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Abstract

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has

emerged as a standard clinical practice and is helping countless women better

understand and manage their heritable risk of breast and ovarian cancer. Yet the

increased rate of BRCA1/2 testing has led to an increasing number of Variants of

Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the

rate of clinical variant interpretation. Computational prediction is a key component of

the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction

teams submitted predictions on 326 newly‐interpreted variants from the ENIGMA



NIH‐GM066099; Newcastle University;
NMHRC Senior Research Fellowship, Grant/
Award Number: ID 1061778; NIH National
Institute on Aging, Grant/Award Number:
R01‐AG061105

Consortium. By evaluating these predictions against the new interpretations, we have

gained a number of insights on the state of the art of variant prediction and specific

steps to further advance this state of the art.
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1 | INTRODUCTION

While women have a 12% lifetime risk of breast cancer on average

(Howlader et al., 2017), that risk rises to roughly 70% in women with

pathogenic variants in BRCA1/2 (Kuchenbaecker et al., 2017). For

ovarian cancer, the average lifetime risk is approximately 1.3% for

women in the general population, while the risk is 44% for BRCA1

carriers and 17% for BRCA2 carriers. These facts and the decreasing

cost of sequencing have led to an upsurge of BRCA1/2 testing in recent

years (Kolor et al., 2017). This increased rate of BRCA1/2 testing has

led to an increasing discovery of new variants, and this rate of variant

discovery has outpaced the rate of variant interpretation. Out of

21,695 variants currently listed at BRCA Exchange, the largest public

source of BRCA1/2 variation data (Cline et al., 2018), almost half

(9,225) have no clinical interpretation in either ClinVar (Landrum &

Kattman, 2018) or the Leiden Open Variation Database (LOVD)

(Fokkema et al., 2011). Further, only 7,225 so far have expert

interpretations by the ENIGMA Consortium (Spurdle et al., 2012), the

ClinGen expert panel for curation of variants in BRCA1/2. These

numbers underscore the need for both developing robust, high‐
throughput methods for BRCA1/2 variant interpretation and gaining a

clear understanding of the capabilities of the existing methods.

The CAGI5 ENIGMA Challenge provided an opportunity to

evaluate the current state of the art in predicting the clinical

significance of BRCA1/2 variants, leveraging blind prediction. The

ENIGMA Consortium provided the CAGI organizers with not‐yet‐
published clinical interpretations for hundreds of BRCA1/2 variants.

Six research teams predicted the clinical significance of these variants,

using 14 methods altogether. In this paper, we compare results from

these 14 prediction methods, as well as three widely‐used reference

methods from the literature, against the expert clinical interpretations,

with the goals of evaluating what types of approaches were most

effective and identifying areas for further improvement.

2 | METHODS

This challenge featured 326 variants that were recently interpreted by

the ENIGMA Consortium, as detailed in another paper in this issue

(Parsons, Tudini, Li, Goldgar, & Spurdle, 2019). This paper also details

the variant classification process used by ENIGMA researchers. Briefly,

unclassified variants were prioritized by the ENIGMA Consortium for

classification based on the amount of available evidence and/or prior

likelihood of pathogenicity based on variant location and predicted

effect (Tavtigian, Byrnes, Goldgar, & Thomas, 2008; Vallée et al., 2016).

These variants were classified using multifactorial analysis (Goldgar

et al., 2008, 2004). While the standard ACMG guidelines evaluate

multiple lines of evidence by qualitative rules (Richards et al., 2015), the

multifactorial analysis combines evidence types quantitatively in a

Bayesian network to estimate the overall likelihood of pathogenicity. Of

the 326 variants that were shared with the prediction teams, all were

exonic and were either missense variant or in‐frame deletions (ENIGMA

had provided additional intronic variants that were not shared with the

predictors). All of these variants were assessed as Benign, Likely Benign,

Likely Pathogenic or Pathogenic at the time of submission to CAGI5.

None of the variants had a population frequency of 1% or greater in any

reference population studied, and none were predicted truncating

variants (Parsons et al., 2019).

