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For theCAGISpecial Issue

Abstract
Precision medicine aims to predict a patient’s disease risk and best therapeutic options by using

that individual’s genetic sequencing data. The Critical Assessment of Genome Interpretation

(CAGI) is a community experiment consisting of genotype–phenotype prediction challenges; par-

ticipants build models, undergo assessment, and share key findings. For CAGI 4, three challenges

involved using exome-sequencing data: Crohn’s disease, bipolar disorder, and warfarin dosing.

Previous CAGI challenges included prior versions of the Crohn’s disease challenge. Here, we dis-

cuss the rangeof techniquesused for phenotypeprediction aswell as themethodsused for assess-

ing predictivemodels. Additionally, we outline someof the difficulties associatedwithmaking pre-

dictions and evaluating them. The lessons learned from the exome challenges can be applied to

both research and clinical efforts to improve phenotype prediction from genotype. In addition,

these challenges serve as a vehicle for sharing clinical and research exome data in a secure man-

ner with scientists who have a broad range of expertise, contributing to a collaborative effort to

advance our understanding of genotype–phenotype relationships.
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1 INTRODUCTION

Precision medicine aims to use a patient’s genomic and clinical data to

make predictions aboutmedically relevant phenotypes such as disease

risk or drug efficacy (Ashley, 2015; Ashley et al., 2010).

The Critical Assessment of Genome Interpretation (CAGI) is a com-

munity experiment, which aims to advance methods for phenotype

prediction from genotypes through a series of “challenges” with real

data (CAGI, 2011). Exome-sequencing data, which captures exons and

nearby flanking regulatory regions, is already being used clinically

to solve medical mysteries with well-defined symptoms (Brown &

Meloche, 2016). However, in order to advance precisionmedicine, clin-

icians and scientists will need to be able to make inferences about dis-

ease risk or drug efficacy from genetic data. Interpretation of genetic

data is one of the major difficulties in the implementation of preci-

sion medicine (Fernald, Capriotti, Daneshjou, Karczewski, & Altman,

2011).

CAGI is an example of the Common Task Framework, a phrase

coined by Mark Liberman to describe the approach of using shared

training and testing datasets and evaluation metrics to advance

machine learning (Committee on Applied and Theoretical Statistics;

Board on Mathematical Sciences and Their Applications; Division on

Engineering and Physical Sciences; National Academies of Sciences,

Engineering, and Medicine, & Schwalbe, 2016; Donoho, 2015). The

Common Task Framework has been called the “secret sauce” behind

the recent successes inmachine learning (Donoho, 2015). Startingwith

common task challenges in the 1980s for machine translation, this

approach has led to significant gains in speech recognition and dia-

log systems, protein structure prediction, biomedical natural language

processing, autonomous vehicles, and collaborative filtering for con-

sumer preferences (Bell & Koren, 2007; Morgan et al., 2008; Moult,

Fidelis, Kryshtafovych, Schwede, & Tramontano, 2014; Thrun et al.,

2006; Walker et al., 2001). Through this same approach, CAGI aims to

push forward the field of precisionmedicine.

At CAGI 4 held in 2016, three challenges involved making predic-

tions using exome sequencedata: aCrohn’s disease challenge, a bipolar

disorder challenge, and a warfarin dosing challenge. These challenges

represent the spectrum of phenotypes seen in clinical practice. Bipolar

disorder and Crohn’s disease are discrete phenotypes, with the former

being a clinical diagnosis (basedonmeeting clinical criteria) and the lat-

ter a pathological diagnosis (based on biopsies). Therapeutic warfarin

dose, on the other hand, is a continuous phenotype.

