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INTRODUCTION

Protein function is a multifaceted concept that reflects ‘‘everything that

happens to or through a protein,’’1 and is typically considered from the

biochemical, biological, and phenotypic perspectives.2 From the biochem-

ical or molecular perspective, a protein may be a kinase, whereas in terms

of its biological function this kinase can be involved in numerous proc-

esses, such as cell cycle regulation or cell–cell signaling. Two proteins with

the same molecular function may be involved in drastically different bio-

logical processes, and conversely, the set of proteins associated with a par-

ticular biological process will generally be drawn from a wide range of

molecular functions. From the phenotypic viewpoint, a protein is gener-

ally associated with variation in observable physical or behavioral traits.

For example, kinase variants or mutants may be responsible for disease.

Adding another level of complexity to the study of function is the fact

that a protein’s molecular function, while generally considered to be a

static notion, is modulated by a particular cellular context, for example,

the presence of other molecules, or properties of the physical environ-

ment, for example, temperature.3

Several classification systems have been proposed to standardize func-

tional annotation and to facilitate computation. With few exceptions,

these classification systems usually take on the structure of hierarchical

ontologies. Enzyme Commission (EC) numbers4 and the Munich Infor-

mation Center for Protein Sequences (MIPS) functional catalog5 are two

well-accepted schemes; however, the most commonly used functional clas-

sification is the Gene Ontology (GO). GO provides three hierarchical clas-

sifications as directed acyclic graphs: molecular function ontology (MFO),

biological process ontology (BPO), and cellular component ontology.6

With respect to defining a particular gene’s phenotype, the existing classi-

fications are species-specific (e.g., the Human Phenotype Ontology7) and

predominantly constructed to address human disease. The Unified Medi-

cal Language System,8 for example, incorporates a number of vocabularies

together with semantic relationships between terms, mainly for the pur-

pose of defining associations between genes and medical disorders.

Experimentally determined protein function annotations have been

steadily accumulating over the years. Currently, there are about 50,000

proteins with at least one experimentally annotated GO term from MFO

or BPO in the GO database and Swiss-Prot9 combined. However, owing
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ABSTRACT

Understanding protein function is one of

the keys to understanding life at the molec-

ular level. It is also important in the con-

text of human disease because many condi-

tions arise as a consequence of alterations

of protein function. The recent availability

of relatively inexpensive sequencing tech-

nology has resulted in thousands of com-

plete or partially sequenced genomes with

millions of functionally uncharacterized

proteins. Such a large volume of data, com-

bined with the lack of high-throughput ex-

perimental assays to functionally annotate

proteins, attributes to the growing impor-

tance of automated function prediction.

Here, we study proteins annotated by Gene

Ontology (GO) terms and estimate the ac-

curacy of functional transfer from protein

sequence only. We find that the transfer of

GO terms by pairwise sequence alignments

is only moderately accurate, showing a sur-

prisingly small influence of sequence iden-

tity (SID) in a broad range (30–100%). We

developed and evaluated a new predictor of

protein function, functional annotator

(FANN), from amino acid sequence. The

predictor exploits a multioutput neural net-

work framework which is well suited to

simultaneously modeling dependencies

between functional terms. Experiments

provide evidence that FANN-GO (predictor

of GO terms; available from http://www.

informatics.indiana.edu/predrag) outper-

forms standard methods such as transfer

by global or local SID as well as GOtcha,

a method that incorporates the structure

of GO.
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to the numerous sequencing projects,10 the gap between

annotated and nonannotated proteins has exceeded two

orders of magnitude and will only get wider. In addition,

annotated proteins may not be sufficiently covered, both

with respect to the resolution of functional annotations

and the inclusion of other yet unknown functions. Thus,

it is important to develop algorithms capable of accu-

rately predicting protein function.

Historically, sequence-based inference was the first

strategy used to predict protein function, even if most

studies at the time avoided explicitly relating homology

and function.11 Global and local sequence alignments

were used to query sequence databases for similarities

with a target protein. With the accumulation of experi-

mentally determined protein functions, the most similar

annotated sequences have traditionally been used to infer

function.1 More advanced methods exploited predicted

physicochemical properties,12,13 evolutionary relation-

ships,14–16 or the structure of functional ontologies to

achieve different confidence levels at different ontological

terms.17–19 Microarrays, protein–protein interaction net-

works, protein structures, and predicted ligands have also

been exploited.20–29 However, most of these methods

are limited to a few organisms where such data are avail-

able. One way or another, sequence alignment-based in-

ference is the cornerstone of functional inference and is

the focal point of this study.

