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The accurate interpretation of genetic variants is essential for clinical actionability. How-
ever, a majority of variants remain of uncertain significance. Multiplexed assays of variant
effects (MAVEs), can help provide functional evidence for variants of uncertain significance
(VUS) at the scale of entire genes. Although the systematic prioritization of genes for such
assays has been of great interest from the clinical perspective, existing strategies have rarely
emphasized this motivation. Here, we propose three objectives for quantifying the impor-
tance of genes each satisfying a specific clinical goal: (1) Movability scores to prioritize
genes with the most VUS moving to non-VUS categories, (2) Correction scores to prioritize
genes with the most pathogenic and/or benign variants that could be reclassified, and (3)
Uncertainty scores to prioritize genes with VUS for which variant pathogenicity predictors
used in clinical classification exhibit the greatest uncertainty. We demonstrate that exist-
ing approaches are sub-optimal when considering these explicit clinical objectives. We also
propose a combined weighted score that optimizes the three objectives simultaneously and
finds optimal weights to improve over existing approaches. Our strategy generally results
in better performance than existing knowledge-driven and data-driven strategies and yields
gene sets that are clinically relevant. Our work has implications for systematic efforts that
aim to iterate between predictor development, experimentation and translation to the clinic.

Keywords: Multiplexed Assays of Variant Effect; MAVE; clinical variant classification; vari-
ant pathogenicity prediction, gene prioritization.

1. Introduction

The American College of Medical Genetics and Genomics (ACMG) and the Association for
Molecular Pathology (AMP) have developed guidelines to standardize the practice of clin-
ical variant classification and interpretation.1 These guidelines group the disparate sources
of information about a genetic variant into different lines of evidence, weigh them in terms
of evidential strength, and provide rules to combine these differently weighted lines of evi-
dence to assign a variant to one of five classes: pathogenic, likely pathogenic, benign, likely
benign or a variant of uncertain significance (VUS). Despite the tremendous progress that
the ACMG/AMP guidelines have brought about, a substantial number of variants, particu-
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larly missense, remain VUS due to the limited availability of evidence.2 Furthermore, variants
assigned to the remaining four classes are often reclassified due to initial misclassification.3

Among the evidential lines, functional evidence derived from in vitro assays holds the po-
tential to address aforementioned challenges, as they are weighted highly in the ACMG/AMP
guidelines. In particular, multiplexed assays of variant effects (MAVEs) can query the func-
tional impact of all possible amino acid substitutions at every position in a protein within a
single assay, allowing for the construction of a variant effect map for all missense variants for
a gene.4,5 However, only a limited number of genes have been assayed with the explicit intent
of addressing the goal of clinical variant interpretation.

Historically, the selection of genes for MAVEs and functional characterization has been
driven by study-specific motivations, including the study of sequence-structure-function rela-
tionships,6 the characterization of biologically or medically important genes7 and the develop-
ment of new technology.8 This is typically done on the basis of prior knowledge and expertise
and is likely to recapitulate preferences for well-studied genes.9 With the accumulation of
large numbers of clinically interpreted variants in knowledgebases such as ClinVar,10 it is now
feasible to devise data-driven strategies to more directly address clinical objectives when pri-
oritizing genes for MAVEs. To date, only one study has sought to systematically prioritize
genes explicitly for clinical decision-making.2 This study proposed a difficulty-adjusted impact
score (DAIS) that accounted for the number of VUS in each gene, after adjusting for gene
length, and up-weighted those that appeared in multiple patients and for which classifications
were most likely to be impacted upon adding new functional evidence.

To the best of our knowledge, none of these strategies have incorporated computational
predictors of variant pathogenicity. Variant pathogenicity predictors assign scores to each
variant indicative of their pathogenicity based on different features such as sequence context,
evolutionary history, protein structure and function, among others.11 Recent work has sug-
gested that at appropriate score thresholds, some predictors can provide strong evidence for
both pathogenicity and benignity as per the ACMG/AMP guidelines.12 This motivates an
alternative strategy that uses computational variant pathogenicity predictors to guide the se-
lection of genes for MAVEs such that when functional and predictive evidence are combined,
they will be of sufficient strength to impact the overall clinical classifications of a large set of
variants across different genes.

Here, we define three objectives for gene prioritization for MAVEs that improve clinical
variant classification and operationalize these objectives through the use of variant pathogenic-
ity predictors. We formalize the process of prioritizing genes for MAVEs solely from the
perspective of clinical variant classification and define three objectives (two direct and one
indirect) that are desirable in this context. The first two were devised to (1) move the most
VUS towards more definitive classifications of pathogenicity or benignity, and (2) reassess and
possibly correct existing classifications of the highest numbers of pathogenic and/or benign
variants. The third objective emphasizes the use of MAVEs as a means to improve pathogenic-
ity predictors themselves, which in turn, when combined with MAVE data can reclassify VUS.
We then quantify to what extent the genes that have already been assayed in the literature
or are registered to be assayed by MAVEs fulfill these objectives, along with other poten-
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tial strategies that one could adopt. Finally, we present and evaluate alternative strategies to
prioritize genes such that these objectives are optimized individually and when combined.

