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Abstract-Post-translational protein modifications play an impor-
tant role in many protein pathways and interactions. It has been 
hypothesized that modifications to proteins occur in regions that 
are easily accessible, and many have been determined to be 
located within intrinsically disordered regions. However, iden-
tifying precise locations of protein modifications involves expen-
sive and time consuming laboratory work. Thus, automated iden-
tification of these sites is helpful. This paper studies methylated 
proteins and describes methods of building a predictor for 
arginine and lysine methylation sites using support vector 
machines. Our results indicate that, based on current data, both 
arginine and lysine methylation sites are likely to be intrinsically 
disordered and that the accuracies of methylation site predictions 
are high enough to be useful for protein screening and for testing 
biological hypotheses. 
Availability: www.informatics.indiana.edu/MethylationPredictor 
 

I. INTRODUCTION 
 

A. Protein Methylation 
Protein methylation was discovered more than 35 years ago 
[1] and, together with other post-translational modifications, it 
offers great functional diversity to the primary sequence of a 
protein. However, not nearly as much is known about the 
processes or implications of protein methylation as is about 
other post-translational modifications, such as phosphory-
lation. Methylation can occur at many residues, including 
arginine, lysine, histidine, alanine, proline, aspartic and 
glutamic acid, and glutamine. Nitrogen atoms, either backbone 
or sidechain, are methylated (N-methylation) in arginine, 
lysine, histidine, alanine, proline, and glutamine, and oxygen 
atoms are methylated in glutamic and aspartic acid residues 
[3]. These additions are carried out by a protein family called 
methyltransferases, which use S-adenosylmethionine as a 
substrate to transfer a methyl group [4]. Originally, it was 
thought that methylation is not a reversible event [5]. 
However, recent research indicates reversibility, as supported 
by the enzyme LSD1 that possesses lysine demethylase 
activity and can remove methyl groups from lysine 4 of 
histone protein H3 [6]. In this study, we are focusing on 
arginine and lysine residues only, for which mechanisms of 
methylation are best understood and for which the data are 
publicly available. 

Arginine methylation involves the addition of a methyl 
group to nitrogens within an arginine in a polypeptide. Three 
main forms of arginine methylation have been identified: 
monomethylarginine (Ng-monomethylarginine), symmetric di-
methylarginine (Ng, Ng′-dimethylarginine), and asymmetric 
dimethylarginine (Ng, Ng-dimethylarginine). Eight mammalian 
protein arginine methyltransferases (PRMTs) have been iden-

tified, six of which have been shown to transfer a methyl 
group to the guanidino nitrogen of arginine from S-adenosyl-
methionine [7]. There are two types of PRMTs, both of which 
form Ng-monomethylarginine. The type I PRMTs (PRMT1, 
PRMT3, PRMT4, and PRMT6) produce asymmetric di-
methylarginine, while the type II PRMTs (PRMT5 and 
PRMT7) produce symmetric dimethylarginine  There has been 
no documented activity for PRMT2 or PRMT8 [7].  

PRMTs are found in many different tissues and generate 
specificity by alternative splicing [8]. Proteins with glycine 
and arginine-rich regions are often targets for PRMTs [9]. 
Methylation of arginines has been identified in roles in trans-
criptional regulation, RNA processing, signal transduction, 
DNA repair, cell-type differentiation, genome stability and 
cancer [7, 10]. Although it is generally thought that PRMTs 
are very specific, evidence exists showing the same arginine 
residues in a substrate protein being methylated by both type I 
and type II PRMTs. In addition, SmB and SmB′, which are 
core small nuclear ribonucleoproteins,  have been shown to be 
symmetrically dimethylated by PRMT5 [11] as well as asym-
metrically methylated by CARM1 [12]. Some proteins found 
in SWISS-PROT [13] that are known to contain methylated 
arginines are PABP2, which is involved in the addition of a 
poly(A) tail to mRNA precursors, SFPQ, a DNA- and RNA-
binding protein, and the oncogene FUS, a DNA-binding 
protein. 

Lysine residues are methylated via a similar mechanism. A 
cofactor called S-adenosylmethionine is used by a class of 
proteins called histone methyltransferases (HMTs) to transfer 
a methyl group to the lysine residue. Three types of lysine 
methylation have been discovered: monomethyllysine, N-
dimethyllysine, and N-trimethyllysine [3]. The first discovery 
of histone methylation occurred in the 1960s [14] and since 
then many studies have focused on the methylation of specific 
lysines in the tails of histones. These methylation sites are 
well known [15] and specific, indicating that methylation is 
not a random event [16]. Some non-histone proteins, such as 
p53 - a tumor suppressor protein, have also been shown to 
contain methylated lysines [17]. Other proteins found in 
SWISS-PROT with known methylated lysine residues include 
cytochrome C, calmodulin, and the large subunit of rubisco. 
 