Sequence alignment-based transfer of function has been

thoroughly studied in the last decade, predominantly for

enzymes.1,30–34 The results of these studies indicate that

at least 60% sequence identity (SID), and more likely

closer to 80%, is required for the accurate transfer of the

third level of EC classification. More sophisticated

approaches were proposed as well: the GOtcha method

was developed to take sequence alignment scores between

a query protein and a functionally annotated database

and overlay them on the functional ontology, cumula-

tively propagating such scores toward the root of the

ontology.17 PFP refined this technique by incorporating

PSI-BLAST (Position-Specific Iterated–Basic Local Align-

ment Search Tool) alignments at very low significance

levels and conditional probabilities that a protein is asso-

ciated with pairs of functional terms.18 Other methods

such as ProtFun,13 ConFunc,35 GOsling,36 and GOs-

truct37 were developed for high-throughput prediction

tasks. Finally, phylogenetic methods attempt to exploit

particular evolutionary relationships within a gene fam-

ily.38,39 Methods such as SIFTER15 or ortholog identifi-

cation methods40 belong to this category. Several recent

reviews provide good perspectives on protein function

prediction at all scales.1,41–47

This study addresses protein function at the molecular

function and biological process levels, as defined by the

GO consortium, and functional inference from protein

sequence alone. We first analyze the distribution of GO

terms associated with experimentally annotated proteins,

and the relationship between their number and the esti-

mated number of domains in a protein. We then con-

sider the power of functional transfer of GO terms based

on sequence similarity and finally present our method

for the probabilistic inference of GO terms using super-

vised learning. Our algorithm, functional annotator

(FANN), uses multioutput artificial neural networks. We

show that in the GO annotation task, FANN-GO outper-

forms standard sequence alignment methods and

GOtcha, especially for sequences with low similarity to

any currently annotated sequence.

RESULTS

Multifunctional proteins

It is well-known that some proteins have the ability to

carry out more than one function, or ‘‘moonlight.’’48,49

Such abilities can be facilitated by either having mul-

tiple functional domains, a single domain which binds

multiple partners, or by different behavior upon post-

translational modifications or change in physiological con-

ditions.49,50 Here, we systematically analyze multifunc-

tionality with respect to MFO and BPO in GO. As an

approximation of distinct functions we only consider the

number of experimentally determined leaf GO terms asso-

ciated with each protein. A GO term g was included in the

count if no other term associated with the protein had g as

its more general term in the ontology. For example, if a

protein is associated with the term ‘‘protein binding,’’ the

term ‘‘binding’’ is not counted as distinct function because

it is a generalization of ‘‘protein binding;’’ however, the

term ‘‘nucleic acid binding’’ would be counted because nei-

ther of the two terms is a generalization of the other.

Figure 1 shows the distribution of the number of leaf

terms associated with each functionally annotated

sequence for both ontologies. In total, 26,707 sequences

were included in the MFO analysis, and 29,118 sequences

were included in the BPO analysis (see Datasets section).

Only experimental evidence, traceable author’s statement,

or curator’s inference were considered (exclusion of trace-

able author’s statement and curator’s inference resulted in

very similar distributions; data not shown). The plots

show greater diversity in a protein’s participation in a bio-

logical process than its ability to carry out distinct molec-

ular functions. About 34% of the proteins experimentally

annotated by MFO terms have more than one leaf term,

with some proteins having as many as 14. Similarly, 56%

of proteins have more than 1 BPO leaf term, with six pro-

teins having 50 terms or more. A higher percentage of

proteins with multiple BPO leaf terms is consistent with

the expectation that biological processes are governed

more by the context in which a protein is used and less

by the physicochemical abilities of the protein. Interest-

ingly, both the molecular function and biological process

ontologies show a scale free-like decrease in the probabil-
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ity that a protein is associated with an increasing number

of functional terms. In the context of automated function

annotation, these scale free-like distributions emphasize

the need to develop prediction algorithms that can

accommodate complex output patterns.