2. Methods

2.1. Data collection

ClinVar variants. We extracted all missense variants in ClinVar (October 2021) and sepa-
rated them by the category of clinical significance: Pathogenic (P), Likely Pathogenic (LP),
Benign (B), Likely Benign (LB), variants of uncertain significance (VUS), and variants with
conflicting interpretations of pathogenicity for each gene. The ClinVar data set contained
11,281 genes with 402,721 missense variants (Supp. Table 1).
gnomAD variants. VUS in ClinVar are likely to accumulate in a biased manner due to
differences in the frequency with which different genes are tested. At the gene-level, variants
in population-scale sequencing resources such as gnomAD accumulate in a less biased manner
as all genes are likely to be uniformly sampled. To this end, we extracted missense variants
from gnomAD (v2.1.1 GRCh38 dataset) as an additional set of variants that are not annotated
as P, LP, B or LB.13 Only variants with genotype quality (GQ) ≥ 20 and depth (DP) ≥ 10
were retained. We identified 17,988 genes that had 4,542,252 missense variants.
Genes with MAVEs. We extracted genes from three resources: MaveDB,14 VariantEffect
(https://github.com/VariantEffect/MaveReferences), and MaveRegistry,15 to create a
representative set of genes with functional data. The first two record and maintain information
on which genes have been subject to MAVEs either by submission to the resource or by
reviewing the literature. MaveRegistry hosts information on which genes are currently being
assayed or are expected to be assayed in the near future. After accounting for overlaps between
these resources, we were left with a set of 94 assayed genes.

2.2. Data pre-processing

We treated P, LP, and P/LP as a single pathogenic category; B, LB, and B/LB as a single
benign category; VUS and conflicting interpretations of pathogenicity as the VUS category.
Motivated by the clinical objectives that we define in Section 2.4, we only retained genes that
had at least one VUS and at least one pathogenic or benign variant in the ClinVar data set,
reducing our data set to 3,981 genes. Considering the increased difficulty in mapping variant
effects for longer proteins, we removed genes that were longer than genes previously assayed
by MAVEs. We also removed genes that were shorter than those previously assayed because
these genes may have had too few known variants to justify prioritization for MAVEs. Only
genes that appeared in both ClinVar and gnomAD were considered and variants that were
recorded in both databases were removed from gnomAD data so as to avoid double-counting
when scoring. The set of genes remaining after these pre-processing steps (3,829 genes with
321,619 VUS/P/B variants and 1,161,072 gnomAD variants) served as our starting gene set.

2.3. Obtaining calibrated REVEL scores

REVEL is a meta-predictor that combines scores from multiple pathogenicity predictors and
has been shown to perform well for clinical variant interpretation.11 For each variant in all
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data sets, we extracted REVEL scores by mapping the chromosomal position and amino
acid alteration to REVEL’s prediction tables.11 However, REVEL scores themselves are not
calibrated for clinical use and our formulations for clinical objectives require that prediction
scores best approximate the posterior probability of pathogenicity/benignity (Section 2.4).
Therefore, we obtained a mapping of all possible REVEL scores to local posterior probability
of pathogenicity and benignity from Pejaver et al .12 We then recorded these local posterior
probabilities for all variants in this study and used them in all analyses.

2.4. Gene prioritization objectives: a clinical perspective

From a clinical perspective, the overall goal of gene prioritization is to make definitive and
accurate classifications for more variants appearing in patient populations, when combining
new functional evidence and existing evidence. This includes: (1) assisting the movement
of VUS to pathogenic and benign classes, (2) correcting for errors in current pathogenic
and benign classifications and (3) improving predictors to assist clinical decision making. To
operationalize these objectives we rely on pathogenicity predictions from REVEL for variants
in ClinVar and gnomAD over a subset of ClinVar genes. While ClinVar variants are the most
relevant to the clinical goal, we include gnomAD variants to account for biases in ClinVar
VUS annotations that arise out of the preferential testing of some genes over others. We refer
to this combined set of ClinVar VUS and gnomAD variants as the unlabeled set of variants.

Let G be a subset of ClinVar genes filtered based on constraints related to assay feasibility
and other attributes of interest (Sections 2.1, 2.2). For a gene g ∈ G, let P(g), B(g) be the
set of variants in g annotated as P/LP and B/LB in ClinVar, respectively. Let U(g) be the
unlabeled set of variants, i.e., the combined set of ClinVar VUS and gnomAD variants for gene
g. For a variant v, let ρ(v) be a variant’s probability of pathogenicity, estimated by explicitly
calibrating a predictor’s pathogenicity scores on a set of pathogenic and benign variants,
i.e., ρ(v) = p(v is pathogenic| REVEL(v)) (Section 2.3). We then define three prioritization
objectives, each serving different purposes in relation to our overall goal.