B. Intrinsically Disorder Proteins 
The functional annotation of proteins known to be methylated 
indicates that many of these proteins are intrinsically 
disordered. This class of proteins is characterized by unstable 
tertiary structure under (putatively) physiological conditions 
[18-20]. These proteins sample their structures from ensem-
bles of conformations, either in part or along their entire 
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lengths, and typically explore wide and irregular motions. 
Intrinsically disordered proteins exist both in vitro and in vivo 
[21, 22] and are shown to carry out important biological 
functions [23]. Dunker et al. [24] classified the functions of 
disordered proteins into four broad functional sets: (i) 
molecular recognition; (ii) molecular assembly/disassembly; 
(iii) protein modification; and (iv) entropic chain activities. 
Tompa [25] used slightly different notation by splitting 
molecular recognition into scavengers and effectors and 
adding chaperones [26]. Thus, disordered protein regions are 
typically involved in regulatory activities, signaling or control, 
while ordered regions, those with stable 3-D conformation, are 
typically involved in enzymatic activities. It has been sug-
gested that there are two parallel structure-function paradigms 
in the protein world: sequence → 3-D structure → function for 
enzymes, and sequence → disordered ensemble → function 
for signaling and regulatory proteins and regions [27]. 
 
C. Outline of the Study 
To learn about the methylation of lysines and arginines in 
proteins, we investigated 107 proteins with experimentally 
determined post-translational lysine methylation sites and 41 
proteins with post-translational arginine methylation sites. In 
order to statistically associate experimentally verified methy-
lation sites with intrinsically disordered regions, we first ex-
amined the differences in the local amino acid compositions 
and various physicochemical properties around the methylated 
sites. Then, based on distinctive features between methylated 
and non-methylated residues, we developed a new methylation 
site predictor using support vector machines (SVMs). Our 
model reached a balanced-sample accuracy of 77.9% and 
63.1% for arginine and lysine methylation, respectively. 
Similarly, the area under the receiver operating characteristic 
(ROC) curve, as explained below, was estimated to be 85.0% 
for arginine and 66.4% for lysine. 

To our knowledge the first published predictor of methy-
lation sites was constructed by Plewczynski et al. within their 
AutoMotif Server [28]. Their method involves constructing 
regular expressions from experimentally verified functional 
sites in proteins from SWISS-PROT and creating fragments of 
9 residues. The fragments are then projected to a multidimen-
sional space of features, including orthogonal vectors, position 
specific features using the BLOSUM62 substitution matrix, a 
normalized sequence preference for an amino acid found at a 
certain position, as well as a real-valued ratio of preferences 
for a certain amino acid in each position of the positives 
versus the negatives. Their model was constructed using short 
sequence fragments only and the SWISS-PROT database, 
while the negative examples were selected randomly from the 
remaining set of proteins. 

Our predictor of methylation sites was developed using a 
similar discriminative approach with a significantly expanded 
set of features and different assumptions on the negative 
examples. We try to learn rules for methylation in an auto-
mated fashion, without relying on high sequence similarity 
present in the datasets available. We utilized our biological 
hypothesis that methylation sites are preferentially located 
within intrinsically disordered regions and used already 
developed predictors of disorder and flexibility in order to 
improve classification accuracy. The results of our study 

strongly indicate that many methylated sites occur within 
flexible protein regions and that they can be predicted with 
satisfactory and useful accuracy. 
 

II. MATERIALS AND METHODS 
 
A. Datasets 
Candidate proteins were collected from SWISS-PROT, 
version 45, for both lysine and arginine methylation sites. 
From the SWISS-PROT data, all records containing the 
keyword methylation were first separated. A Perl script 
utilizing BioPerl then searched for specific terms related to 
these methylated proteins. Positive (methylated) sites were 
found by examining the MOD_RES field in each SWISS-
PROT record. All records containing methyllysine or methyl-
arginine in a MOD_RES field were collected, excluding those 
marked by “probable,” “possible,” “potential,” and “by 
similarity,” which are non-experimentally determined sites. 
However, the “probable” sites are partially experimentally 
determined, and may be included at a later date. Differences in 
the types of methylation (mono-, di- (symmetric) and di- 
(asymmetric) for arginine, and mono-, di-, and tri- for lysine) 
were not taken into account in data collection. The control 
dataset of non-methylated sites was extracted from the same 
proteins and includes all arginine and lysine residues not 
marked as methylated. The datasets were composed of 25-
residue fragments, 12 residues before and after the arginine 
residue. However, some shorter fragments are included in the 
datasets that were close to the ends of the protein. The paper 
by Ong et al. [29] was also used as a source for arginine 
methylation sites.  