We also analyzed the relationship between the number

of molecular functions and biological processes a protein

is associated with. It seems intuitive to postulate that pro-

teins with the ability to carry out multiple molecular func-

tions should be more easily used in multiple different con-

texts, giving rise to an association with more biological

processes. Out of 19,240 proteins in the intersection of

datasets for molecular function and biological process, we

found a Pearson’s correlation coefficient of 0.261 between

the numbers of associated leaf terms in the two ontologies.

While this correlation may seem weak, we determined that

this value is statistically significant by using a permutation

test where the numbers of MFO and BPO terms were per-

muted in the dataset of proteins. We carried out 100,000

such permutations and did not find any cases in which

the correlation coefficient was 0.261 or greater (the mean

correlation coefficient for permuted data was 6.1 3 1026

and standard deviation was 7.2 3 1023).

While, in general, a protein performing multiple mo-

lecular functions is associated with multiple biological

processes, we conducted further analysis of proteins asso-

ciated with a single term from one ontology and multiple

terms from the other. For example, among the proteins

that have only one MFO leaf term, but multiple BPO

terms, we found that receptor binding terms such as

‘‘chemokine receptor binding’’ and ‘‘cytokine receptor

binding’’ are the most enriched (P < 1.0 3 1027; bino-

mial test). On the other hand, there are also cases in

which proteins that are associated with only one leaf

term in BPO are related to multiple MFO terms. Such

BPO terms are almost all related to metabolic processes,

for example, ‘‘cellular metabolic process,’’ ‘‘primary meta-

bolic process’’ (P < 1.0 3 1027; binomial test). When

analyzing this class of proteins, we also found that some

terms did not occur as often as expected. When looking

at the class of proteins with one MFO term and multiple

BPO terms, we found that ‘‘catalytic activity’’ was

depleted. While sequences are annotated with this term

28% of the time in the whole dataset (29% in the set of

proteins with a single MFO leaf term), it only occurs 17%

of the time when we only consider sequences with exactly

one MFO term but three or more BPO terms associated

with them. Similarly, proteins having one BPO leaf term,

but multiple MFO terms are usually depleted in terms

involved in reproduction. We note that these data need to

be interpreted with caution, because MFO and BPO terms

are incomplete for most proteins and also because there

may exist biases in ways current functions are acquired.

Finally, we looked at the relationship between the num-

ber of Pfam domains51 found in a protein and the num-

ber of BPO and MFO terms it was associated with. We

found that the Pearson’s correlation between the number

of MFO leaf terms and Pfam domains (detected using a

threshold of 0.001) was larger than that of BPO leaf terms

and Pfam domains (0.126 and 0.090 respectively). While,

again, these correlation values might seem small, we found

both were significant using the permutation test.

Transfer of function by sequence similarity

We evaluated the performance of simple function trans-

fer between similar sequences. The following steps were

taken: for each range of pairwise global SIDs, a target pro-

tein received all functional terms from each experimentally

annotated protein within the given SID range. For each

Figure 1
The distribution of the number of leaf terms in (A) molecular function and (B) biological process ontologies. The x-axis represents the number of

leaf terms associated with a protein; the y-axis represents the fraction of proteins in the dataset with the given number of leaf terms. Both axes are

in log10 scale. The inset in each panel provides a pie chart that corresponds to each plot.
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target sequence with more than one match in the given

identity range, the precision and recall (see Model Selec-

tion and Evaluation Section) were calculated as averages

over all pairs. Then, the precision and recall for the entire

dataset are reported (Fig. 2) as averages of the averaged

precisions and recalls calculated for each sequence covered

(a leave-one-out estimation). We also report the coverage

for each range of SID as the fraction of proteins with at

least one other annotated sequence whose pairwise SID

falls within the defined range. Finally, for all covered

sequences we report the percentage of perfect annotations,

that is, the percentage of all pairwise annotations in a

given bin where both precision and recall were one.

The results shown in Figure 2 suggest that using global

SID for the transfer of functional annotations is only

moderately accurate (pairwise local alignments performed

similarly; data not shown). Surprisingly, even for 100%

identity transfer of function does not achieve either pre-

cision or recall of one (only 17% of identical sequence

pairs had perfect transfer of MFO and 12% of BPO

terms). This relatively low rate of perfect annotations

among perfect matches, and similarly in the remaining

identity bins, in our dataset is caused by three factors: (i)

sparsity of database annotations, where proteins are

incompletely annotated with respect to functionality and

also specificity of annotation; (ii) database errors, caused

by incorrect interpretation of experiments or by curation

errors,52,53 and (iii) organismal context, where the dif-

ference between two organisms influences a particular

functional role of individual proteins, even at 100% SID.

