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1 Protein function prediction scenarios

In protein function prediction, there are two scenarios in which a computational model can be constructed
and evaluated [Radivojac et al., 2013]: (i) given a new protein, the task of a classifier is to find all functional
terms that the protein is associated with (“what is the function of this protein?”); and (ii) given a functional
term, the task of a classifier is to find all proteins associated with this term (“what are the proteins associated
with this function?”). Undoubtably, the two prediction scenarios are related because a perfect (or optimal
in the statistical sense) predictor of protein function would solve both questions at the same time. However,
imperfect predictors may address one question better than the other. For example, a classifier built to
address the first question is expected to be accurate in predicting all (or many) functional terms and that
prediction scores over all functional terms are comparable. On the other hand, a predictor developed to
consider only one functional term at a time need not consider any other term. Such models can perform
well even if they just rank all test proteins. In addition to these differences, the two types of models are
evaluated in different ways (yet they use the same terminology).

The models that are concerned with predicting function on a previously unseen protein (scenario 1, above)
need to devise evaluation metrics to estimate the expected accuracy of a predicted consistent graph P when
the experimental (true) annotation of the protein is graph T . Alternatively, the models that are concerned
with ranking the proteins according to their likelihood to be associated with a particular functional term
v (scenario 2, above) need to be evaluated based on the expectation that a particular protein is associated
with a functional term v. Here, the models are usually evaluated for each functional term v, one at a
time. Evaluation metrics corresponding to the former problem are significantly more challenging than the
metrics corresponding to the latter problem. In the latter case, one can simply consider a particular decision
threshold for predicting whether a protein is associated with function v and then calculate the fraction of
positive predictions that are correct (precision) as well as the fraction of proteins known to be associated
with functional term v that have been retrieved (recall). Such evaluation has been discussed by Sharan et al.
[2007], among others. Calculating precision and recall for the former scenario is the topic of our study.

2 Supplementary evaluation metrics

When calculating remaining uncertainty, misinformation, precision and recall in the manuscript, only con-
sistent subgraphs of the Gene Ontology were considered. Under this framework, if a protein is annotated
with multiple terms (either experimentally determined or predicted), as in Figure 2 in the main document,
we determine consistent graphs T (true) or P (predicted) by recursively propagating annotations towards
the root(s) of the ontology and taking a union of all terms encountered along the way. In each of these mea-
sures, it is sufficient to only consider vertices (terms) in the annotation graphs and calculate the similarity
measure by manipulating vertices in an additive fashion. For example, each vertex in T or P counts equally
in the precision/recall-based evaluation while the information accretion is used to weight the vertices in the
ru-mi-based evaluation.

A distinctly different approach can be taken by considering, on an individual basis, each leaf term that
comprises a set T or P . This is the approach taken to calculate various information-theoretic metrics [Resnik,
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1995, Jiang and Conrath, 1997, Lin, 1998, Lord et al., 2003, Schlicker et al., 2006] as well as to provide an
alternative definition of precision and recall [Verspoor et al., 2006]. In this context the sets of leaf terms that
define T and P (which we refer to as L(T ) and L(P ) respectively, and formally introduce below) are used
to calculate a given metric. After calculating all pairwise metrics between the leaf terms, several different
methods for averaging these scores can be applied to create a single similarity (or distance) value between
T and P . We discuss these approaches in the following sections.

2.1 Basic definitions

Suppose we are given an ontology in the form of directed acyclic graph G = (V,E), where V is a set of
vertices and E ⊂ V ×V is the set of edges. In this graph, given an edge (u, v) ∈ E, we refer to vertex u as a
parent of v and, alternatively, to vertex v as a child of u. We also consider a set of all ancestors of v, A(v),
and find this set by recursively identifying parents of all discovered nodes starting with v until the root(s) of
the ontology is (are) reached. For mathematical convenience, we consider vertex v to be a member of A(v).
Finally, given two vertices u and v, we define a set of common ancestor nodes between these two vertices as
A(u, v). Thus, A(u, v) = A(u) ∩ A(v).

Consider now a consistent annotation graph T , where the set of vertices in T is a subset of vertices in G.
We define L(T ), or the set of leaf terms represented by T , as

L(T ) = {u : u ∈ T ∧ ¬∃((u, v) ∈ E ∧ v ∈ T )}. (1)

In other words, L(T ) contains only those vertices (terms) from T that do not have children in T . Thus,
the leaf terms are defined with respect to a particular annotation graph T and generally differ from the leaf
nodes in the ontology.