Table 1 summarizes the 326 ENIGMA Challenge variants included

in the CAGI5 challenge, comprising 318 single‐nucleotide variants and

TABLE 1 Summarizes the variants of the BRCA challenge according to gene, domain region, and clinical significance as interpreted by the
ENIGMA Consortium. Note: The Domain column indicates which variants were part of a clinically‐significant protein domain, by the criteria of
the ENIGMA Consortium (ENIGMA Consortium, 2017). The rows marked “None” indicate variants that are not part of a clinically‐significant
domain; 318 of the variants were single‐nucleotide substitutions, while the remaining eight were in‐frame deletions.

Gene Domain Benign Likely benign
Uncertain
significance Likely pathogenic Pathogenic Total

BRCA1 BRCT 2 7 1 4 1 15

None 29 90 2 2 123

RING 1 4 4 9

BRCA2 DNB 11 27 3 3 44

None 20 110 2 132

TR2/RAD5 1 2 3

Total 64 240 5 7 10 326
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eight in‐frame deletions. All BRCA1 variants reflect the NM_007294.3

transcript, and all BRCA2 variants reflect NM_000059.3. Although the

ENIGMA Consortium had prioritized some variants according to the

prior likelihood of pathogenicity, most of the variants were either

Benign or Likely Benign. This skew is consistent with the actual

proportions of the different clinical significance annotations for BRCA1/

2 variants (Cline et al., 2018). During the course of the CAGI

experiment, the ENIGMA Consortium reclassified several of these

variants with new evidence. Five variants were reclassified from Likely

Benign to VUS after ENIGMA received new evidence that conflicted

with previous evidence, and these variants were omitted from the

assessment. Seventeen variants were reclassified from Likely Benign to

Benign, and one was reclassified from Likely Pathogenic to Pathogenic.

That is, the majority of the reclassifications increased certainty in the

assignment. Since the CAGI5 challenge examined benign and likely

benign as one group, and pathogenic and likely pathogenic as another,

these reclassifications did not affect the assessment except for

removing five variants from the assessment pool.

The fact that 23 variants were reclassified illustrates two things:

all interpretations have some uncertainty, the level of which is

inherent in the probability of pathogenicity and the class assigned;

additional data are helpful to move variants from “likely” categories

to outer categories with higher probabilities in favor of a benign or

pathogenic classification

2.1 | Prediction methods

Six teams submitted blind predictions, using a total of 14 methods.

The methods are summarized in Table 2 and summarized below.

Most teams have submitted methods papers to the CAGI5 publica-

tion set, and we have referenced those methods for further detail.

We have also indicated which methods were executed as published;

for the others, further details are available in the Supporting

Information section.

• The Lictarge Lab submitted predictions with Evolutionary Action

(EA; special issue; Katsonis & Lichtarge, 2019). EA estimates

variant pathogenicity through evolutionary information by using

an analytic equation. The components of the equation are the

likelihood that the reference and alternative amino acids sub-

stitute to each other in numerous multiple sequence alignments

(MSA), and the sensitivity of the protein function to residue

changes calculated by the Evolutionary Trace method (Lichtarge,

Bourne, & Cohen, 1996; Mihalek, Res, & Lichtarge, 2004) using

MSA and phylogenic information. The Normalized EA predictions

had the EA scores adjusted to the fraction of the isoforms affected

by the mutation. See Supporting Information for further details.

• The Mooney–Radivojac 2018 team submitted predictions for

single‐nucleotide variants with MutPred2 (Pejaver et al., 2017), a

machine learning predictor that incorporates contextual features

TABLE 2 Summary of the BRCA challenge blind prediction teams and methods

Predictor Method Brief description

Lichtarge lab Evolutionary action (EA) Estimates pathogenicity from evolutionary and phylogenic information, and
substitution likelihood.

Normalized EA Normalizes EA predictions with the estimated fraction of BRCA isoforms affected
by the mutation.

Mooney–Radivojac 2018 MutPred2 Machine learning predictor with features including estimated changes in structural
and functional properties for single‐nucleotide variants augmented with an
unpublished method for in‐frame deletions.

TransBio‐Inf TBI_1 Neural network trained to predict clinical significance from estimated splice site
impact and sequence‐based features.

TBI_2 Similar to TBI_1, but with multiple linear regression prediction of functional assay
scores.

TBI_3 Similar to TBI_1, but with no estimated splicing impact.

TBI_4 Similar to TBI_2, but with no estimated splicing impact.