In general, transferring MFO annotations is more

accurate than transferring BPO annotations, which has

previously also been observed by Rogers and Ben-Hur54

in a different prediction scenario. This is probably a

result of the fact that MFO terms are less dependent on

cellular, tissue, or organismal context, but also that the

topological properties, including the average branching

factor, the number of terms, and the average depth of a

leaf node, between the two ontologies differ (data not

shown). For both ontologies, the precision of transferring

predictions rapidly decreases once the 20–30% identity is

reached. This range of SID has been termed the ‘‘twilight

zone’’ for the inference of protein structure from

sequence.55 In the context of function transfer such a

twilight zone cannot be clearly defined (or rather should

be extended to the entire range 30–100%), with the range

below 30% being one where function transfer breaks

down completely, ‘‘midnight zone’’. We also evaluated an

alternative approach where functional terms from all

matches in a given identity range were transferred to the

target protein and found a very similar level of precision

but an increased recall (Supporting Information Fig. S1).

The quality of function transfer is highly dependent on

the particular class of protein. We show this by splitting

the MFO/BPO datasets into enzymes (proteins annotated

with term catalytic activity) and non-enzymes. As seen in

Figure 3, the ability to transfer molecular functions to

these two classes of proteins was noticeably different and

most likely points to a higher quality of functional anno-

tations for enzymes.

Another interesting trend in the data is the fact that

the quality of annotations transferred between sequences

from the same species is higher than that obtained

between different species. This can be seen by comparing

the precision/recall curves in Figure 4 obtained by only

considering pairs of sequences from the same species

Figure 2
Accuracy of function transfer using global pairwise sequence identities (A: molecular function; B: biological process). For each sequence identity

range (x-axis), the average precision (blue solid line) and recall (green solid line) of function transfer by pairwise similarity are shown. The teal
dotted line represents the percentage of pairs with perfect annotations (e.g., both precision and recall equal to 1). The red dashed curve represents

the percent of proteins that have pairwise matches (annotated with GO terms; experimental evidence code) in a given range. The error bars

represent 95% confidence intervals. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(‘‘within’’ curve, blue dashed line), and only considering

pairs of sequences from different organisms (‘‘between’’

curve, green dotted line). A similar trend has been previ-

ously observed on protein–protein interaction data by

Mika and Rost.56

Quality of nonexperimental annotations
in Swiss-Prot

Protein databases such as GO or Swiss-Prot contain a

number of functional annotations supported by nonex-

perimental evidence codes. We aimed to assess the qual-

ity of such annotations by analyzing nonexperimental

annotations for the proteins in Swiss-Prot (v10.0–v15.0)

that in a later release (v15.15) accumulated experimental

annotations. Figure 5 shows the quality of annotations by

nontraceable author statement (NAS) or inferred from

electronic annotation (IEA) evidence codes (the remain-

ing nonexperimental codes did not contain enough

sequences). Using the current annotations (v15.15) as

true function, the precision and recall of each protein’s

annotation were calculated (Fig. 5).

As shown in Figure 5, the quality of IEA is consistently

better than that of NASs for MFO, while the trend is

Figure 3
Accuracy of function transfer using global pairwise sequence identities for enzymes versus non-enzymes (A: molecular function; B: biological

process). For each sequence identity range (x-axis), the average precision of function transfer by pairwise similarity is shown (blue dashed line:

enzymes, green dotted line: non-enzymes; red solid line: combined). The error bars represent 95% confidence intervals. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4
Accuracy of function transfer using global pairwise sequence identities from the same or different organism (A: molecular function; B: biological

process). For each sequence identity range (x-axis), the average precision of function transfer by pairwise similarity is shown (blue dashed line:

same organism, green dotted line: different organism; red solid line: combined). The error bars represent 95% confidence intervals. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reversed for BPO. Interestingly, the precision of the IEAs

in the Swiss-Prot database for MFO exceeds the level

achieved by a simple transfer of annotation (Fig. 2),

while the NAS evidence suggest lower confidence levels

compared to that of sequence transfer. A historical analy-

sis of BPO annotations suggests that neither IEA nor

NASs have been at the level of simple transfer of annota-

tion; however, the latest major release of Swiss-Prot

(v15.0) provides more accurate electronic inference than

transfer by sequence similarity.

