et al. [19]: baseline,

3) GIL with MS-GMM-©; based parameter estimates, 4) GIL*: GIL unfilled bars). Notice that this only happens for EO and PE (not
with true parameters, 5) GNIL-0;: GNIL with MS-GMM-0 based for PP) and the difference in the mean absolute error is small. This
parameter estimates, 6) GNIL-O3: GNIL with MS-GMM-©; based setting is particularly challenging, since there are only a small

parameter estimates, and 7) GNIL*: GNIL with true parameters. The number of labeled points from the minority group available. Since
error is computed w.r.t. the ground truth value measured on the GIL computes each group’s term (e.g, TPRy) in a fairness metric
unlabeled data, using the true labels. We ran MS-GMM-©; and MS- estimate as a weighted average on the labeled points from that
GMM-0, fixing the number of components to their true values used group only, it is more sensitive to the size of the minority group in
in the data generation. Experimental results in [5] suggest that the the labeled set. In comparison, GNIL uses the entire labeled set (from
number of components can be accurately determined using the data both groups) to compute each group’s term, making it more robust
log-likelihood via cross-validation. We provide the log-likelihood to the size of the minority group in the labeled set. As expected, the
criteria for our appraoches in Appendix D. The baseline [19] was error in the baseline approach increases significantly with selection
derived to obtain low-variance estimates by incorporating unla- bias, specially when the biased labeled data has more influence
beled data with a few labeled examples, without any consideration (A= 0.5) over the estimate; the error increase is modest for 4 = 0.1
of selection bias. in comparison. Overall, our GIL and GNIL-based approaches, show
Comparison with Uncorrected: As expected, the magnitude significant improvement over the baseline in high selection bias
of error for the uncorrected estimator increases significantly with paradigm, specially when A = 0.5.
an increase in selection bias, reaching as high as 0.25 - 0.4 for the Absence of groups in the labeled data: The strong perfor-
highest selection bias bucket. However, the increase in error for mance of GNIL-O (comparable with GNIL-©1 and better than GIL)
our GIL- and GNIL-based correction approaches is marginal. We demonstrates that accurate bias mitigated fairness estimates can be
observe that the error in fairness disparities is significantly reduced obtained without access to the group memberships in the labeled
while employing the proposed bias mitigation approaches across data. Thus estimating the group specific parameters only from the
all metrics and configurations. This shows that the approach is unlabeled data (MS-GMM-©2) and computing group specific fair-
effective in producing fairness estimates that are close to unbiased ness metric terms (e.g., TPRy) as weighted averages over the entire
estimates even in the presence of selection bias. labeled set provides an effective solution.
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Ablation study: To isolate the impact of our importance sam-
pling based reweighting from the EM based parameter estimation
on bias mitigation, we present results for GIL- and GNIL-based ora-
cle methods in Figure 1. In this setting, weights for bias mitigation
are computed using the true parameters rather than the estimated
ones. We see that the estimated errors are higher, but close to the
best-case oracle corrections. The magnitude of the oracle-parameter
corrections are stable across various degrees of selection bias, while
the estimated-parameter corrections marginally increase with in-
creasing selection bias in the labeled data.

7 Case Study: Variant Impact Prediction

Prediction of the impact of genomic variants is an important com-
putational task in genomic medicine [37, 39, 41]. In complex disease,
the objective is to approximate the risk of a phenotype in the form
of a polygenic risk score (PRS). PRS is usually implemented as a
linear combination of estimated effect sizes and the presence in-
dicators of multiple common variants in an individual’s genome
as the effect of any such variant on the phenotype is small. As
such, PRS can provide clinical utility for conditions such as cancer,
cardiovascular disease and diabetes [9]. In contrast, the objective in
rare disease is to approximate the risk that a single genomic variant
causes disease. Since variants can have large effects, the ability of
an algorithm to predict pathogenic ones can be used as a proxy to
predicting a clinical phenotype.