Bologna bio‐computing SNPs&GO Machine learning predictor that integrates features extracted from the sequence,
sequence profile and GO functional annotation of the input protein.

Disease Index Matrix Statistical scale estimating the probability of a variation type to be associated with
disease.

AIBI AIBI Weakly supervised linear regression using categorized inexact labels from ClinVar,
15 selected features from MutPred2, and designed loss functions.

Color genomics LEAP 1 Two‐class logistic regression using function predictions, splicing predictions,
frequency of cancer in individuals and their families, co‐occurrence with
pathogenic variants, andliterature and cancer associations from HGMD.

LEAP 2 As LEAP 1, but with publicly‐available information only.

LEAP 3 As LEAP 1, but with random forest classifier rather than logistic regression.

LEAP 4 As LEAP 1, but with three‐class logistic regression rather than two‐class.
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from protein sequence, conservation, and homology, along with

features that encode mutation‐induced changes in protein struc-

ture and function, as predicted by over 50 built‐in machine

learning models. The in‐frame deletions were scored using

MutPred‐indel, a neural network‐based pathogenicity prediction

method that incorporates similar features, representative of

protein structure, function, and conservation (unpublished).

• The TransBioInf (Vall d’Hebron University Hospital) team sub-

mitted four sets of predictions, as detailed in the CAGI5 special

issue (Padilla et al., 2019). TBI_1 and TBI_3 predict clinical

significance with neural networks, given features including

sequence alignment conservation and biophysical measures of

the differences between the reference and alternative amino acids.

TBI_2 and TBI_4 predict functional assay scores with multiple linear

regression and a similar set of input features. In addition, TBI_1 and

TBI_2 incorporate estimates of the impact of the mutation on

existing splice sites, while TBI_3 and TBI_4 do not.

• Bologna Biocomputing submitted predictions with SNPs&GO

(Calabrese, Capriotti, Fariselli, Martelli, & Casadio, 2009) and the

Disease Index Matrix (Casadio, Vassura, Tiwari, Fariselli, & Luigi

Martelli, 2011), both executed as published. SNPs&GO is a

machine learning predictor that estimates pathogenicity from

information on the Gene Ontology terms associated with the

protein, as well as features describing amino acid conservation, the

local sequence environment, and the evolutionary likelihood of the

reference and alternative amino acids. The Disease Index Matrix

(Pd) is a scale that associates each variant type (i.e., pair of wild

type and variant residues) with the probability of being related to

the disease. The scale has been estimated with a statistical analysis

of a large data set of disease‐related and neutral variations

retrieved from UniProtKB and dbSNP databases.

• AIBI directly predicted the probability of pathogenicity with weakly

supervised linear regression, as detailed in the CAGI5 special issue

(Cao et al., 2019) as the exact probabilities are not available for

supervised machine learning. They used variants annotated with

the class of pathogenicity in ClinVar, selected from MutPred2 15

features about molecular impacts upon variation, and designed

parabola‐shaped loss functions that penalize the predicted prob-

ability of pathogenicity according to its supposed class.

• Color Genomics submitted four sets of predictions with LEAP (Lai

et al., 2018), a machine learning framework that predicts variant

pathogenicity according to features including:

● population frequencies from gnomAD;

● function prediction from SnpEFF (Cingolani et al., 2012), SIFT

(Ng & Henikoff, 2003), PolyPhen‐2 (Adzhubei, Jordan, &

Sunyaev, 2013) and MutationTaster2 (Schwarz, Cooper,

Schuelke, & Seelow, 2014);

● splice impact estimation from Alamut (Interactive Biosoftware,

Rouen, France) and Skippy (Woolfe, Mullikin, & Elnitski, 2010);

● indications of publications mentioning the variant and cancer

associations from the subscription version of HGMD, indicating

whether or not the variant is included in HGMD, whether or not

it is associated with one or more articles curated by HGMD, and

whether HGMD associates the variant with cancer (Stenson

et al., 2017); and

● aggregate information from individuals who have undergone

genetic testing. This information consists of frequencies of

cancer in the individuals tested, and within the individuals’

families (covering many cancer types, not simply breast and

ovarian cancer), and co‐occurrence of pathogenic variants in

the same individual.