Performance of Functional Annotator

In this work, we present a simple classification method,
FANN-GO, for predicting GO terms from MFO and BPO.
The model is based on aligning a target sequence to a
database of experimentally annotated proteins and calcu-
lating the i-score17 that the protein is associated with
each functional term. These scores were then used as
inputs to an ensemble of multioutput neural networks
that were trained to predict the probability that the pro-
tein is associated with each function. A variant of FANN-
GO, referred to as FANN-GOspecies, is also presented. This
model is based on two groups of inputs, one containing
inputs where a target protein is aligned only to proteins
from the same species and another where the protein is
aligned to proteins from different species.

We compared FANN-GO models with GOtcha as well

as transfer by global and local SID. We also implemented

a naı̈ve method that uses prior probabilities of functional

terms as prediction scores for all target proteins. That is,

the score for each function, for all proteins, is simply the

relative frequency of that term occurring in the (training)

dataset. Performance of all classification models was

assessed using 10-fold cross-validation on all functional

terms associated with 50 proteins or more (mainly for

the purpose of stable accuracy estimation). In doing so,

we reduced the number of terms associated with the

sequences in the dataset for molecular function to 344

and biological process to 1788. For each ontology, all

methods were evaluated using the same datasets.

Figure 6 shows the performance of our two different

supervised methods, FANN-GO (blue line) and FANN-

GOspecies (green line) compared to an in-house imple-

mentation of the GOtcha method (red line), and two

methods using transfer of annotations based on pairwise

SID: global-SID (purple line) based on global sequence

alignments and local-SID (teal line) based on local

BLAST alignments. These methods were benchmarked

against a naı̈ve classifier (orange line).

As shown in Figure 6A, FANN-GO outperformed

GOtcha in both precision and recall when annotating

sequences with MFO terms. Both methods outperformed

simple functional transfer based on SID and naı̈ve predic-

tions. Interestingly, annotating sequences with the most

probable functional term ‘‘binding’’ causes the naı̈ve model

to outperform predictors based on sequence similarity.

Only after sequences are annotated with the third most

probable function, ‘‘catalytic activity,’’ does the naı̈ve curve

cross the global-SID curve at the precision and recall

obtained at approximately 21% SID. The unusual shape of

the naı̈ve curve is indicative of the highly nonuniform na-

ture of the relative frequencies of terms in MFO. With

regard to the top three most probable terms in the ontology,

74% of sequences are annotated with the term ‘‘binding,’’

63% are annotated with the term ‘‘protein binding,’’ and

28% are annotated with the term ‘‘catalytic activity.’’

Figure 5
Accuracy of function transfer for the Swiss-Prot database (A: molecular function; B: biological process). x-axis represents a different version of
Swiss-Prot. The dark dashed red line represents the precision of IEA annotations, and the dark blue solid line represents the precision of NAS

annotations. The light red dotted line represents the recall of IEA annotations, and the light blue dashed line represents the recall of NAS

annotations. The error bars represent 95% confidence intervals. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 6B shows the precision–recall curves for BPO.

Here, FANN-GO outperforms GOtcha in the high-preci-

sion/low-recall part of the curve, while the trend reverses

for FANN-GO thresholds below 0.49 and GOtcha i-scores

below 0.17 (we note that FANN-GO thresholds of <0.5

do not represent confident predictions). The naı̈ve pre-

dictor again outperforms the SID-based transfer of func-

tion for the eight most probable terms in BPO. It even

outperforms GOtcha when annotating sequences with the

single most probable term, ‘‘cellular process.’’ We found

that the performance advantage of FANN-GO and

FANN-GOspecies over GOtcha was similar regardless of

whether a protein was annotated with one or multiple

leaf terms (data not shown).

To assess whether prediction was more accurate for

proteins more similar to sequences in the experimentally

annotated database, we also performed accuracy estima-

tion in which test proteins were split into two sets. The

first set contained proteins which shared at least 50%

SID with any of the training sequences, and the second

contained proteins which did not. When comparing

FANN-GO with Gotcha, we found that the difference in

performance between these two methods was even greater

for the <50% SID set (Supporting Information Figure

S2). Therefore, FANN-GO may be well-suited in annotat-

ing proteins that do not share significant SID with

sequences that are experimentally annotated.