For the lysine dataset, we collected a total of 107 proteins 
with 213 positive sites and 1943 negative sites. For the 
arginine data we had 41 proteins from SWISS-PROT and Ong 
et al. and a positive dataset with 116 sites and the negative set 
with 1315 sites. We assumed that the experimentally deter-
mined modification sites were correct and removed negative 
fragments with a similarity to any positive fragment of greater 
than 30%. In total, the arginine dataset yielded 883 fragments 
and the lysine dataset 1703 for negative non-redundant 
fragments. After removing redundant fragments within each 
positive and negative dataset, defined as those with a simil-
arity of greater than or equal to 40%, the datasets contained 84 
positives and 757 negatives for arginine, and 64 positives and 
833 negatives for lysine. 
 
B. Statistical Tests 
Standard t-test of statistical significance was performed to 
determine whether the positive and negative sequence 
fragments around all available arginines and lysines were 
actually different, not just by chance. At each position around 
the arginine or lysine residue, we compared means between 
the positive and negative datasets for each amino acid and 
each position. Our output of this is an estimate of the p-value, 
or significance level after which we would reject the 
hypothesis that the two datasets are coming from the same 
distribution. In all experiments we used a p-value cutoff of 
0.05 to indicate statistical significance. 

We determined which amino acids were enriched and 
depleted at each position by using the difference in frequency 
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between the positive and negative datasets. Enriched residues 
are those that occur more frequently in the positive set than 
the negative set, and the depleted ones occur more in the 
negative than the positive set. 
 
C. Data Representation and Predictor Construction 
A dataset of features for our proteins was constructed using 
Matlab. For constructing features, fragments shorter than 
length 25 were included. We used amino acid frequencies over 
multiple windows (sizes 3, 7, 13, 19, and 25) around the 
arginine/lysine. Real-valued features were used for aromatic 
content (W, F, and Y), a flexibility scale by Vihinen et al. 
[30], net charge (nK + nR − nD − nE, where nX is the number of 
residue X in a window), hydrophobic moment [31], sequence 
complexity [32] and beta entropy [33]. These were averaged 
within the same window sizes as used for the amino acid 
frequencies. We also used several predictors of structural 
disorder including VL2 [34], VL3 [35], and also a B-factor 
predictor [36]. Note that the VL2 model contains four 
different predictors: three specialized (VL2-V, VL2-C, and 
VL2-S) and a general one, denoted as VL2 [34]. Windows of 
sizes 1, 7, and 11 were used for the predictor features, and the 
mean and maximum of the features were taken for each 
window. Position specific scoring matrices generated by PSI-
BLAST [37] were used to model evolutionary dependencies. 
Finally, a binary target variable was added to each example, 1 
for a methylated and 0 for a non-methylated site. Two 
matrices were constructed: M for the positive (methylated) 
sites and NM for the negative (non-methylated) sites. 

Before predictor construction, a t-test feature selection 
algorithm was applied on each individual feature. Then, after 
the z-score normalization, we applied the principal component 
analysis to further reduce dimensionality of the sample. The 
principal component analysis eliminates correlated features. 
The preprocessed data was then fed into a support vector 
machine software SVMlight [38]. 
 
D. Predictor Evaluation 
The method used for the accuracy estimation was leave-one-
out, which uses all proteins except one to train, while the one 
left out is used to test. This is performed for each protein, so a 
different one is left out each time, and each of its positive and 
negative sites are used for accuracy estimation. 

We measured the sensitivity (sn) and specificity (sp) for 
the parameters used for the predictor to evaluate its perfor-
mance. Sensitivity is defined as the percentage of positive 
(methylated) examples correctly predicted, and specificity is 
the percentage of negative (non-methylated) examples 
correctly predicted. The accuracy is determined by the 
arithmetic mean of sensitivity and specificity and is not 
affected by the class imbalance. Sensitivity, specificity, and 
accuracy were measured both per protein (average for all sites 
in a specific protein) and per residue. In the latter case, each 
protein will influence the test statistics commensurate with its 
length, more precisely, to the numbers of arginines and 
lysines. In addition to accuracy, we also report on the area 
under the receiver operating characteristic (ROC). The ROC 
curve is a plot of sensitivity vs. (1 – specificity) and was 
generated by shifting the decision threshold. The area under 
the ROC curve (AUC) was estimated using the trapezoid rule. 