TheCrohn’s disease challengehasbeenapart of previousCAGI iter-

ations, whereas the bipolar disorder and warfarin dosing challenges

debuted during CAGI 4. We will describe the nature of each challenge

in greater detail. The number of groups participating in each challenge

can be found in Table 1.
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TABLE 1 The number of predictors and predictions for each CAGI
challenge

Challenge Number of predictors
Number of
predictions

Crohn’s disease
exomes challenge

CAGI 2 – 10 groups CAGI 2 – 33
predictions

CAGI 3 – 14 groups CAGI 3 – 58 (+3 late)
predictions

CAGI 4 – 14 groups CAGI 4 – 46
predictions

Bipolar exomes
challenge

CAGI 4 – 9 groups CAGI 4 – 29
predictions

Warfarin exomes
challenge

CAGI 4 – 3 groups CAGI 4– 9 predictions

1.1 Crohn’s disease challenge

Crohn’s disease is a chronic inflammatory bowel disease marked by

transmural inflammation of the gastrointestinal tract that can occur

anywhere from the mouth to the rectum (Cho, 2008). Symptoms

include pain and debilitating diarrhea, which can lead to malnutri-

tion (Cho, 2008). Monozygotic twin studies have shown a concor-

dance of 40%–50%, and genome-wide association studies have iden-

tified genetic risk loci (Cho, 2008; Halfvarson, Bodin, Tysk, Lindberg,

& Jarnerot, 2003). Age of onset is typically between 20 and 40 years

old, but early age of onset, such as in early childhood, is associatedwith

more severe disease features (Uhlig et al., 2014).

The2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all

ofGermanancestry (Ellinghauset al., 2013). The2013 (CAGI3) dataset

has 66 exomes (51 cases, 15 controls). Though these sampleswere also

of German ancestry, cases were selected from pedigrees of German

families with multiple occurrences of Crohn’s disease. As such, some

of these cases were related. For the most part, the samples sequenced

as controls were unrelated healthy individuals; the exceptions to this

were the unaffected parents of three cases and the unaffected twin

of one case. The most recent challenge, CAGI 4 in 2016, was to iden-

tify cases from controls in 111 unrelated German ancestry exomes (64

cases, 47 controls). For CAGI 4, submitting groups were allowed to

use the data from the Crohn’s disease CAGI challenges of 2011 and

2013. In all iterations of the challenge, groups were asked to report

a probability of Crohn’s disease (between 0 and 1) for each individual

and a standard deviation representing their confidence in that predic-

tion. For the most recent Crohn’s disease evaluation, teams were also

asked to predictwhether age of onsetwas greater or less than10 years

of age; an age cutoff selected by CAGI based on the literature (Uhlig

et al., 2014). Additional details of the challenges can be found in Supp.

Exhibit 1.

1.2 Bipolar disorder challenge

Bipolar disorder is a mood disorder marked by elevated mood (mania

or hypomania) and depressed mood that disrupts an individual’s abil-

ity to function (Craddock & Sklar, 2013). In the general population,

the lifetime risk of bipolar disorder is 0.5%–1% (Craddock & Jones,

1999). However, bipolar disorder has a high component of heritabil-

ity, with studies demonstrating a 40%–70% monozygotic twin con-

cordance (Craddock & Jones, 1999). In this CAGI 4 challenge, 1,000

exomes of unrelated bipolar disorder cases and age/ancestry-matched

controls of Northern European ancestry were provided. Five-hundred

exomes were used as the training set and 500 exomes were used for

the prediction set (Monson et al., 2017). Groups were asked to report

a probability of bipolar disorder (between 0 and 1) for each individ-

ual and a standard deviation representing their confidence in that pre-

diction. Additional information on the challenge can be found in Supp.

Exhibit 2.

1.3 Warfarin dosing challenge

Warfarin is an anticoagulant with over 30 million prescriptions writ-

ten in 2011 (IMS Institute of Healthcare Informatics, 2012). Warfarin

remains a clinical stapledespite the introductionof novel oral anticoag-

ulants because of multiple factors—warfarin’s lower cost, longer half-

life, and clinical indications for which novel oral anticoagulants have

not yet been approved (Bauer, 2011). However, warfarin is responsible

for one-third of hospitalizations due to adverse drug events because

of its narrow therapeutic index and high interindividual dose variabil-

ity (Budnitz, Lovegrove, Shehab, & Richards, 2011). Both clinical and

genetic factors affect the therapeutic dose of warfarin (Klein et al.,

2009). For this challenge, participants were provided with exomes

of African Americans on tail ends of the warfarin dose distribution

(≤35 mg or ≥49 mg) (Daneshjou et al., 2014). Clinical covariates were

provided for all exomes. The training set consisted of 50 exomes, and

participants submitted dose predictions with standard deviations on

53 test set exomes. Additional details of the challenge can be found in

Supp. Exhibit 3.