LEAP 1 estimates pathogenicity with a two‐class regularized logistic

regression model, LEAP 2 serves as a control and is equivalent to LEAP 1

except for omitting any inputs that are not publicly‐available (including

data from HGMD). LEAP 3 uses a random forest rather than regularized

logistic regression. LEAP 4 uses a three‐class regularized logistic

regression model (Benign, VUS, Pathogenic) rather than a two‐class
model (Benign, Pathogenic). While the LEAP method is not publicly‐
available at this time, Color Genomics anticipates making the

predictions by LEAP publicly available during 2019 (Lai et al., 2018).

The authors of LEAP are preparing a publication on their method, which

will be added to the CAGI5 collection upon publication.

For reference, we analyzed the variants with the popular

methods SIFT Version 5.2.2 (Ng & Henikoff, 2003), PolyPhen‐2
Version 2.2 (Adzhubei et al., 2013) and REVEL (Version December

2018; Ioannidis et al., 2016). SIFT applies substitution matrices to

estimate the likelihood that a variant is pathogenic. PolyPhen‐2
scores variants based on substitution matrices, evolutionary in-

formation, differences in the biophysical properties of the reference

and alternative amino acids, functional residue and domain annota-

tions, and predicted secondary structure. REVEL is a meta‐predictor
that estimates variant pathogenicity on the basis of several individual

predictors, including SIFT, PolyPhen‐2, MutPred, and MutationTa-

ster. We generated scores for these methods via the Ensembl Variant

Effect Predictor (McLaren et al., 2016) in December 2018.

The ENIGMA Consortium incorporates “priors” of variant

pathogenicity prediction as part of its variant interpretation process

(Parsons et al., 2019). This pathogenicity prediction incorporates

splice site impact, protein conservation, and expert knowledge, as

detailed in a recent publication (Tavtigian et al., 2008; Vallée et al.,

2016). Briefly, the impact of a variant on known splice sites and the

likelihood of a variant introducing an ectopic splice site, are

assessed by MaxEntScan (Yeo & Burge, 2004). To estimate the

impact of missense variants, the variants are binned according to

two factors: whether or not the variant is inside a clinically‐
important protein domain (Tavtigian et al., 2008); and ranges of

substitution scores from Align‐GVGD (http://agvgd.iarc.fr/), which

estimates substitution likelihoods from alignments of orthologous

protein sequences. The variants within each bin are assigned a

probability of pathogenicity which was estimated from previous

analyses of disease‐causing variation (Easton et al., 2007). This

approach share features with some of the predictors in this

experiment; the TransBioInf and LEAP methods use similar splicing

information, and many methods use genomic conservation (which is

related to the protein conservation implicit in Align‐GVGD).
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However, these similarities are minor. Moreover, ENIGMA variant

interpretation is based on many lines of evidence beyond

pathogenicity prediction, namely several forms of clinical observa-

tion. None of the predictors use such lines information except for

LEAP, and LEAP uses similar observations that were collected

independently. The LEAP predictors reflect individuals who have

been tested by Color Genomics (which was founded in 2013), while

ENIGMA priors reflect individuals who had been tested before the

mid‐2000s. These sets of individuals could overlap, but this overlap

is likely to be minor given the gap in time. In summary, the ENIGMA

priors include similar information to some of the prediction

methods, but the risk of bias from this similarity is minimal.

2.2 | Assessment methods

The 326 variants that were submitted for prediction analysis in the

CAGI5 ENIGMA Challenge had all been interpreted by the ENIGMA

Consortium, the ClinGen‐approved expert panel for BRCA1/2 variant

interpretation. Table S1 lists these variants along with the ENIGMA

interpretation, and the predicted probability of pathogenicity and

prediction standard deviation by all 14 prediction methods and the

three reference methods (see Table S1).