III. RESULTS 
 
A. Functional Analysis of Methylated Proteins 
In order to determine whether our set of non-redundant 
methylated proteins was reasonably diverse for analysis and 
predictor construction, we searched for Gene Ontology (GO) 
annotations [39]. We considered two proteins to be non-
redundant if their pairwise sequence identity was below 30%. 
The GO annotations are derived from a controlled vocabulary 
for the following tree categories: biological process, cellular 
component, and molecular function; and a single protein, or a 
gene product in general, can have many GO terms associated 
with it.  

For the 33 non-redundant arginine proteins, we observed 
47 different categories for biological process, 16 categories for 
cellular component and 40 categories for molecular function. 
The most prominent category within the biological process 
was “mRNA processing”, while five or more proteins were 
also observed for categories “transcription,” “regulation of 
transcription, DNA-dependent,” and “nuclear mRNA splicing, 
via spliceosome.” The most associated cellular component 
term was “nucleus” (26 proteins), while “ribonucleoprotein 
complex” and “cytoplasm” contained 7 and 4 proteins, 
respectively. The most associated term for molecular function 
was “RNA binding,” with “nucleic acid binding” and “nucleo-
tide binding” following. Three or more proteins contained the 
following annotations: “DNA binding,” “protein binding,” 
“transcription coactivator activity,” and “metal ion binding.”  

For the 34 non-redundant lysine proteins, we observed 19 
different categories for biological process, 20 categories for 
cellular component and 29 categories for molecular function. 
The largest represented term for the biological processes was 
“protein biosynthesis”, followed by “electron transport” and 
“transport.” For cellular components, the most associated 
terms were “ribosome,” “ribonucleoprotein complex,” and 
“intracellular.” The most associated term for molecular 
function was “structural constituent of ribosome,” with “oxi-
doreductase activity” and “actin binding” close behind. In 
summary, these data indicate that a set of proteins studied 
herein is moderately diverse across all three GO classifications 
and thus suitable for analysis and predictor construction. 
 
B. Structural Analysis of Methylated Proteins 
In order to learn about structural preferences of experimentally 
verified methylation sites, we performed sequence alignments 
between proteins in our dataset and all proteins from the 
Protein Data Bank (PDB) [40]. We looked for such hits where 
sequence identity was at least 70% in order to provide 
reasonable accuracy of functional transfer by sequence simil-
arity [41]. Those proteins from PDB that met this criterion 
were analyzed to see whether the residues experimentally 
determined to be methylated were covered by the hits from 
PDB. If so, we looked to see whether structural information 
(α-helix, β-sheet or coil) existed for these residues. However, 
we trusted the structural information only for the residues 
whose flanking regions, five residues upstream and down-
stream from the methylation site, were not in crystal contacts 
[42]. Finally, we searched for the experimental evidence of 
intrinsic disorder, either from missing residues in the PDB file 
or similarity to proteins from the DisProt database [2]. 
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Table I summarizes structural information on the non-redun-
dant subset of methylated proteins. In the case of arginine, 
only two protein hits could be found that cover methylated 
residues, and of the two sites with reliable structure one was 
observed in a helical region, while the other was in the loop. 
In the case of lysine, out of 39 residues covered by the PDB 
hits, 11 had reliable structure. Of those, 3 were observed in 
helical regions, while 8 were observed in the loops. Thus, 
even though little structural information about protein 
methylation is available from the structural data, it seems that 
there is a preference for the coil regions. 
 
C. Statistical Analysis of Flanking Regions 
We analyzed position-specific amino acid preferences around 
methylated and non-methylated sites. Standard t-test was used 
to characterize amino acid enrichments and depletions. An 
enriched residue at a specific position occurs more frequently 
in the positive dataset than in the negative, and vice versa for a 

depleted residue. Table II shows the top ten enriched and 
depleted amino acids for arginine, determined by the lowest p-
values (cutoff 0.05). We found 70 significant differences 
between the positive and negative sets with p-values less than 
0.05. A distinctive mark of arginine methylation sites is dis-
tribution of glycines around the modification site. For the 
lysine data, we found 38 statistically significant differences, 
however the p-values were higher (statistical significance is 
thus lower). Table III lists the top 10 enriched and depleted 
sites surrounding the lysine. Interestingly, enrichment of gly-
cines is observed upstream from this modification site as well.  

In addition to position-specific amino acid preferences, we 
also analyzed features with high discriminatory power 
between methylated and non-methylated residues. The top 10 
properties are summarized in Tables IV-V for arginine and 
lysine residues, respectively.  