DISCUSSION

In this work, we investigated the distribution of GO func-

tional annotations for MFO and BPO, the accuracy of their

prediction by simple methods such as transfer by sequence

similarity and then developed and evaluated a new computa-

tional method for predicting protein function, FANN.

With the growing gap between available sequences and

experimentally annotated proteins, it is clear that func-

tional annotation of all proteins can only be accom-

plished by combining experimental and computational

methods. Targeted wet lab experiments have been pre-

dominantly focused on model organisms with an expec-

tation that this will provide a detailed understanding of

these organisms and that the gap between species can be

accurately filled by computational methods. Indeed,

model organisms provide a large fraction of the genes

with experimentally verified functional annotations. In

Swiss-Prot v15.15, we found that approximately 90% of

annotated proteins in MFO and BPO belong to nine

model organisms only (H. sapiens, S. cerevisiae, M. muscu-

lus, R. norvegicus, A. thaliana, D. melanogaster, S. pombe,

E. coli K-12, and C. elegans). However, nearly 60% of the

proteins from these model organisms still do not have

any experimentally determined MFO or BPO terms.

Thus, the development and assessment of computational

methods is critical not only for filling the gap between

model and non-model organisms but also for completing

the annotation of model organisms and driving experi-

mental analyses.

A frequent interpretation of the sequence–structure–

function paradigm is that a protein must adopt a single

structure (minimum energy state, kinetically reachable)

to be functional, with such conformation usually called

the native state. However, such an understanding has

been challenged from both structural and functional per-

spectives. Many proteins have been characterized as

Figure 6
Precision–recall curves for several GO-term prediction algorithms (A: molecular function; B: biological process). The curves were generated by

shifting the decision threshold t from 0 to 1 and considering all terms with scores >t as predicted functions. The decision threshold for the

sequence alignment curves (Global-SID, Local-SID) was the pairwise sequence identity (SID). The naı̈ve curve (orange dotted) was generated by

assigning all proteins the most common functional term, then the second most common, etc. FANN-GOspecies is represented by the solid blue

line. FANN-GO is represented by the solid green line with square markers. GOtcha is represented by the solid red line with red circular markers.

Global-SID is represented by the purple dashed line. Finally, Local-SID is represented by small teal markers only.
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intrinsically disordered. In such proteins, no single struc-

ture is seen as being dominant (i.e., high probability con-

formation with deep energy minimum) and a presence

of conformational ensembles (i.e., macrostates57) is prob-

ably even required for function.58–60 At the same time, it

is now recognized that multifunctional proteins are also

common.49 We find that at least 34% of functionally char-

acterized proteins (by experimental studies) are already

assigned more than one distinct molecular function term

and that at least 56% of proteins participate in more than

one distinct biological process. We believe that the ability

of a protein to be multifunctional in terms of its biochemi-

cal function needs to be achieved by developing new struc-

tural conformations and physicochemical interfaces

(including the addition of new domains), whereas its

involvement in multiple biological processes does not.

We also analyzed the quality of MFO and BPO term

‘‘transfer’’ by simple sequence similarity and found that

inference by similarity shows flat accuracy in the entire

range from 30% to 100% of pairwise SID (unless within

the same organism). This leads to the conclusion that

more sophisticated computational methods are necessary.

To date, much attention has specifically been paid to the

quality of function transfer for enzymes.1,34 Here, we

extended such analyses to nonenzymatic proteins and

observed that transfer of function to nonenzymatic pro-

teins is less accurate than that achieved for proteins

annotated with any function from the catalytic activity

portion of the ontology. While the underlying reasons

may simply lie in the sparseness of these parts of the on-

tology, annotating a protein with functions without

knowledge of the associated mechanics (information that

is often known for enzymes) can result in less accurate

assignment of proteins with such terms. This may also be

true for other classes of terms in the ontology. For exam-

ple, terms which group together proteins that carry out

similar tasks in the cell, but do so through different mo-

lecular mechanisms, will be less likely to be defined in

terms of sequence similarity among member proteins.

Conversely, terms which define a function carried out by

a specific mechanism (e.g., zinc finger binding) will be

more likely to be inferred by sequence similarity.