Of the 326 BRCA1/2 variants that were shared with the CAGI5

prediction teams, ENIGMA interpreted 64 as Benign (Class 1), 240 as

Likely Benign (Class 2), 5 as VUS (Class 3), 7 as Likely Pathogenic (Class

4 ), and 10 as Pathogenic (Class 5). As described earlier, these were the

final interpretations by ENIGMA; the consortium had interpreted these

variants when they were submitted to CAGI, and subsequently revised

the interpretation of several variants according to new evidence that

became available during the CAGI experiment. By IARC classification

criteria (Plon et al., 2008), Benign variants include those with posterior

estimates of pathogenicity of less than 0.001 in the multifactorial

estimation, while the threshold posteriors for Likely Benign variants is

0.049; the threshold for Likely Pathogenic variants is 0.95 while that for

Pathogenic variants is 0.99. Two aspects of this statistical modeling are

the evidence that the variant is damaging or increases disease risk and

the strength of the evidence. For example, suppose two variants have a

similar impact on the protein function, but one is observed in a very few

individuals while the second is observed much more frequently. The

first variant might be classified, as Likely Pathogenic while the second is

Pathogenic, because the smaller amount of evidence might not reach

the threshold for Pathogenic classification. The amount of evidence on a

variant is not relevant to pathogenicity prediction, while the predicted

impact on function is. In our assessment, we grouped the Benign and

Likely Benign variants together (assigning them a target probability of

0.025), grouped the Pathogenic and Likely Pathogenic variants together

(assigning them a target probability of 0.975), omitted the VUS (each of

which had been classified previously as Likely Benign but were

reclassified based on additional evidence), and evaluated the prediction

methods on their accuracy at predicting these target probabilities.

Most predictors submitted numerical predictions of pathogeni-

city ranging from 0.0 (predicted benign) to 1.0 (predicted patho-

genic). One team submitted class labels (Class 1 − 5), which we

translated to random probabilities selected from within ENIGMA’s

posterior probability ranges (ENIGMA Consortium, 2017). Most

predictors submitted standard deviations to accompany their

estimated probabilities, and some submitted comments on their

predictions.

We approached the assessment by computing several different

summary statistics, as each can offer distinct insights. These included

both threshold‐dependent and threshold‐independent metrics. The

threshold‐dependent metrics included:

• Precision: the ratio of true positives to true and false positives, or

variants accurately predicted as pathogenic as related to all

pathogenic predictions;

• Recall: the ratio of true positives to true positives and false

negatives, or variants accurately predicted as pathogenic as

related to all pathogenic variants (also known as sensitivity);

• Accuracy: the ratio of true positive and true negative predictions to

all true and false predictions, or the fraction of variants accurately

classified as benign or pathogenic relative to the number of

variants;

• F1: the harmonic mean of precision and recall.

A contrast between Accuracy and F1 is that Accuracy reflects in

part the number of True Negatives, benign variants predicted as

such, while F1 does not. In cases such as this, with a large skew

between the positive and negative sets, F1 is generally considered

more meaningful. Accordingly, we leveraged F1 for threshold

selection, and empirically selected one threshold for each predictor

by sampling candidate thresholds across the prediction range and

selecting the threshold that yielded the largest F1. We applied these

thresholds in measuring Precision, Recall, and Accuracy. Table S2

lists these thresholds along with these performance metrics.

We applied the following threshold‐independent methods:

• ROC AUC: area under the ROC curve, which relates sensitivity

(recall) to specificity (which in this context represents the fraction

of benign variants correctly classified as benign). ROC AUC is a

widely‐used classification metric, which lends itself easily to

probabilistic interpretation.

• P/R AUC: area under the Precision‐Recall curve. This metric is

similar to ROC AUC but is more effective for datasets such as this

one with a large skew between positives and negatives.

• RMSD: root‐mean‐squared deviation describes the numerical

distance between the prediction and its target value.

• Pearson correlation: this is a standard parametric correlation metric.

Like RMSD, it tends to rewards predictions that are numerically

close to the target value.

We also evaluated Kendall correlation but found that for these

data, it was redundant with ROC AUC (data not shown).

To evaluate significance in predictor performance, with con-

fidence intervals, we performed 10,000 iterations of bootstrapping.

For predictors that supplied standard deviations (as most did), in
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each bootstrapping iteration, we added a small amount of noise,

sampled at random from a normal distribution with a mean of zero

and the standard deviation supplied by the predictor, and measured

all summary statistics on these data. We computed the standard

deviation of these bootstrapped summary statistics. We considered

the difference between two prediction methods to be significant if

their summary statistics differed by more than one standard

deviation. When a prediction was accompanied by a large standard

deviation (which communicates a high degree of uncertainty), the

bootstrapping communicated wide confidence intervals around the

prediction metrics; small or no standard deviations translated to

greater certainty around the summary statistics. Note that the

bootstrapping was used only to estimate the error bars around the

summary statistics, and the summary statistics themselves were

computed on the actual prediction values.