It has been well documented that PRS estimators display limited
transferability between populations of different genetic ancestries
[26, 27]. The underlying factors implicate population-specific allele
frequencies for common variants as well as the sizes of haplotype
blocks that impact estimation of variant effect sizes. These findings
have spurred large-scale sequencing projects for populations with
less publicly available data as well as research on computational
transferability of PRS akin to domain adaptation [25]. The situation
is less clear in rare disease [7, 33], where predictors are traditionally
constructed from the reference genome sequence and evolutionary
conservation between species [22]. In this section, our objective is
to investigate rare disease and gain insight into the performance
of variant impact predictors on individuals from different genetic
ancestries. We focus on missense variants, those that result in a
single amino acid substitution in an individual’s protein sequence
relative to the reference genome.

7.1 Data and Estimation Method

Missense variants with pathogenicity class labels were collected
from ClinVar [23] while the unlabeled data was extracted from gno-
mAD [21]. Variants in ClinVar come from the patient population
and are skewed towards well-studied disease genes and more fre-
quently sequenced populations. ClinVar is often believed, though
not empirically demonstrated, to not be representative of the distri-
bution of variants in a healthy population, except for an overrepre-
sentation of pathogenic variants. As such, there is a possibility of
fairness issues for the machine learning models, particularly those
trained in a supervised manner. A selection bias-aware approach
to estimating a fairness metric is therefore warranted. In contrast,
variants in gnomAD come from the general population and can
be considered to represent an unbiased distribution of variants. A
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Figure 2: Histogram of first two principal components of MutPred2
features for unlabeled genomic variants by population where the
variant is observed (first 5 plots) and scatter plot of labeled variants
in the ClinVar database (lower right plot).

distinct feature of this problem is that, for privacy reasons, Clin-
Var data often omits the genetic ancestry of an affected individual,
whereas gnomAD data contains both allele count and allele fre-
quency in individuals of broad ancestral groups. The absence of
group information in ClinVar makes it impossible to estimate a
fairness metric using the standard approach, let alone mitigate bias
in the estimation. However, our GNIL approach with MS-GMM-©,
as an intermediate step, not only mitigates bias, but also makes
fairness estimation feasible in the first place.

To investigate fairness in variant impact prediction, we extracted
all 1-star or higher variants in ClinVar with a designated clinical sig-
nificance of “benign”, “benign/likely benign,” “likely benign” (nega-
tive label) and “pathogenic”, “pathogenic/likely pathogenic,” “likely
pathogenic” (positive label) to serve as the labeled set. We also ex-
tracted 3,061,576 variants from gnomAD together with their allele
frequency by population, a measure of how often a variant has been
observed in a population, and discarded variants with no allele fre-
quency data available. Of the 1,458,756 (47.6%) remaining variants,
we identified those that have been observed in only one population,
leaving 851,704 (58.4%) population-unique variants, which serves
as the unlabeled set. We then derived bias-mitigated fairness metric
estimates comparing the most represented group, European (non-
Finnish), to the variants observed in the other (under-represented)
genetic ancestry groups with a sufficient number of observed vari-
ants: African/African American, East Asian, Middle Eastern and
South Asian (Figure 2).

We evaluated fairness of the MutPred2 tool [35], one of the
top performing predictors in the field [38, 45]. Its features and
pathogenicity predictions were collected from the portal of the
IGVF Consortium [18], which hosts MutPred2 data for all possible
missense variants. MutPred2 is a supervised model, but it does not
use allele frequencies as features, which is important as such mod-
els have been found to have unequal prediction accuracy across
different allele frequency bins [38]. We used the clinical thresholds
of 0.737, 0.829, and 0.932, the minimum scores required to qualify
for supporting, moderate, and strong evidence towards pathogenic-
ity, respectively [34]. Each threshold has direct significance for a
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Figure 3: Fairness metrics estimates were obtained as signed difference between the majority (European non-Finnish) and each under-represented
group. Error bars show 68% confidence intervals based on 2000 bootstrap samples. Statistical significance of positive differences (indicated by *)
was assessed at Bonferroni-adjusted significance level of 0.05/36, accounting for 36 multiple comparisons.

variant’s eligibility to be used in genetic diagnosis [39], but was
here applied in a simpler manner to obtain pathogenic (positive)
and benign (negative) prediction labels.