Our new algorithm, FANN was developed as a super-

vised method for the prediction of protein function

based on sequence alignments only. While diverse types

of data may be available in some model organisms, func-

tion transfer between model and non-model organisms is

ultimately and critically dependent on sequence-based

predictions. Our attempt is a simple algorithm that enco-

des every protein as a vector of similarities in a space of

protein functions, with neural networks used to learn

posterior probabilities of sequence–function relationships.

Neural networks are well suited for this classification task

due to their natural ability to learn multiple outputs that

are dependent and mutually nonexclusive. What method-

ology is best suited for such prediction tasks is an open

problem, with examples including one-versus-all training

of binary classifiers or their combination with postprocess-

ing methods for multilabel classification. Compared to

previous attempts to incorporate the structure of the on-

tology in a supervised manner, our method does not

require postprocessing19 or constraints on the kernel func-

tions between input and output spaces.37 On the other

hand, neural networks, as implemented here, do not neces-

sarily produce a consistent set of predictions, that is, a par-

ent term may have a lower score than any of its children’s

terms. Although from a machine learning perspective this

is undesired, we believe this feature can be useful for

detecting problems with the ontology itself, as it should

not be assumed that either MFO or BPO are error free and

complete. It should be pointed out that this inconsistency

is also a drawback of one-versus-all methods.

Currently, it is believed that the most accurate compu-

tational models for sequence-based function prediction

are GOtcha-based unsupervised algorithms.47,61,62 While

these models are very good in their performance, we show

that supervised methods outperform them on the same

data. One drawback, however, is that supervised methods

are limited to only functional terms that are associated

with a sufficient number of sequences. Therefore, a func-

tion prediction task may be well suited for the methods

combining supervised (for terms where enough proteins

are available) and unsupervised (when only a small num-

ber of sequences are available) approaches. Finally, it

should be kept in mind that a separate category of de novo

prediction methods is needed for proteins with novel or

organism-specific functions. Such algorithms, however, are

beyond the scope of this work.

METHODS

Problem formulation

We consider a set of protein sequences S 5 {s1, s2, . . .,
sm}, a set of protein molecular function terms F 5 {f1,

f2, . . ., f|F|} and a set of biological process terms P 5 {p1,

p2, . . ., p|P|}, where each sequence in S is annotated by at

least one element from F or P. Additionally, each func-

tion f [ F and process p [ P is associated with at least

one sequence from S. Our objective is to construct a clas-

sification model which, given an amino acid sequence s [
S, assigns posterior probability that the sequence has the

ability to carry out each particular function from F or is

involved in each particular biological process in P. Simi-

larly, given a functional term f, or a biological process p,

our objective is to find the most likely sequences associ-

ated with that function or process.

Datasets

We used the Swiss-Prot database9 from May 2010

(v.15.15). A dataset DMFO of 26,707 protein sequences
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was generated by selecting sequences with molecular func-

tions that were supported by at least one of the following

experimental evidence codes: EXP, IDA, IPI, IMP, IGI, IEP,

TAS, IC. The 26,707 sequences in DMFO consisted of a total

of 4276 molecular function terms associated with them.

Similarly, a separate set DBPO consisting of 29,118 sequen-

ces with a total of 11,300 associated biological process

terms was generated using the same criterion. We note that

|DMFO \ DBPO| 5 19,240 and |DMFO | DBPO|5 36,585.

To arrive at the final datasets, 1429 proteins with

known function in Swiss-Prot v15.15 were removed.

Such sequences were either shorter than 50 amino acids

or were associated with the same gene name as some

other protein in the same organisms. Datasets are sum-

marized in Table I.

Data representation

Sequence alignments were used to represent each pro-

tein sequence as a fixed-length vector in a feature space.

Each dimension in the feature space was selected to corre-

spond to one term from a set of available functional terms

F (or P for the BPO). Although we tested several ways of

encoding alignment data into features, we found that

using i-scores, as proposed by the GOtcha algorithm,17 as

features worked the best. For the completeness of this

work, we briefly summarize this representation.

First, let e(s, si) be the E-value obtained by aligning tar-

get sequence s to the ith sequence in database of proteins

with experimentally determined functions, that is, si [ S.