2 METHODS

2.1 Data distribution

Data were distributed to the participants who consented to the CAGI

data use agreement. Data providers worked with their home institu-

tion to ensure adherence with local privacy regulations and predicting

groups agreed not to share the anonymized data. Data were provided

as described above, with genetic variant data shared in the VCF file

format.

2.2 Predicting phenotypes

Participants required to return a simple text file with appropriate pre-

dicted values (such as disease status and confidence in prediction) for

each sample. They were also provided with a validation script to check

their output formatting. Participants were asked to submit a methods

description for each submission. The prediction results from selected

groups that submitted predictions andmethods descriptionswere pre-

sented at the CAGI meeting. Additionally, the ground truth data and

scoring scripts used to perform the evaluation were shared with par-

ticipants.
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2.3 Data quality

For the Crohn’s disease and bipolar disorder exome challenges, biases

in the data were assessed using principal component analysis and clus-

tering after pruning for linkage disequilibriumusing plink (Purcell et al.,

2007).

For thewarfarin challenge, datahadpreviously undergoneQCusing

ancestry informative markers to confirm self-reported ancestry and

identity by state (IBS) analysis in order to ensure that sampleswere not

related, as previously described (Daneshjou et al., 2014).

2.4 Assessing discrete phenotypes (Crohn’s disease

and bipolar disorder)

A simple accuracy of prediction per sample score, such as derivable

from setting a threshold for prediction (such as 0.5), although tanta-

lizing in its simplicity neither supports the goals of CAGI nor is it repre-

sentative of a likely clinically relevant scenario for prediction. Because

the genetic datasets from CAGI are drawn from case-control studies,

as well as pedigree studies in families with a strong burden of disease,

it does not represent a random sampling of the population. Requiring a

fixed threshold for evaluation and reporting a basic accuracy score of

prediction in such a dataset would obscure interpretation. Also, using

this as a figure of merit for ranking encourages participants to opti-

mize their system predictions for the anticipated case/control distri-

bution instead of focusing on features that selectively prioritize and

rank disease likelihood in the absence of that calibration. The use of

receiver operator characteristics (ROC) curves for genomic test eval-

uation has been previously investigated by Wray, Yang, Goddard, and

Visscher (2010).

The ROC offers many advantages for evaluating a test, and is often

used to characterize clinical tests. The shape of a ROC curve can help

differentiate between highly sensitive tests, which could rule in a pos-

sible diagnosis, and highly specific tests that could rule out a diagnosis.

The prediction of Crohn’s disease status from sequencing data might

beused in either of those situations depending on clinical presentation,

risk factors, or stage of patient evaluation. Additionally, ROC curves

allow easy selection of a classification threshold (based on select-

ing a position on the curve). Based on the selected threshold, a pos-

itive or negative likelihood ratio can be derived and applied in stan-

dard evidence-based techniques of patient diagnosis, which rely on a

Bayesian framework that takes into account the pretest probabilities

and the characteristics of a given test depending on the threshold cho-

sen for prediction (Fagan, 1975).

We evaluated the robustness of the prediction accuracywhenmak-

ing predictions on different subsamples of exomes and assessed the

confidence intervals reported by the participants.

To capture confidence intervals on the predictions, multiple

samples with replacement were drawn. Each prediction was then

modified by adding a random amount drawn from a normal distribu-

tion with a mean of zero and a standard deviation equivalent to the

standard deviation reported for the original prediction. If no confi-

dence interval was reported for the original prediction, the standard

deviation was taken to be zero. If a prediction for a particular exome

was missing, the prediction score for that sample was set to the mean

reported prediction value in that submission. In order to compare sub-

missions by a single figure of merit, the average area under the ROC

curves from the bootstrap sampling was used, accompanied by the

bootstrapped confidence interval around that area under the curve,

to estimate the robustness of differences between prediction perfor-

mances. The evaluation scripts were provided to all participants.