Using 8 components for each label (pathogenic and benign),
MS-GMM-0©; was applied to the ClinVar and gnomAD variants,
represented with MutPred2 features after running Principal Compo-
nent Analysis (PCA) and retaining the top 16 principal components.
The estimated parameters were incorporated in the GNIL correction
approach to obtain fairness estimates of EO, PE and PP.

7.2 Results

As a signed difference between the majority group and a minority
group, each fairness metric attained a small positive value (<0.021)
when computed using all data points in the two groups. Using 2000
bootstrap samples, 15 out of the 36 differences were positive with
statistical significance at Bonferroni-corrected significance level of
0.05/36, as denoted by * in Figure 3. The maximum EO discrepancy
0f 0.01085 was observed between the European non-Finnish and the
African/African American group (TPR = 0.5659 vs. TPR = 0.5551)
for the moderate strength of evidence threshold. The maximum
PE discrepancy of 0.005322 was observed between the European
non-Finnish and African/African American group (FPR = 0.0683
vs. FPR = 0.0629) for the supporting strength of evidence threshold.
The maximum PP discrepancy of 0.020301, was observed between
the European non-Finnish and Middle Eastern group (PPV = 0.8402
vs. PPV = 0.8199) for the supporting strength of evidence threshold.
Overall, the evidence of unfairness towards minority population
groups in MutPred2 pathogenicity scores is minimal based on the
small effect sizes, in spite of the statistical significance in some
comparisons. Note further that our analysis was carried out only on
population-unique variants, which constituted 58.4% of all variants
with ancestry information.

Considering an aggregated analysis of all pairwise comparisons,
we observe that TPR, FPR and PPV of the European non-Finish
group are always higher than those of the minority groups. With
respect to EO and PP this suggests a pattern of better prediction
outcomes for European non-Finnish group. However, when PE is
considered, this suggests better prediction outcomes for the minor-
ity groups, since higher FPR implies higher error. This seems to
suggest rather than using a single classification threshold across
groups, a group-specific threshold might reduce these discrepancies.
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A slightly lower threshold for minority groups could bring their
TPR and FPR values closer to the European non-Finish group.

8 Discussion

In this work, we investigated the effect of selection bias on fairness
metric estimation. Our synthetic data results (Figure 1) demonstrate
the pernicious effect of selection bias in fairness estimation. The
standard approach without corrections could have errors as high
as 0.25-0.4 in some cases of selection bias. This could give vastly
misleading conclusions on the fairness assessment of a model, po-
tentially leading to an unfair model getting deployed. Selection bias
should therefore be considered an important factor when estimating
fairness and evaluating models for sensitive applications.

Fortunately, access to an unbiased, unlabeled dataset could ad-
dress this issue effectively as demonstrated by our two bias miti-
gation approaches. Among these, GNIL (ignoring the group infor-
mation in the labeled data) has a slight advantage over GIL both in
terms of the estimation error and wider applicability to sensitive
applications where the demographic information is excluded from
labeled data. This key feature of the GNIL approach made it feasi-
ble to study the fairness of a widely used pathogenicity predictor,
MutPred2, across ancestral groups. Applying our bias correction
approaches, we find minimal evidence of unfairness in MutPred2’s
predictions, due to small effect sizes.

While our work introduces a framework to improve the estima-
tion of fairness metrics under selection bias, we emphasize that
fairness is a complex issue that cannot be fully resolved through
algorithmic means alone. Metrics such as demographic parity or
equalized odds capture only limited aspects of fairness and may not
reflect its broader ethical and social dimensions. Furthermore, differ-
ent fairness definitions can conflict with one another, and selecting
an appropriate metric often involves normative judgments that lie
beyond the scope of algorithmic decision-making. Nevertheless,
improving the accuracy of fairness metric estimates contributes to
a more informed and transparent evaluation of algorithmic impact
in the real world.
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Appendix

A TPR and FPR Bias Correction Proof
GIL: TPRy = E[§(x)|+g]

- f (0P (el g)dx
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where E and E denote expectations w.r.t. the unbiased and biased
distributions, respectively. Correction for FPR; follows similarly.