Arginine methylation is characterized by higher scores of 
disorder predictions (VL2 and VL3 predictors). Of the three 

TABLE I.I-I.II
HITS BETWEEN METHYLATED PROTEINS FROM SWISS-PROT AND PDB, FOR ARGININE (TABLE I.I) AND LYSINE (TABLE I.II). THE COLUMNS ARE: SWISS-PROT 

ID, THE PDB ID OF THE BEST HIT, THE COVERAGE OF THE ORIGINAL PROTEIN, THE CORRESPONDING COORDINATES OF THE PDB HIT, THE PERCENTAGE OF 
SEQUENCE IDENTITY, THE METHYLATED RESIDUES IN THE ORIGINAL PROTEIN AND THOSE FOUND TO BE COVERED IN THE PDB HIT. SECTION COMMENTS DISCUSSES 

RESIDUES FOUND TO BE IN CRYSTAL CONTACTS, INTERCHAIN CONTACTS AND THOSE WITH EXPERIMENTALLY DETERMINED DISORDER. 
 

SWISS-PROT ID PDB ID Coverage by 
PDB chain 

PDB  
coordinates 

Sequence 
Identity (%) 

Methylated 
Residue 

Residue from 
PDB Comments 

EP300_HUMAN 1SB0|A 566-652 1-87 89 R580 R15, helix stabilized by interchain contacts 
    89 R604 R39, helix - 

PABP4_HUMAN 1G9L 510-643 6-139 78 R518 R14, coil - 
 

SWISS-PROT ID PDB ID Coverage by 
PDB chain 

PDB  
coordinates 

Sequence 
Identity (%) 

Methylated 
Residue 

Residue from 
PDB Comments 

CALM_EUGGR 1QTX|A 1-148 1-148 90 K115, K148 K115, K148, 
coils K115, K148 in crystal contacts 

CALM_PARTE 1N0Y|B 1-148 1-148 100 K13, K115 
K13, disor-

dered; K115, 
coil 

K115 in crystal contacts 

CAVP_BRALA 1C7W|A 81-161 1-81 100 K95, K116 K15, K35, 
helices K15, K35 in crystal contacts 

CISY_PIG 4CTS|B 28-464 1-437 100 K395 K368, coil - 
CYC1_YEAST 2PCC|D 1-108 1-108 100 K77 K72, helix entirely disordered [2] 
CYC_ABUTH 1CCR 1-111 2-112 87 K80, K94 K8, K95, helices K95 in crystal contacts; disordered
DN72_SULAC 1WD1|A 2-64 3-65 93 K6 K7, sheet K7 in crystal contacts 

DN72_SULSO 1R83|A 1-62 1-62 96 K4, K6, K60, 
K62 

K4, K6, K60, 
K62, coils all in crystal contacts 

 1BNZ|A 1-63 2-64 100 K63 K63, coil K63 in crystal contacts 

EF1A1_RABIT 1G7C|A 1-443 1-441 81 K36, K55, K79, 
K318 

K36 helix, K55 
coil, K79 disor-
der, K316 helix 

K30, K41, K55 and surrounding 
residues in crystal contacts 

FER1_SULTO 1XER 1-103 1-103 99 K29 X29, coil V25-P27, V30 in crystal contacts

H32_MEDSA 1EQZ|G 1-135 2-136 96 K4, K9, K14, 
K18, K23, K27 

K18, K23, K27, 
coils 

K23, K27 in crystal contacts;  
M0-A15 disordered 

H3_CAEEL 1EQZ|G 1-135 2-136 97 K27, K36, K79 K27, K36, K79, 
coils 

K27,V35, V77, T80 in crystal 
contacts 

H4_OLILU 1P3F|F 17-102 17-102 96 K79 K79, coil - 
H4_PSAMI 1EQZ|H 17-102 18-103 98 K20 K20, coil - 

MYH11_CHICK 1BR2|F 1-791 1-791 99 K127 K127, coil - 

MYSS_CHICK 2MYS|A 1-843 1-843 93 K35, K130, 
K551 

X35, X130, coi-
ls; X551, helix - 

PRO1A_ACACA 2PRF 1-125 1-125 100 K103 K103, coil - 
RBL_TOBAC 4RUB|D 1-477 1-477 100 K14 K14, coil - 

RL7_DESVM 1RQS|A 53-126 1-74 75 K76, K87 K24, K35, 
helices - 
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flavors under the VL2 model, VL2-C was selected as the most 
discriminating one. In addition, high net charge and enrich-
ment in glycines in the close neighborhoods is another 
fingerprint of methylated arginine sites. Interestingly, glycine 
residues are typically better conserved near methylated, as 
compared to non-methylated sites. Negatively correlated 
features are represented by sequence complexity measures and 
conservation of hydrophobics leucine and isoleucine, and 
charged residues glutamic acid and lysine.  
 