A cross-validated logistic regression-based metaclassifier using

lasso regularizationwas also trained on the submissions as features for

CAGI 4 Crohn’s disease and CAGI 4 bipolar disorder. This step allowed

us to assesswhether combining the features selected across the differ-

ent groups would improve prediction over a single method. If a meta-

classifier could perform better than any single method, then a combi-

nation of methodsmight lead tomeaningfully better performance.

2.5 Assessing continuous phenotypes (therapeutic

warfarin dose)

For the warfarin exomes challenge, several metrics of assessment

were used. Each participant provided a predicted therapeutic dose of

warfarin for each individual as well as a standard deviation for that

prediction.

To look at the amount of variation in dose explained by the pre-

dicted doses, we used linear regression with the linear model function

(lm) in the R statistical package (v 2.15.3). We evaluated each method

using the R2 and the sum of squared errors. Additionally, we compared

each prediction against one of the best performingwarfarin-predictive

algorithms, the International Warfarin Pharmacogenetic Consortium

(IWPC) algorithm (Klein et al., 2009).

To assess, on average, how many participant-provided standard

deviations the predicted dose was from the actual dose, we used a

mean of the absolute value of the z score for each prediction, as seen in

Equation (1). Here, dose_actual is the known therapeutic dose of war-

farin for each individual i, whereas dose_predicted is the therapeutic

dose predicted by that group for that individual. SD_predicted is the

standard deviation for each individual’s predicted dose, as provided by

the participant’s predictionmethod. The number of individuals is n.

∑n
i=1

||||
dose_actuali − dose_predictedi

SD_predictedi

||||
n

(1)

To assess the range of the each prediction’s standard deviation com-

pared with the predicted dose, we calculated the mean of the coeffi-

cient of variation, which was the mean of the standard deviation for

each prediction divided by the predicted dose, as seen in Equation (2).

∑n
i=1

SD_predictedi
dose_predictedi

n
(2)

We also evaluated the mean absolute value of the z score multi-

plied by the mean coefficient of variation for each method. This value

allowed us to assess the mean z scores with a penalization for mean

z scores whose values were closer to 0 because of larger standard

deviations.
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F IGURE 1 Clustering of patients from the CAGI 2 Crohn’s disease challenge. The black and gray bars at the bottom represent the controls; the
red represents the cases. Many of the controls cluster together, likely due to batch effects. For instance, the controls represented in black were
sequenced separately from the gray controls and the cases

We calculated rho andP values using the spearman rank correlation

between (1) each group’s predictedwarfarin doses and the actual ther-

apeutic doses across individuals and (2) each group’s predicted war-

farin doses and the IWPC-predicted doses across individuals. These

calculations were made with the spearmanr command from the stat

package in scipy (python v 2.7.5).

3 RESULTS

With each year, CAGI has expanded the number of challenges and par-

ticipants. Table 1 displays the number of participants and predictions

for each CAGI challenge.

3.1 Crohn’s disease exomes challenge (CAGI 2–4)

For the 2011 Crohn’s disease (CAGI 2) challenge, during the assess-

ment phase, a substantial batch effect was discovered in the data as

a side effect of sample preparation and sequencing (Fig. 1). Overall,

the control samples that clustered separately due to this batch effect

had fewer variants reported that did not match the reference genome.

The participants were not aware of this batch effect; their methods

were not designed to exploit it. However, this raises the possibility

that techniques that used a very large list of genes were more likely

to correctly identify case samples as coming from individuals with

Crohn’s disease. Indeed, many different methods did better than

random based on AUC, with a maximum AUC of 0.94, and in general

approaches that favored a large list of potentially Crohn’s disease-

related genes and gave more weight to rarer variants did the best. A

full description of all methods used by the participants can be found in

Supp. Exhibit 1:CAGI 2. Supp. File 1 shows comparative results of the

CAGI 2 Crohn’s disease challenge predictive methods. It is certainly

biologically plausible that increased burden of variation in a large

number of Crohn’s disease-related genes leads to increased likelihood

of disease; however, it is also possible that there was systematic over-

reporting of variation as a batch effect. Therefore, it was important to

re-evaluate withmore data.