2.2 Information-theoretic metrics between pairs of vertices

When calculating the information-theoretic metrics of Resnik [1995], Jiang and Conrath [1997], Lin [1998],
Lord et al. [2003], and Schlicker et al. [2006], we calculate the information content of an individual term
v ∈ V as

i(v) = log
1

Pr(v)
(2)

where Pr(v) can be calculated as the relative frequency of term v among experimentally annotated proteins.
The similarity between two distinct terms u and v as defined by Resnik [1995] was calculated as

sR(u, v) = max
w∈A(u,v)

{i(w)}, (3)

where A(u, v), as mentioned above, defines the set of common ancestors of terms u and v. Similarity as
defined by Lin [1998] was calculated as

s(u, v) =
sR(u, v)

i(u) + i(v)
, (4)

and as defined by Schlicker et al. [2006] as

s(u, v) =
sR(u, v)

i(u) + i(v)
· (1− min

w∈A(u,v)
{Pr(w)}). (5)

Finally, the distance metric defined by Jiang and Conrath [1997] was calculated as

d(u, v) = i(u) + i(v)− 2 · sR(u, v). (6)

2



2.3 Evaluation metrics between pairs of gaphs

Since the above metrics are only defined for two distinct terms, it is necessary to provide a mechanism to
utilize these metrics in instances where a protein is annotated with graphs containing multiple leaf terms.
Given two non-empty consistent annotation graphs of true and predicted terms, T and P , and the sets of leaf
terms that define them, L(T ) and L(P ), we employed two strategies for averaging. In the first case values
were averaged between all possible pairs of terms in L(T ) and L(P ). Specifically, we calculated s(T, P ) as

s(T, P ) =
1

|L(T )| · |L(P )|
∑

t∈L(T )

∑
p∈L(P )

s(t, p). (7)

We refer to this form of averaging as all-pair averaging. This method of averaging was applied by Lord et al.
[2003] in calculating similarity between two functional annotations.

In the second case we calculated the similarity between the two sets as the average of the maximum
similarity between a term from one set and all terms in the other. Specifically, we calculated s(T, P ) as

s(T, P ) =
1

2|L(T )|
∑

t∈L(T )

max
p∈L(P )

{s(t, p)}+
1

2|L(P )|
∑

p∈L(P )

max
t∈L(T )

{s(t, p)}. (8)

This measure represents the technique of averaging employed by Verspoor et al. [2006] when calculating
precision and recall (originally referred to as hierarchical precision and recall). There, the authors separately
calculate precision as

pr(T, P ) =
1

|L(P )|
∑

p∈L(P )

max
t∈L(T )

|A(t, p)|
|A(p)|

(9)

and recall as

rc(T, P ) =
1

|L(T )|
∑

t∈L(T )

max
p∈L(P )

|A(t, p)|
|A(t)|

. (10)

We refer to this method of averaging as max-average. Although not implemented here, Schlicker et al. [2006]
employ a technique for averaging that is similar to Eq. 8, but takes the maximum average similarity for one
set as opposed to the average between the two. Specifically,

s(T, P ) = max

 1

|L(T )|
∑

t∈L(T )

max
p∈L(P )

{s(t, p)}, 1

|L(P )|
∑

p∈L(P )

max
t∈L(T )

{s(t, p)}

 (11)

When averaging pairwise comparisons for distance metrics, the above averages are calculated as the average
of minimum pairwise distances instead of maximum pairwise similarities.

2.4 Additional topological metrics

In addition to information-theoretic metrics, we also used Jaccard’s similarity coefficient when calculating
the similarity between the two consistent annotation graphs T and P . The Jaccard similarity coefficient is
defined as

s(T, P ) =
|T ∩ P |
|T ∪ P |

. (12)

We note that cosine similarity as well as Maryland bridge coefficient [Glazko et al., 2005] usually result in
values correlated with the Jaccard similarity coefficient. For that reason, these two similarity measures were
not presented.
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3 Supplementary Results

This section presents results of several additional experiments that may be useful for better understanding
and interpretation of the results from the main manuscript.

Two-dimensional plots of various similarity and distance metrics are presented in Supplementary Figure 1
and Supplementary Figure 2, for all-pair and max-average methods of averaging, respectively. It is important
to mention that in a direct application of Resnik’s similarity function, we refer to it as Lord in Supplementary
Figure 1 (all-pair averaging) and as Resnik in Supplementary Figure 2 (max-average method of averaging).
This is because, to the best of our knowledge, in the context of comparing functional annotations of proteins
the all-pair averaging was first proposed by Lord et al. [2003].
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Supplementary Figure 1: Two-dimensional evaluation plots of information content-based metric perfor-
mances when using the all-pair method of averaging. Yellow dots denote the maximum similarity or, in the
case of Jiang and Conrath [1997], the minimum distance, that each method obtains.

In Supplementary Figure 3 we contrast two different types of precision-recall curves. In the top row,
we present the same results as in Figure 3 of the main manuscript. In the bottom row, we use precision-
recall calculations according to Verspoor et al. [2006]. The methods provided similar results although the
max-average formulation had generally larger values of Fmax than the standard formulation of precision and
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Supplementary Figure 2: Two-dimensional evaluation plots of information content-based metric perfor-
mances when using the max-average method of averaging. Yellow dots denote the maximum similarity or,
in the case of Jiang and Conrath [1997], the minimum distance, that each method obtains.

recall (as defined in the main manuscript). However, these larger values of Fmax occurred at lower decision
thresholds.