GNIL: TPR,=

est

I£+|

B Bias-Corrected Expected Calibration Error
We provide the bias formula to correctly measure probabilistic
calibration of a continuous classifier score function s : RP —
[0, 1] for group g. Let {bi}?: 1 be B bins (non overlapping intervals)
partitioning [0, 1]. Theoretically, Expected Calibration Error (ECE)
for group g is given by

B
ECE,(s) = Zp(s(x)ebi|g)(p( +Is(x)ebi.g) - E(s(x)ls(x)ebi,g)‘
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where £ (x) = 575 = g NMix (x:0; )+ (1— g )NMix (x:0; ) and vg(x) =
p(x\g) agNMlx(x,H;’)+(1—ag)NMix(x;€;) n "

P(X) T GNMix(x:;6%)+(1-@)NMix (x;0-) Yg (x) and x5 (x) are as
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defined in Table 1. The above expressions lead to the following
empirical estimates of ECE,

2\ i 2, W

1£51
1 g x€£;,

est

GIL : ECE, =

()~

Z Z s(x>§g<x)|

B a 1
GNIL : ECE, %' Z ‘Ilj_il Z Xxp (%) - | Z s(x)vg(x)|,
i=1 xe LY xel ;
where £ ; and L*; are the labeled points and the positive labeled
points with scores in bin b;, respectively; £g; and L;’i are the labeled
points and the positive labeled points from group g with scores in
bin b;, respectively. £, L*, Ly and L;’ are as defined in Section 4.2.

C EM parameter updates
We use w;“k and Wg_k instead of wy and vy, respectively. We also

use a;' and a; for o and 1- oy, respectively. Let X (input variable),
Y (class label: + or —), G (group index) and K (component index)
be the random variables. Their joint probability is given by

p(Xs Y, G,K) = l_[ l_[ (agy)H[Y:y]H[G:g]

9geG yeYy

x I_[ I_l I_[ (W;k)Mng]]I[Yzy]MKZk]

geG yeY ke KY
x [ ] [ (e cxpitr=ylie=x]
yeY keKv
Next, taking log

log p(X,Y,G,K) = Z Z I[Y = y]I[G = g] log o]
9€G yeY

PIPHPIRC

9geG yeY ke KY
+ D, >0 Y = ylIK = k] log(¢} (X))
yeY ke'Kv

For the unlabeled set the E-step (both MS-GMM-0; and MS-GMM-
©,) corresponds to conditioning on X and G and taking expectation
using the old parameters.

Eg, [log p(X,Y,G,K)|X =x,G =g¢]

-3 osed 3 sl 3 3 A

yey keKY yeY keKv
+ ) D, A log(¢ (X))
yeY keKv

Following the same steps, log p(X, Y, G, K) can be derived. For MS-
GMM-01, the E-step for the labeled set corresponds to conditioning
on X, Y and G and taking expectation using the old parameters.

gIILY = ylI[K = K] log w}}

q(x.g) =
. log w

q4(x,y,9) =Eg [logp(X.Y,GK)IX =x,Y =y,G =¢]
=logd + > P log Wl + Z po log(# (X))
keKY

For MS-GMM-0,, we consider the labeled data dlStI‘lbuthIl without
groups

pocy Ky = [ @l [ ] ] esggooyterie

yey yeY keKv
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Equal size groups | Minority group underrepresented
Dim | A=05| A=0.1 | A=0.5 A=0.1
2 0.832 0.828 0.917 0.889
8 0.956 0.947 0.995 0.971

Table 2: Fraction of runs for which MS-GMM-0; obtains bet-
ter unbiased group class-conditional estimates compared to
MB-GC estimates for datasets described in Section 6.1. Each
cell represents an evaluation over 945 simulated datasets.