In the 2013 CAGI 3, a much greater effort was made to carefully

collect and prepare samples in a completely consistent way. In this

instance, case samples were collected from German families with a

particularly high burden of Crohn’s disease (two ormore affected fam-

ily members), including a pair of twins discordant for the disease, and

another pair of twins concordant with the disease. Additional healthy

controls were drawn from the unaffected German general popula-

tion. During the 2013 CAGI 3, there was once again a substantial dif-

ference in clustering between cases and controls, but in this dataset

there was substantially more homogeneity in the cases. Individuals

from different case families clustered much more closely with each

other than with unrelated controls (Fig. 2). This prompted two possi-

ble hypotheses. The first is that theremight be a hidden founder effect,

and these families with a high burden of disease may all actually be

closely related. The second is that reduced heterogeneity and perhaps
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F IGURE 2 Clustering of samples for CAGI 3 Crohn’s disease challenge. Black represents controls, whereas red represents cases. This dataset
included healthy family members of cases as well as random controls. Samples with a “ped” designation in the sample name came from a pedigree;
samples that share the same “ped” number came from the same pedigree

increased ancestor consanguinity may contribute to increased risk of

Crohn’s disease in these families with a high burden. Either one alone

or amixture of both possibilities is biologically plausible. In this instan-

tiation of CAGI, groups that simply did some version of partitioning the

test datasets based on hierarchical clustering did quite well, and the

top performing methods had an AUC of 0.87. Once again, all of these

methods were implemented without awareness of the bias in the data.

A full description of all methods used by the participants can be found

in Supp. Exhibit 1:CAGI 3. Supp. File 2 shows comparative results of the

CAGI 3 Crohn’s disease challenge.

In CAGI 4, 111 exomes were derived from a mix of 64 Crohn’s

disease patients, with a skew toward early onset of disease, and 47

healthy controls, all taken from individuals of German descent. With

this data, the simple separation of cases and controls based on genetic

variants was not present (Fig. 3), suggesting the problems with batch

effects and sampling bias were no longer present; the only noticeable

structure indicated the possibility of a few related samples, as seen

in the PCA and IBD plots shown in Supp. Figures S1 and S2. Corre-

spondingly, the peak performance dropped from previous CAGI iter-

ations down to an AUC of 0.72. However, given the elimination of

biases in the data, this incarnation of the Crohn’s disease challenge is

likely the best reflection of how the prediction methods perform. A

metaclassifier created by the assessment team using all submitted

methods for this challenge, as shown in Supp. Figure S3, had an AUC

of 0.78, a small improvement over the top method. The distribution

of AUCs across methods is shown in Figure 4. A full description of all

methods used by the participants can be found in Supp. Exhibit 1:CAGI

4. Supp. File 3 shows comparative results of theCAGI4Crohn’s disease

challenge.

The top approach in CAGI 4 used a compiled list of genes and

genomic regions associated with Crohn’s disease from prior studies,

used imputation to evaluate risk contribution from known regions

associated with Crohn’s disease but not covered by exome sequenc-

ing, and used the Welcome Trust Case Control Consortium (WTCCC)

Crohn’s disease genotyping array data to train a disease classifier to

score relative risk for each sample.