In Supplementary Figure 4, we present more detailed results related to the ru-mi curves presented in
Figure 3 of the main manuscript. In the top row, we show the same ru-mi curves as in the main manuscript,
with yellow dots providing information where the maximum values of semantic distance S2 were reached
for each method. Interestingly, because the predictors generally associate scores to all nodes in the Gene
Ontology, the amount of over-prediction can be very large for low decision thresholds, which consequently
results in large values of misinformation. To provide better insight into the balance between remaining
uncertainty and misinformation achieved by the semantic distance S2, in the bottom row we present the
same curves for small values of misinformation only.

Finally, in Supplementary Table 1, we provide results analogous to those from Table 1 in the main
manuscript, but using max-average method instead of all-pair averaging. We generally observe similar
trends as before, but note that the values of BLAST thresholds used for functional transfer are even lower
than when all-pair averaging was used (except for the measure by Jiang and Conrath 1997, where max-

5



B. Precision/Recall (max-average)

A. Precision/Recall
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Supplementary Figure 3: Plots showing results using the standard method of calculating precision and
recall (top row) compared to using the max-average method of calculating precision and recall as detailed
by Verspoor et al. [2006] (bottom row). Yellow dots denote the values of precision and recall at which each
method obtains its Fmax value.

average method seems to be beneficial). Therefore, we believe that, generally, all-pair averaging provides
better results regarding functional similarity than does max-average.
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Supplementary Figure 4: Figures showing the remaining uncertainty and misinformation of baseline methods
with yellow dots denoting values at which each method obtains its S2 value. For better interpretation of the
values at which each method achieves its S2 value the bottom row of figures show the same plots as the top
row, but with adjusted y-axis limits.
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Supplementary Table 1: Performance of information-theoretic methods when calculating performance as the
average of maximum similarity (or distance) between each true and predicted term as described in Section
2.3. The Fmax values were calculated using the precision and recall according to Verspoor et al. [2006]. As
in Table 1 of the main manuscript, the decision threshold was varied across the entire range of predictions
to obtain the maximum or minimum value (shown in column 1) for each method. The threshold at which
each method reached the best value is shown in column 2. Columns 3 and 4 show the remaining uncertainty
and misinformation calculated according to the Bayesian network. Each semantic similarity metric was
calculated according to the relative frequencies of observing each term in the database.

Molecular Function Biological Process Cellular Component
Resnik Max Threshold RU MI Max Threshold RU MI Max Threshold RU MI

GOtcha 3.65 0.04 2.96 32.17 4.02 0.01 10.19 273.90 2.80 0.01 2.70 59.02
BLAST 3.41 0.17 2.17 151.77 4.03 0.16 8.48 566.88 2.77 0.19 2.26 119.34
Naive 2.02 0.01 5.07 177.91 3.22 0.01 10.35 504.88 2.32 0.01 2.65 135.04

Lin Max Threshold RU MI Max Threshold RU MI Max Threshold RU MI
GOtcha 0.58 0.31 5.32 5.86 0.46 0.02 11.10 192.89 0.52 0.31 5.55 5.58
BLAST 0.43 0.31 2.90 90.72 0.45 0.16 8.48 566.88 0.46 0.19 2.26 119.34
Naive 0.42 0.30 10.39 0.21 0.46 0.01 10.35 504.88 0.43 0.03 3.90 56.83

Jiang Min Threshold RU MI Min Threshold RU MI Min Threshold RU MI
GOtcha 4.65 0.44 6.18 3.56 7.39 0.60 26.65 5.30 4.19 0.63 7.45 1.80
BLAST 5.38 0.61 6.97 7.58 7.75 1.00 31.31 1.40 4.67 0.67 7.84 5.13
Naive 5.61 0.30 10.39 0.21 7.41 0.23 27.73 8.49 4.45 0.22 8.17 3.25

Schlicker Max Threshold RU MI Max Threshold RU MI Max Threshold RU MI
GOtcha 0.42 0.20 4.56 9.32 0.44 0.02 11.10 192.89 0.42 0.14 4.29 12.76
BLAST 0.36 0.17 2.17 151.77 0.43 0.16 8.48 566.88 0.39 0.19 2.26 119.34
Naive 0.27 0.01 5.07 177.91 0.43 0.01 10.35 504.88 0.36 0.01 2.65 135.04

Fmax Max Threshold RU MI Max Threshold RU MI Max Threshold RU MI
GOtcha 0.76 0.33 5.45 5.41 0.54 0.23 19.79 26.04 0.76 0.31 5.55 5.58
BLAST 0.70 0.44 4.83 25.39 0.54 0.46 18.06 108.73 0.71 0.37 4.23 41.17
Naive 0.64 0.29 9.87 1.44 0.47 0.07 22.06 51.55 0.70 0.20 7.23 6.75
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