Next, taking log

log p(X,Y,K) = Z I[Y = y]log &Y
yey
Py I[[Y=y]ﬂ[K:k](logw;jnogqsg()()).
yeY keKv

For MS-GMM-03, the E-step for the labeled data corresponds to
conditioning on X and Y and taking expectation using the old
parameters.

q(x’ y) = Eéz [lOgﬁ(X, Y>K)|X =x,Y= y]
=loga¥+ Y pilogw!+ > pllog(¢ (X))
keKY ke KY
The Q-functions for MS-GMM-0; and MS-GMM-0; are

v 1
0@ = il Y ama+ Y o)
(UL e (xg.p)eL
N 1
Q(@z|®z)=—[ D, a9+ Y dxy)|,
(UL e (el

respectively. Taking partial derivative of the Q-function w.r.t. yi,
37, ag (substituting @y = 1 — ay), equating to 0 gives their param-
eter update. For WZg’ ‘;’Zg (MS-GMM-0,) and WZ (MS-GMM-03;)
the update equations are derived via KKT condition for satisfy-
ing 1) W;:g >0, Vv,*cg > 0 and W,*C > 0, and 2) Yrexr Wltg =1,

*

Dkekr ﬁ)kg =1land Yeq+ W) = 1, respectively.

D Selecting the number of components

We provide the log-likelihood criteria to select the number of com-
ponents via cross-validation for MS-GMM-0; and MS-GMM-0; as
follows

> log NMix(x; 8¢ ) + log(agNMix(x; 9;) + a;NMix(x; 99*))}

xg.y)eL (x,9)eU

Z log NMix(x; éy) + Z 10g(agNMix(x; 9;) + uc;NMix(x; 9;))},
xy)eL (xg)eU

miEl
L] +|U| (

|
LI+ Ul
respectively; 0*, é; 9; and NMix(x; 0) are defined in Table 1.

E Implementation Details

E.1 Parameter Initialization. MS-GMM-01 and MS-GMM-0,, are
sensitive to parameter initialization. We initialize parameters by
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first fitting the standard GMM on the labeled positives and nega-
tives, separately. For each group, the biased component weights in
wy and 9y (W and & for MS-GMM-@) are set to be equal. Each un-
labeled point is assigned to the nearest component mean from the
fitted means p. Class priors ey and unbiased component weights
wy (vg) are computed as proportions of assigned unlabeled points
to corresponding classes and components. Component covariance
matrices are also initialized using the unlabeled point assignments.

E.2  Optimization Details. While not required by the optimization,
the implementation is simplified by enforcing that no component
is empty. If any component weight is updated to zero, we add a
small € = 1e — 300 to all weights for that mixture and normalize

the weights by dividing by their sum. Similarly, when covariance
matrices 2} become close to singular, we add € to the diagonal until

the matrix is invertible.

E.3 Baseline Implementation. We get results for the methods of
[19] by using the work’s provided code at https://github.com/disiji/
bayesian-fairness-assess. The Beta Calibration (BC) method is ap-
plied using the same Multi-layer Perceptron model as used for
scores in our proposed methods. The entire labeled set is used for
the BC metric estimation.

F Improved Estimation with SCC-invariance
Compared to MB-GC

Our proposed sample selection bias model, SCC-invariance, ex-
tends MB-GC to account for groups. It makes an assumption that
the group class-conditionals are related as mixtures sharing the
same components. The proposed algorithms, MS-GMM-©; and
MS-GMM-03, exploit this structure by pooling the data from the
groups, in addition to pooling the labeled and unlabeled data, to
estimate the shared components (Section 4.2). Applying the MB-GC
based multi-sample gaussian mixture estimation algorithm [5], in-
dependently to the data from each group, fails to capture the shared
structure between the groups and leads to suboptimal performance
in estimating the unbiased group class-conditionals (Table 2). We
compared MS-GMM-0; with the MB-GC based estimation on our
simulated data using the following metric,

D> Auc(NMix(; 6] ), Nnvix( 6]

9eG yeY
where each AUC term measures the difference between a pair of
estimated and true group class-conditional, by training a classifier
to separate the the data generated from the two distributions. A
lower value of the AUC based metric indicate better estimation. In
Table 2, we present the fraction of runs for which MS-GMM-0;
achieves a lower AUC across various configurations of dimensions,
number of components, AUC(+,-), selection bias buckets, labeled
data proportion (1) and equal and unequal group representation,
as described in Section 6.1.
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