Across participants, numerousmethodswere used for selecting the

covariates, highlighting the many different approaches to building a

Crohn’s disease classifier. Similar to the top approach, many groups

used variants previously found to be associated in genome-wide asso-

ciation studies; the NHGRI catalog was a popular choice to iden-

tify these associated variants (Welter et al., 2014). Other approaches

relied on gene lists of associated and “predicted”Crohn’s disease genes

to select variants of interest. To create the “predicted” list of Crohn’s

disease genes, groups used a variety of methods. Examples include

using (1) existing tools such as Phenolyzer, which associates disease

terms with genes based on prior research, expands the gene list by

using gene–gene relationships, and then creates a ranked list of can-

didate genes; (2) creating gene lists based on GO pathways enriched

with Crohn’s disease-associated variants; and (3) using natural lan-

guage processing to identify genes of interest from PubMed abstracts

(Ashburner et al., 2000; Yang, Robinson, & Wang, 2015). From a gene

level, different groups would then devise different strategies to select

variants of interest. For some approaches, population level frequency
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F IGURE 3 Clustering of samples for CAGI 4 Crohn’s disease challenge. Black represents controls, and red represents cases

datawas used to help distinguish variantsmore likely to be pathogenic.

Other methods relied on pathogenicity prediction tools such as SNAP,

PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant

selection andweighting (Bromberg & Rost, 2007; Calabrese, Capriotti,

Fariselli, Martelli, & Casadio, 2009;McLaren et al., 2010; Niroula, Uro-

lagin, & Vihinen, 2015).

A range ofmachine learning approacheswere used to actually build

the classifiers: naïveBayes, logistic regression, neural nets, and random

forests. Additionally, some groups improved on prior iterations by cre-

atingmetaclassifiers based on combinations of prior methods.

3.2 Bipolar disorder exomes challenge (CAGI 4)

As noted, a substantial difference between the Crohn’s disease phe-

notypic prediction challenge and the bipolar disorder challenge was

that a substantial amount of training data was provided for the bipolar

disorder challenge, with 500 of the 1,000 exomes randomly selected

and provided as training data for the challenge. These samples were

unrelated, and analysis steps assessing the relationships between sam-

ples can be found in Supp. Figs. S4–S6. The top performing group

had a method with an AUC of 0.64. The distribution of AUCs across

methods is shown in Figure 5. Althoughmany groups used approaches

similar to those used for the Crohn’s disease challenge, the top per-

forming group (which did not apply this method to Crohn’s disease

data) treated the genotype data as linear features and trained a neu-

ral network with three hidden layers, with the middle layers look-

ing at local features in the linear space of the ordered SNPs of the

F IGURE 4 CAGI 4 Crohn’s disease challenge distribution of AUCs
across all methods

VCF file, tuning for performance using cross-validation on the test

data. Importantly, this approach used essentially no prior knowledge of

genetics or the results of prior studies on disease–gene relationships.

Supp. File 4 shows comparative results of the CAGI 4 bipolar disor-

der challenge. Overall descriptions of predictionmethods are available

under Supp. Exhibit 2: CAGI 4. A metaclassifier created by the assess-

ment team using all submitted methods for this challenge, as shown in
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F IGURE 5 CAGI 4 bipolar disorder challenge distribution of AUCs
across all methods

Supp. Figure S7, had an AUC of 0.64, which was not notably different

from the topmethod.

3.3 Warfarin exomes challenge (CAGI 4)

With the warfarin exomes challenge, similar to the Crohn’s disease

challenge, many groups utilized a priori data to create a list of covari-

ates to use for their models. This included known pharmacokinetic and

pharmacodynamic warfarin genes, genes mentioned in the literature,

and also using tools to find functional neighbors of the known gene set.

One prediction method (Group 50, Prediction 1) was ahead of the

others when looking acrossmultiple performancemetrics described in

the methods section—R2, mean absolute value of z score, and mean

absolute value of z score multiplied by the coefficient of variation

(Fig. 6A–D; Supp. Table S1). The R2 of the top prediction method was

0.25, compared with 0.35 for the IWPC prediction method, one of the

best performing published predictive algorithms. A visualization of the

predictions compared with the actual dose can be seen in Supp. Fig-

ures S8 and S9. Details of all methods can be found in Supp. Exhibit

3:CAGI 4.

The methods submitted for this challenge had several similar fea-

tures. Every method submitted took advantage of the fact that the

range of the actual doses were published in the paper from which the

data came. Thus, thesemethods either fit rankings to the dose range or

set predicted doses above or below the known range to the lower or

upper limits. Additionally, most methods used prior information from

the literature to help set the initial clinical and genetic covariates to

consider in their models.