TABLE II 
TOP 10 AMINO ACIDS ENRICHED AND DEPLETED AROUND KNOWN ARGININE 

METHYLATION SITES AS DETERMINED BY THE T-TEST. 
Enriched Depleted 

Position Residue p-value Position Residue p-value 
+1 G 2.5⋅10−66 +4 E 8.7⋅10−3 
+2 G 2.8⋅10−14 −11 E 1.1⋅10−2 
+4 G 9.8⋅10−10 +1 Q 1.2⋅10−2 
−2 G 1.1⋅10−9 +3 E 1.3⋅10−2 
−4 G 1.1⋅10−9 +5 E 1.3⋅10−2 
−1 G 1.9⋅10−9 +1 E 1.4⋅10−2 
+6 G 3.5⋅10−9 −4 E 1.7⋅10−2 
+11 G 5.7⋅10−7 −8 Q 1.7⋅10−2 
+10 G 6.3⋅10−7 +9 E 2.0⋅10−2 
+7 G 7.3⋅10−7 −5 E 2.1⋅10−2 

 
TABLE III 

TOP 10 AMINO ACIDS ENRICHED AND DEPLETED AROUND KNOWN LYSINE 
METHYLATION SITES AS DETERMINED BY THE T-TEST. 

Enriched Depleted 
Position Residue p-value Position Residue p-value 
−2 P 4.1⋅10−5 +2 K 2.5⋅10−2 
−1 F 9.2⋅10−5 −8 L 3.0⋅10−2 
−7 T 7.8⋅10−4 −4 A 3.5⋅10−2 
−2 G 9.2⋅10−4    
−11 G 1.1⋅10−3    
+12 F 1.6⋅10−3    
−10 P 2.7⋅10−3    
−5 I 3.5⋅10−3    
+5 Y 3.6⋅10−3    
−8 T 5.4⋅10−3    

 
TABLE IV 

TOP 10 FEATURES, POSITIVELY AND NEGATIVELY CORRELATED WITH 
ARGININE METHYLATION. NUMBERS IN PARENTHESES INDICATE WINDOW 

SIZES. SEE TEXT FOR DETAILED EXPLANATIONS. 
Positive correlation Negative correlation 

Feature p-value Feature p-value 
residue G (3) 7.4⋅10−25 PSSM, K (1) 2.1⋅10−9 
PSSM, G (5) 1.5⋅10−24 PSSM, E (11) 3.2⋅10−9 
B-factor (1) 5.8⋅10−8 β-entropy (25) 5.8⋅10−9 
VL3 (11) 5.8⋅10−8 entropy (25) 6.0⋅10−9 
VL2-C (1) 8.5⋅10−8 charge (3) 1.2⋅10−8 
net charge (25) 2.0⋅10−7 residue L (25) 4.0⋅10−6 
PSSM,  S (11) 2.7⋅10−6 residue E (25) 4.8⋅10−6 
hydro. moment (11) 2.9⋅10−6 residue D (25) 8.9⋅10−6 
PSSM, P (11) 2.6⋅10−5 PSSM, I (11) 2.7⋅10−5 
PSSM,  R (11) 4.1⋅10−4 PSSM, L (5) 5.1⋅10−5 

   
Lysine methylation is characterized by a different set of top-
ranked features than arginine sites, except for the high 
negative charge, high evolutionary conservation of glycine, 
and conservation of proline. On the other hand, non-methyl-
ated lysine sites are characterized by a low conservation of 

several residues. Note that the p-values for lysine methylation 
are orders of magnitude higher than those for arginines, 
indicating much higher confidence in discriminatory attri-
butes. This is likely a consequence of noisier data and/or a 
more difficult classification problem. 

 
TABLE V 

TOP 10 FEATURES, POSITIVELY AND NEGATIVELY CORRELATED WITH LYSINE 
METHYLATION. NUMBERS IN PARENTHESES INDICATE WINDOW SIZES. SEE 