One last component of the assessment was to identify a subset of

variants that had proved to be challenging in general and analyze the

commonalities of these variants. To identify these difficult variants,

we computed the median predicted probability from all prediction

methods and selected the pathogenic variants with lower median

predictions and the benign variants with higher median predictions.

All of the software used in this assessment is publicly available at

https://github.com/melissacline/CAGI5‐BRCA‐Assessment. Table S2

provides all of the assessment statistics for each method assessed

(see Table S2).

3 | RESULTS

We evaluated results from 14 blind prediction methods and three

reference methods. With few exceptions, the blind prediction

methods reported values for the same variants, so their results can

be compared directly. The three reference methods did not report

values for many of these variants, and due to the number of missing

values, their results should be viewed as only rough approximations

of their performance. Figure 1 shows a dendrogram of the

predictions and indicates the missing values. As shown, there were

very few missing values. Almost all predictors submitted predictions

on the same variants; the results were not confounded by missing

values. The dendrogram shows that, unsurprisingly, different

methods by the same teams tend to cluster together.

Figure S1 shows the distributions of probabilities estimated by

each method and contrasts the probabilities for Benign and Likely

Benign variants to those for Pathogenic and Likely Pathogenic

variants (Figure S1). Figure S2 breaks this down further by separately

showing predictions for the Benign, Likely Benign, Likely Pathogenic,

and Pathogenic classes (Classes 1, 2, 4 , and 5 respectively; see Figure

S2). This figure illustrates that the predictions were not necessarily

stronger for Pathogenic versus Likely Pathogenic variants, nor for

Benign versus Likely Benign variants. This supports the assertion that

the difference between Benign and Likely Benign, and between

Pathogenic and Likely Pathogenic, reflects the strength of the clinical

evidence rather than the expected functional impact of the variant,

and is not relevant to this assessment.

Figure 2 summarizes the performance of the methods in terms of

four metrics chosen as most illustrative: ROC AUC, P/R AUC,

Precision and Recall. Table S2 lists the complete set of performance

metrics (see Table S2). While each metric has nuances, the rank order

was largely consistent between the metrics. As a reflection of the

overall performance accuracy, the strongest F1 accuracy was

achieved by LEAP 4 at 0.83. In other words, on this particular

dataset, the state of the art methods were correct in roughly four out

of five cases, which illustrates that variant prediction remains a hard

problem.

Overall, most methods fared better at predicting pathogenic

variants as pathogenic than predicting benign variants as benign, as

seen by comparing the Precision and Recall graphs in Figure 2. The

LEAP methods were an exception, with strong precision as well as

recall at the best empirically‐selected threshold.

Interpretability was a design objective for the LEAP methods.

LEAP 1 and LEAP 2, which are both regularized logistic regression

methods, listed the input features which were most significant for

each prediction. These include, scores from LRT, MutationTaster,

SIFT, PolyPhen 2, and phastCons 100way vertebrate conservation.

F IGURE 1 Dendrogram illustrating the
predictions on all variants by all prediction
methods
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These features are also inputs to the reference method REVEL, which

did not score quite as well on these variants. One possible

explanation for LEAP’s performance advantage concerns differences

in what the methods were trained to do. REVEL was trained to

predict variants that are pathogenic in disease in general, and there

may have been some variation in the methods that were used to

interpret the variants in its training set. LEAP was trained to predict

pathogenicity in cancer specifically and was trained on variants that

were interpreted consistently, according to the ACMG Guidelines, by

board‐certified medical geneticists. In general, the methods that had

been trained to identify disease variants, in general, did not fare as

well on this challenge. This includes PolyPhen‐2 and Disease Index

Matrix. Arguably, LEAP addressed an easier problem by limiting its

scope to cancer.

A second explanation is that features shared by LEAP and REVEL

were necessary but not sufficient, and LEAP’s performance can be

attributed to additional features. Important features that were

distinct to LEAP included patient‐derived information. Co‐occurrence
with known pathogenic variants was valuable in the accurate

prediction of roughly one‐third of the benign variants. Information

on individuals who carry the variant and the frequency of cancer in

these individuals and their families was a strong predictor for a few

difficult pathogenic variants (Lai et al., 2018). Since patient‐level
information informs clinical variant interpretation, including the

ENIGMA variant interpretations, it comes as no surprise that it is also

valuable for improving variant pathogenicity prediction above that

based on bioinformatic information alone.