4 DISCUSSION

The CAGI exomes challenges revealed lessons specific to each partic-

ular challenge as well as generalizable principles for future genotype–

phenotype prediction challenges.

4.1 Crohn’s disease

Overall, there were substantial challenges with bias and population

stratification in the datasets that made the evaluation and comparison

of techniques for identifying Crohn’s disease status from exome data

difficult. In the latest crop of prediction systems, it may be that tech-

niques such as using imputation to infer variants in regions not cov-

eredby the exome sequencing andusing large externalmicroarray SNP

chip datasets for classifier trainingwere key factors in superior perfor-

mance. The top AUC varied across the three evaluations, demonstrat-

ing the substantial differences in the data sets. Groups who created

metaclassifiers based on combining previous methods from previous

CAGI challenges demonstrated the value of applying theCommonTask

Framework to genetic problems—through iteratively improving their

methods based on prior learning. Importantly, across the three CAGI

evaluations, the average system performance performed better than

random, including in the most recent, CAGI 4, implying that there is

some level of useful information in predicting the likelihood of Crohn’s

disease from exome data in the population, something previously not

demonstrated.

4.2 Bipolar disorder

Surprisingly, the group that created the best performing prediction in

the bipolar disorder challenge acknowledged having little background

in biomedicine or genetics. This group approached the problem as

purely a data classification challenge. On the one hand, this may be

hailed as another example of the unreasonable effectiveness of data

and the success of machine learning over human expertise; the quota-

tion “Every time I fire a linguist, the performance of our speech recog-

nition system goes up,” has been attributed to Fred Jelinek in the

1980s, and something similar may be afoot in genomics, promising an

exciting future as datasets expand and machine learning techniques

improve. However, one of themajor challenges is that prediction accu-

racywith case-control datadoesnot really reflectmost applicationswe

can envision for a phenotypic prediction system. Moreover, while not

detected by any of our quality control methods, it is still possible that

the top performing method picked up on hidden population stratifica-

tion/biases in the data. Although we were unable to find evidence of

this, a sophisticated machine learning system may be identifying fea-

tures that partition the cases and controls but that are not related to

biological drivers of disease risk. Unfortunately, the tools to dissect the

deep neural net architecture in the context of genomic features are

currently too primitive to help us deepen our biological understanding

using these results. There has been recent work into advanced tech-

niques to understand the decisions made by previous black box sys-

tems in areas like image processing and natural language processing;

however, similar tools for understanding genomic prediction systems

are less developed (Ribeiro, Singh, & Guestrin, 2016)).

4.3 Warfarin

Predictingwarfarin doseusing clinical information andgenetics is a dif-

ficult problem; one of the best performing algorithms (IWPC) has anR2

of 0.35 on this data set. Existing algorithms have poorer performance



1190 DANESHJOU ET AL.

on diverse populations since most algorithms are trained on European

descent populations (Daneshjou et al., 2014; Klein et al., 2009). For this

challenge, the winningmethod had an R2 of 0.25.

The warfarin exomes challenge had several limitations. The sam-

ple size was limited, with only 50 samples for training and 53 for test-

ing. Data were generated at a time when exome sequencing was more

expensive; falling costs may allow an expansion of available exome

data. Additionally, all groups used the known dose range of the cohort

when assigning their predicted doses. Because of the use of this known

range, some of thesemethods may be tailored particularly to this chal-

lenge and not be generalizable to the wider population.

4.4 Overall lessons fromCAGI exomes challenges

An advantage of the common task structure is the ability to iterate

quickly and learn from the setbacks of the groups analyzing the data.

The exomes challenges allowed us to glean several important lessons

that will inform future iterations of CAGI.