TEXT FOR DETAILED EXPLANATIONS. 
Positive correlation Negative correlation 

Feature p-value Feature p-value 
PSSM, P (11) 6.8⋅10−8 PSSM, L (11) 1.3⋅10−6 
residue P (7) 8.3⋅10−6 PSSM, E (11) 3.6⋅10−6 
residue Y (19) 9.0⋅10−6 PSSM, Q (11) 2.6⋅10−5 
PSSM inf./pos (5) 1.0⋅10−5 residue E (25) 5.5⋅10−5 
aromaticity (3) 2.5⋅10−5 VL2-S (11) 5.8⋅10−5 
residue F (3) 3.2⋅10−5 residue L (25) 1.2⋅10−4 
residue T (19) 7.5⋅10−4 charge (7) 3.2⋅10−4 
residue G (25) 9.1⋅10−4 PSSM, M (5) 9.2⋅10−4 
net  charge (25) 1.8⋅10−3 PSSM, I (1) 1.6⋅10−3 
PSSM, G (11) 2.3⋅10−3 PSSM, A (11) 2.2⋅10−3 

 
D. Methylation and Intrinsic Disorder 
We used computational approaches to associate methylation 
sites with the presence or absence of intrinsic disorder. The 
average scores of disorder predictions by VL3 model around 
known methylation sites were thus compared with average 
disordered predictions at all other arginines/lysines in the 
same set of proteins. The results of these comparisons are 
shown in Figure 1. Interestingly, arginine residues are strongly 
predicted to be in disordered regions, having an average score 
of 0.83±0.02 vs. an average score of 0.66±0.01 for the 
remaining arginines. On the other hand, the respective scores 
in the lysine case were 0.55±0.04 vs. 0.57±0.01. We applied 
the same predictor to the long, experimentally verified, 
disordered and ordered regions and obtained scores 0.75±0.01 
and 0.21±0.01. These results indicate that both arginine and 
lysine methylation of currently verified sites are highly likely 
to prefer structural disorder. However, it appears that the 
proteins from the lysine dataset contain a significant fraction 
of disorder even for non-methylated lysines, which makes 
them hard to distinguish based on this property alone. For 
example, myosin contains several experimentally confirmed 
disordered regions, while apocytochrome C (cytochrome C 
with the heme removed) is known to be completely disordered 
[43, 44]. Both proteins are present in our lysine set. 
 
E. Predictor Evaluation 
Extensive experiments were performed in predictor cons-
truction. In Tables VI-VII we show prediction results for 
arginine and lysine methylation, respectively. These estimates 
were obtained using a per-protein leave-one-out methodology. 
In each table, the thresholds for feature selection filter were 
set to 0.1, while the number of principal components was kept 
at 20 in order to eliminate many correlated features and 
significantly reduce dimensionality of the sample. We 
evaluated only polynomial kernels, while the default value 
was used for the learning parameter C [38]. The improvement 
in prediction accuracy provided by using features related to 
protein flexibility, and adding feature selection and principal 
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component analysis was approximately 4 percentage points 
both for arginine and lysine datasets. 
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Figure 1. Average scores of VL3 disorder predictor on methylated (dark grey 
bars) and non-methylated (light grey bars) residues. The dotted single bars un-

der Disorder and Order show VL3 predictions on experimentally confirmed 
long disordered regions and long ordered regions, respectively. VL3 outputs 
scores between zero and one. Error bars represent 68% confidence intervals. 

 
It can be easily observed from Tables VI-VII that the 
prediction accuracy achieved by the various models generally 
drops with the increase of the polynomial degree. We have 
also observed (data not shown) that the accuracy continued to 
decrease when the degree of the polynomial kernel was further 
incremented, up to 5. This behavior was expected, since the 
datasets were small and the number of features relatively high 
(263 in total, 20 after the principal component analysis). 
Further increases in dataset sizes may likely enable more 
accurate learning using polynomials of higher degree. 
 

TABLE VI 
CLASSIFICATION ACCURACY [%] FOR THE PREDICTION OF ARGININE 

METHYLATION SITES; sn – SENSITIVITY, sp – SPECIFICITY, acc = (sn + sp) / 2 – 
ACCURACY, AUC – AREA UNDER THE  ROC CURVE. 

Arginine methylation polynomial 
degree sn sp acc AUC 

p = 1 79.0 76.7 77.8 83.9 
p = 2 73.6 82.2 77.9 85.0 
p = 3 47.9 86.8 67.3 73.3 

 
TABLE VII 

CLASSIFICATION ACCURACY [%] FOR THE PREDICTION OF LYSINE 
METHYLATION SITES; sn – SENSITIVITY, sp – SPECIFICITY, acc = (sn + sp) / 2 – 

ACCURACY, AUC – AREA UNDER THE  ROC CURVE. 
Lysine methylation polynomial 

degree sn sp acc AUC 
p = 1 65.9 60.4 63.1 66.4 
p = 2 33.6 73.4 53.5 58.4 
p = 3 35.6 86.3 61.0 68.3 

 
 