Another form of information that benefitted LEAP was popula-

tion frequencies from gnomAD. Higher minor allele frequencies

within a distinct out‐bred population is a characteristic of benign

variants. While ENIGMA omitted variants with sufficiently high

population frequencies to meet the ACMG Guidelines as benign,

higher population frequencies still suggested benign variants. Since

population frequency repositories are publicly‐available, and growing

F IGURE 2 Shown is the performance of the 14 blind prediction methods and three reference methods (denoted with R), for four selected
performance metrics. The bar lengths and the error bars reflect the mean performance and standard deviation observed in random benchmarks,
where each estimated probability was permuted according to standard deviation supplied by the predictor. No benchmarking was performed on
methods for which the predictor supplied no standard deviation, or on the reference methods
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in size and quality, their demonstrated value to LEAP's performance

suggests that they may be valuable to other methods as well.

While the variants interpreted by ENIGMA had no publicly‐
available interpretations at the time of the challenge, many of them

proved to be in HGMD, where additional information is available to

paid subscribers. The information in HGMD includes assigned

categories (particularly, the “Disease‐causing mutation” or DM

category) and the presence of the variant in the literature. This

proved to be a strong source of information for the methods that

included data from HGMD in their input set (LEAP 1, LEAP 3, LEAP

4, and REVEL). In fact, for pathogenic variants, the data from HGMD

was among the more important inputs to LEAP 1: the presence of

the variant in the literature was instrumental inaccurate prediction

15 of the 17 pathogenic variants, and the HGMD‐assigned category

of DM was an instrumental inaccurate prediction of 12 of these

variants. There were two pathogenic variants for which LEAP 1 did

not indicate HGMD features as key inputs (BRCA2 c.7819A>C and

BRCA2 c.8975_9100del), and LEAP 1 mispredicted on these two

variants. Since HGMD features papers on pathogenic or damaging

variants, it makes sense that the mere fact that the mere mention a

variant in HGMD is a strong predictor of pathogenicity. The rules of

the CAGI experiment stipulate that each prediction team can use

whatever information they have available, including private

information. While the merits of subscription databases can be

argued elsewhere, the scientific lesson is that the added information

in these databases appears to be valuable. The lesson for the larger

scientific community is that there exists additional data that could

in theory be shared publicly (should its owner so decide), and

sharing these data would advance the science of variant

interpretation.

While most pathogenic variants were accurately predicted as

pathogenic, there were a few that received lower predictions on

average, and a review of these variants was instructive. A number of

mispredicted pathogenic variants were proximal to splice sites.

F IGURE 3 Of the four methods by the TransBioInf team, two (left) used predicted splicing information while two (right) did not. Further, the
methods used two different learning frameworks and objective functions: neural network prediction of clinical significance (top), and multiple
linear regression of functional assay scores (bottom). These boxplots show that in both architectures, including the splicing information
improved prediction accuracy
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Examples include BRCA1:c.4675G>A and BRCA1:c.4484G>C (which

are adjacent to splice sites) and BRCA1:c.5144G>A and BRCA2:

c.7819A>C (which are in close proximity to splice sites). The

TransBioInf team further illustrated the impact of splicing informa-

tion in the construction of their four methods, which themselves

were a controlled experiment. Two included the predicted splicing

impact, while two did not. In addition, the methods used two

different learning frameworks: neural network prediction of clinical

significance and multiple linear regression estimation of functional

assay scores. As shown in Figure 3, including the predicted splicing

impact improved prediction accuracy in both learning frameworks.

Splicing‐related information was also valuable to LEAP, such as the

distance to the nearest splice site and exon length. Exon length is an

interesting quantity that other researchers have also found to be

valuable in such prediction; there appears to be valuable information

encoded in exon length, beyond whether or not this length is of

modulo three (Jagadeesh et al., 2019), to indicate information such as

if the loss of the exon would introduce a frameshift. This further

suggests that future method development may benefit from a greater

emphasis on splicing information and might look beyond the splice

sites themselves to additional regulatory features.