The r-score for functional term f is then generated as

rf ðsÞ ¼ �
X

si2Sf
logðeðs; siÞÞ þ c

where Sf is a subset of S containing all proteins with

functional term f and c is a constant value added to the

sum to ensure non-negative r scores (here we used c 5 2

and e-value threshold of 10). The i-scores for each func-

tion were then calculated by normalizing rf by the r score

of the root node in a given ontology (term froot [ F) as

if ¼ rf =rroot

Finally, a feature vector is obtained by concatenating

i-scores for each of the |F| functional terms. We note that

the i-score for the root term always equals 1; thus, it was

excluded from the vector representation. For the MFO,

the i-score vector representation consists of |F| dimen-

sions, while for the BPO, the i-score representation con-

sists of |P| dimensions. These features were used for the

basic version of FANN-GO.

To take advantage of the fact that the quality of trans-

ferring functions from sequences within the same species

was higher than that achieved when transferring func-

tions only from sequences in different species, we made

two additional sets of i-score features, one based on the

i-scores using the proteins from the same species and

another using the i-scores from the proteins from differ-

ent species only. These features were used for the version

of the predictor referred to FANN-GOspecies.

Classification models

To address the multilabel classification problem of pro-

tein function, we used a multioutput feed-forward neural

network framework. Multioutput networks have the abil-

ity to simultaneously learn multiple dependent target

variables, a property that is well suited to the problem of

predicting mutually nonexclusive terms of protein func-

tion ontologies.

Before training a multioutput neural network, we per-

formed several data preprocessing steps. All features were

first normalized using the z-score method. Feature selec-

tion filtering was then performed by using the t-test.

Finally, principal component analysis was performed to

combine highly correlated features (retained variance 5
99%).

Owing to the high-memory requirement of a multi-

output neural network, it was not practically possible to

train a model with 1000 outputs or more, on a dataset of

size |DMFO| or |DBPO|. To overcome this limitation, we

created ensembles of 100 networks such that in each net-

work only 100 randomly selected outputs were consid-

ered. Prediction values for a test sequence for a particular

function were finally calculated as an average over the

output scores generated from the subset of networks that

included the given term in their output layers. All neural

networks had 100 hidden neurons, using the resilient

propagation algorithm63 in training (with at most 1000

epochs). The networks were implemented using Matlab.

Model selection and evaluation

The accuracy of the model was estimated using 10-fold

cross-validation. Parameter selection for each neural net-

work was performed on a separate validation set, such

that only the best performing parameter set was used on

Table I
The Number of Proteins in Each Dataset with the Breakdown

According to Species

MFO BPO

H. sapiens 7253 6515
S. cerevisiae 4062 4071
M. musculus 3945 4672
R. norvegicus 2624 2696
A. thaliana 2042 2813
D. melanogaster 1627 1591
E. coli K-12 1498 1009
S. pombe 1079 1935
C. elegans 569 1599
All other 2008 2217
Total 26,707 29,118
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the test partition. Furthermore, separate sets of features

were generated for each fold using only alignments with

sequences in the training portion of the data. An individ-

ual BLAST database was built for each fold’s set of train-

ing sequences to ensure that alignment e-values were not

influenced by sequences in the test portion of the data.

All methods were evaluated by plotting precision–recall

curves. FANN-GO was evaluated against three different

strategies. The global-SID and local-SID strategies repre-

sent transfer by sequence similarity in which each predic-

tion was generated by transferring functional terms

directly from sequences with SID to the query sequence

greater than the threshold. In addition, the performance

of FANN was compared to the GOtcha classifier17 as

well as the naı̈ve classifier. The naı̈ve classifier predicts

the terms according to their descending prior probabil-

ities in the training data, that is, the term occurring in

75% of training sequences will be predicted with score

0.75 for all target proteins.

Precision–recall curves were generated as follows. For

each query sequence, a set of predictions over all |F|

functions was generated. A decision threshold t value

above which all predictions were taken was incrementally

reduced from 1 to 0, in steps of 0.01. Terms with predic-

tion scores above a particular threshold ti were selected,

and each term was propagated towards the root of the

ontology. This resulted in a set of predicted terms Tp.

The precision (pr) and recall (rc) between the predicted

terms Tp and true terms Tt associated with sequence s

were then calculated as pr 5 |Tp | Tt|\|Tp| and rc 5 |Tp

| Tt|\|Tt|. The final precision and recall were averaged

over all test sequences to create a point in the precision–

recall space.
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