The importance of population stratification, batch effects, and hid-

den biases became evident early on with the CAGI 2 Crohn’s dis-

ease challenge (Fig. 1). In that particular instance, either popula-

tion stratification or batch effects created a discernable difference

between cases and controls that was unlikely related to actual dis-

ease status. Based on that finding in CAGI 2, every subsequent

CAGI challenge included a preanalysis of the whole-exome data try-

ing to identify whether there were samples that clustered together

inappropriately based on case-control status. Population stratification

has long been an issue in genetic studies. Themost obvious issue arises

when cases and controls come from distinctly different ancestral pop-

ulations, such as comparing Northern European cases against Chinese

controls. However, less obvious stratification can also be an issue, such

asdifferences in admixture/population substructureor cryptic related-

ness (Price, Zaitlen, Reich, & Patterson, 2010). Batch effects can occur

at many different steps in the pipeline, for example, if samples from

the cases and controls have differences in sample preparation, DNA

quality, sequencing coverage, or genotype calling. Any of the above can

result in prediction methods that perform well due to systemic biases

between cases and controls rather than true features that define case-

control status.

How these challenge datasets emulate the real world was another

important consideration andwas a topic of discussion among theCAGI

4 community.

A majority of the challenges used samples of Northern European

ancestry, only the warfarin dose prediction challenge used samples

of African American ancestry. In order for the methods to be gen-

eralizable to real-world populations, representation of human diver-

sity is necessary, particularly since disease risk and pharmacogenetic

variants can be population-specific (Rosenberg et al., 2010). More-

over, the CAGI exome datasets all came from research studies, which

are often designed to maximize the possibility of picking up a signifi-

cant signal. One way to achieve this is through selecting for extreme

phenotypes—a strategy employed by both the Crohn’s disease exome

F IGURE 6 A: R2 between predicted doses and actual doses for each group’s predictionmethod aswell as the IWPCalgorithm.B: Sumof squared
errors for each group’s prediction method and the IWPC algorithm.C: Mean z scores calculated from each group’s predicted doses with predicted
standard deviations and actual doses. D: Mean coefficient of variation (CV) and mean CV multiplied by mean z score for each group’s prediction
method
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dataset (which selected a subset of cases who had early-onset Crohn’s

disease) and the warfarin prediction exome dataset (selected from

individuals requiring “low” and “high” doses to achieve the therapeutic

effect) (Manolio et al., 2009). However, while this strategy works well

for increasing signal strength in research, using such data for building a

classifier may lead to a biased predictor that has difficulty differentiat-

ing between the more subtle variations seen in the real world. Having

larger datasets and using data generated for clinical usemay help rem-

edy some of these issues in the future.

Finally, one of the most promising lessons from CAGI was on the

effectivenessof data.Asmentionedbefore, for complex tasks, the com-

mon task framework has provided a way to havemany people work on

a problem and iterate quickly. After each challenge ended, the evalua-

tion scripts and the challenge answerswere shared so that participants

could analyze when their predictionmethods succeeded or failed. This

process allowed groups to have information for future improvement.

Additionally, large datasets, even if imperfect, have also been shown

to be a critical part of developing algorithms to tackle a complicated

task (Pereira, Norvig, & Halevy, 2009). Critical to accumulating large

enough datasets is data sharing, and the open data movement aims

to encourage increased biomedical data sharing (McNutt, 2016). How-

ever, one of the difficulties with genetic data that includes protected

health information is sharing data in a secure manner. CAGI, which

includes data encryption and verifies the groups participating, can pro-

vide a platform to facilitate sharing such data. As a result of the data

accumulated thus far, CAGI has demonstrated how data can, in cer-

tain cases, surmount prior biological knowledge. For CAGI 4, the bipo-

lar disease challenge was the best example; individuals with no biolog-

ical background, but a strong background in data science, had the best

performance. In particular, this should inspire a more multidisciplinary

approach to genotype–phenotype prediction and a greater effort to

engage those whose backgrounds are more data driven rather than

biologically driven.

Overall, the CAGI exomes challenges provided an opportunity

to begin building the classifiers required to implement precision

medicine. While there is still a long road ahead for genotype–

phenotype prediction, the accumulation of larger datasets and the par-

ticipation of more groups with every subsequent CAGI holds promise

for continued improvement.
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