IV. DISCUSSION 
 

In this paper we have analyzed reversible protein methylation 
and provided evidence that it is predictable from amino acid 
sequence. This is useful since computational approaches 
combined with good biological insight can be important in not 
only detecting proteins that are likely to be methylated, but 
also finding the exact sites of modification. Our results indi-
cate that arginine methylation sites are predictable with signi-
ficantly higher accuracy than the lysine sites. The most likely 

reason for such performance is an interplay of the quality of 
the dataset and our assumptions that all sites not labeled as 
positive were consequently negative. In the case of lysine 
residues, this assumption is less likely to be correct since only 
individual experiments were performed on each protein. On 
the other hand, proteomics studies were used to detect arginine 
methylation which left much less room for noise. In addition, 
of course, it is also possible that prediction of lysine 
methylation is simply a more difficult problem than prediction 
of arginine methylation due to greater similarities in the 
sequences around methylated and non-methylated lysines. 

Clearly, in order to provide a better automated iden-
tification of methylation sites, more experimentally verified 
sites are needed. In addition, the emergence of proteomics 
data will likely lead to significant improvement in our 
understanding of sequence preferences around methylation 
sites, especially for lysine methylation. This would also help 
to diversify current datasets, since a large number of the 
examples in our original dataset are coming from four non-
redundant homologous groups: calmodulin, cytochrome C, 
rubisco large subunit, and histones. Also, determining which 
methyltransferases methylate each residue might prove useful 
since it is hypothesized that their activity is highly specific. 
Some sites in the SWISS-PROT database have annotations 
specifying which methyltransferase added the methyl group, 
but not for all proteins and not in a standard format. A method 
of extracting that data from SWISS-PROT as well as mining 
literature would be necessary. 

Our working hypothesis is that protein modification sites 
prefer flexible and intrinsically disordered protein regions. In 
our prior work, we already strongly associated phospho-
rylation sites with such regions [45], especially in the cases of 
serine and threonine phosphorylation. It has been hy-
pothesized that about 1/3 of all eukaryotic proteins undergoes 
protein phosphorylation [46] so identifying the actual sites of 
modification is of great importance. We used computational 
approaches to estimate that these fractions are significantly 
higher for several classes of proteins, e.g. those classes 
associated with regulation, transcription, or even cancer. The 
improvements in computational approaches will soon enable 
such estimates regarding protein methylation. In the case of 
methylation sites, we provide evidence that both arginine and 
lysine methylation prefer structurally flexible regions and 
intrinsic disorder rather than order, at least for the currently 
identified sites. This evidence is partially based on anecdotal 
observations (e.g. p53, cytochrome C, or hnRNP core protein 
A1 – see Table I.II), but is predominantly of statistical nature. 
However, both predictors used in this study are characterized 
by a relatively small error rate, especially on long ordered and 
disordered regions [35], and thus are unlikely to fail big. 

Our working hypothesis regarding the importance of dis-
order for protein modification arose from empirical evidence 
that many structurally characterized regions of disorder con-
tained sites of modification [24]. Reflection on this obser-
vation, on the results herein, and on the results of our previous 
work on phosphorylation [45] suggest a few possible advan-
tages for locating sites of modification in disordered regions. 
First, even exactly the same local amino acid sequence in two 
non-homologous structured proteins typically adopts different 
secondary structures [47] and so would present different 

          

         M-sites 
         NM-sites 
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shapes to the modifying enzyme.  In such a circumstance, the 
same sequence from the different proteins would not fit into 
one enzyme active site. On the other hand, if similar (not to 
mention identical) local sequences were to exist in regions of 
disorder, each could change its conformation to fit into the 
active site of a single enzyme. Second, the surfaces of 
structured proteins are typically smooth and nearby residues 
are often buried into the folded core. In this second 
circumstance, it is again difficult to understand specific 
modification. On the other hand, if the residue to be modified 
were within a disordered region, the exposed surface area 
would be very large and convoluted in a sequence-dependent 
manner, a situation that would facilitate highly specific, 
sequence-dependent association with the modifying enzyme. 
Finally, the chemical modification would typically cause only 
small changes on the surface of a structured protein. On the 
other hand, the chemical modification could cause large-scale 
changes in a disordered region, such as the induction of a 
disorder-to-order transition. A large change in structure would 
be a less ambiguous signal as compared to a small change. 

Many protein modifications can work together in 
regulation and signaling, so we expect that combining 
predictors for methylation, acetylation, and phosphorylation, 
as well as other protein modifications would be very useful in 
future. As an example of such a process, it has been shown 
that the phosphorylation of serine 10 of the H3 histone protein 
prevents the methylation of lysine 9 [48]. This will be one 
focus of our future work. 
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