We reviewed a number of variants that were annotated as

Benign or Likely Benign by ENIGMA, yet predicted as pathogenic

by most predictors. Many of these variants were in conserved,

clinically‐important domains, yet in solvent‐exposed, loop regions

within these domains. Examples include BRCA1:c.5312C>G and

BRCA2:c.8764A>G. Many predictors in this experiment use protein

structure information, either directly or indirectly through predictors

they incorporate, yet perhaps the protein structure information is

being masked by the strong conservation signal.

4 | CONCLUSION

In the CAGI5 ENIGMA Challenge, six teams submitted blind predictions

with 14 methods on a set of 326 BRCA1/2 exonic variants (mostly

missense variants plus a few in‐frame indels). These variants all had a

minor allele frequency of less than 1%, and had recently been assessed

for clinical significance by the ENIGMA Consortium using multifactorial

likelihood analysis methodology. While this set of variants was skewed

to the Benign and Likely Benign category, this skew is representative of

the BRCA1/2 variants encountered in clinical practice. Yet it should be

noted that given the small size of the data, and particularly the small

number of pathogenic variants, this assessment should not be over‐
interpreted. For example, a predictor who predicts 100% sensitivity on

a set of 17 pathogenic variants can still have a Wilson confidence

interval as low as 82% (Wilson, 1927). Predicting the clinical impact of

variants remains a hard problem. This experiment showed that the best

methods achieved an F1 accuracy of just over 0.8, implying that variant

prediction might be the wrong one out of every five variants, at bestx.

Variant prediction is not yet ready for clinical application in the absence

of other data. With that said, this assessment may provide useful

qualitative information.

A confounding factor in this experiment was that most of the

pathogenic variants were in the subscription version HGMD and

were predicted as pathogenic (“Disease‐causing Mutations”) by

HGMD. This information was only available to HGMD subscribers.

In theory, paid HGMD subscriptions are available to anyone; in

practice, the subscription fees are beyond the means of many

academic labs and smaller institutions. This information was available

to the LEAP methods (minus LEAP 2, which used publicly‐available
information only), and appears to have been instrumental in many

correct pathogenic predictions by LEAP 1. Recognizing this potential

bias, the results of this experiment should best be used as a

motivation for methods development rather than a guide for direct

clinical interpretation. Yet these results present a powerful lesson for

the scientific community that there is private data that shows value

invariant prediction. By extension, efforts to make such data more

broadly‐available are likely to advance the science of variant

prediction.

Nonetheless, we learned several valuable lessons in this experi-

ment, including the value of population frequency data. The LEAP

methods leveraged population frequencies from gnomAD, which were

instrumental in many accurate predictions. This is an information

source that was not used by most of the variant prediction methods,

yet is available now and stands to improve as more population‐scale
sequencing studies become available (Lek et al., 2016).

While the pathogenic variants were few in number, they presented

a clear story on the importance of splicing information. In the LEAP

methods, splicing information as instrumental at predicting both

pathogenic variants as pathogenic, and benign variants as benign. The

results of the TransBioInf team demonstrated that splicing information

improved prediction in two distinct architectures. When we assessed

the pathogenic variants that were not predicted as pathogenic by many

methods, many of them were proximal to splice sites. Our observations

suggest that predictive methods should routinely include prediction of

splicing impact. As our knowledge of splicing regulation improves, this

improved knowledge may translate to further improvements invariant

prediction methods.

The LEAP team from Color Genomics was able to draw upon

their large database of patient‐level clinical results, as well as a

subscription to HGMD. They observed that the cancer frequencies of

individuals and their families ware valuable input for some variants

that would otherwise be difficult to classify. We observed that

variant co‐occurrence information was an important factor in their

correctly predicting many of the benign variants as benign. It should

come as no surprise that the types of information that are valuable

for variant interpretation are also informative for predicting variant

pathogenicity. This offers an optimistic note on how data sharing

might improve the practice of variant prediction. While individual‐
level (or case‐level) data is difficult to share for privacy reasons, case‐
derived information such as family history summary statistics and

variant co‐occurrences can be shared in ways that do not

compromise patient privacy. As progress is made to share such

information, those who benefit will include the developers and users

of variant prediction methods.
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