(a) Movability. We define movability as the ‘movement’ of a variant from a VUS annotation to
a non-VUS (P, LP, B, LB) annotation when additional functional evidence is collected. This
is similar to a previous definition2 but allows for the incorporation of prediction outputs
more explicitly towards the reduction of VUS annotations. To have maximal impact on
the reclassification of VUS, we aim to prioritize genes that contain the highest expected
number of movable variants, i.e., the expected number of pathogenic/benign variants among
a gene’s unlabeled variants. Since annotating new pathogenic variants and new benign ones
have different benefits, we propose two movability scores for each gene: the movability-to-P
score and the movability-to-B score, and calculate them as follows:

MoveP (g) =
∑

v∈U(g)

ρ(v) and MoveB(g) =
∑

v∈U(g)

1− ρ(v)

Optimizing this objective can also benefit the objective of improving predictors (see below),
as it is expected to increase the number of P/LP and B/LB variants available for training.

(b) Correction. We define the ‘correction’ of a variant’s clinical annotation as the update
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of an existing P/LP classification to B/LB/VUS or of an existing B/LB classification to
P/LP/VUS, when additional functional evidence is collected. To have maximal impact on
pathogenic or benign variants that may be currently misclassified, we want to prioritize
those genes that contain the highest expected number of variants whose clinical classifica-
tion ought to be corrected, i.e., the expected number of pathogenic (benign) variants among
a gene’s variants annotated as benign (pathogenic). Again, since there are differences in
importance between correcting misclassifications of pathogenic variants and benign ones,
we propose two correction scores for each gene: the correction-of-P score and the correction-
of-B score, and calculate them as follows:

CorrectP (g) =
∑

v∈P(g)

1− ρ(v) and CorrectB(g) =
∑

v∈B(g)

ρ(v)

(c) Predictor improvement. Though not obvious, increasing the number of VUS with more
certain predictions towards benignity or pathogenicity has a significant role to play in
moving more VUS to a non-VUS (P, LP, B, LB) annotation. If the improvement in the
prediction of a VUS is large enough, it may directly provide an additional line of evidence
that may be enough to push it to a non-VUS annotation. Furthermore, an improved predic-
tion on variants from the same gene, might make the gene more likely to be assayed by an
experimentalist motivated by the movability objective defined above. The new functional
evidence thus obtained would help its movement to a non-VUS annotation.

In order to increase the number of VUS with more certain predictions, the predictors
themselves ought to be improved. To that end, we intend to generate more functional
evidence for unlabeled variants (VUS and gnomAD variants) with uncertain predictions
and we prioritize genes with high average uncertainty over their unlabeled variant set.
The new functional evidence accrued on these variants would help improve the predictors,
either by incorporating it as a feature while training a pathogenicity predictor or via transfer
learning from function to disease domain. Note that the improvement in the predictor thus
obtained is not restricted to the assayed variants, but also to other variants due to the
predictor’s generalization capabilities. Inspired by the entropy-based uncertainty sampling
approach in the active learning literature,16 we prioritize genes for predictor improvement
based on the average entropy of prediction on a gene’s unlabeled variants. Intuitively,
the criterion prioritizes genes having a higher fraction of unlabeled variants with calibrated
pathogenicity score close to 0.5. Formally, we define the average entropy of a gene, adjusted
for the number of unlabeled variants, as

Entropyadj(g) =
∑

v∈U(g)

−ρ(v) log2 ρ(v)− (1− ρ(v)) log2(1− ρ(v))

|U(g)|

(
1 + λ

log2 |U(g)|
log2 |maxh∈GU(h)|

)

In this expression, the term
(
1 + λ log2 |U(g)|

log2 |maxh∈GU(h)|

)
, with λ ∈ [0, 1], serves as an adjustment

factor that prevents genes with very small number of unlabeled variants from being pri-
oritized. The log scale gives genes with many unlabeled variants only a small advantage.
The hyperparameter λ can be further used to moderate the advantage given to genes with
a large number of unlabeled variants. In this work, we choose λ = 1.
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2.5. Gene prioritization strategies and their comparison

There are several possible strategies to prioritize genes for high-throughput functional assays.
We describe a diverse set of prioritization strategies below.

(1) Knowledge- or expert-driven. The set of 94 assayed genes described in Section 2.1
serve as an appropriate proxy for expert-driven gene prioritization. After applying the
pre-processing steps described in Section 2.2, we were left with a set of 68 genes. This
set is referred to as the assayed set. In addition, we simulated knowledge-driven se-
lection in a simple manner by prioritizing genes in terms of the collective knowledge
that we have about them. Here, we used publication counts as reported by PubMed (
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz) in July 2022. We refer
to this gene set as the highest publications set.

(2) Data-driven. In this strategy, knowledgebases such as ClinVar are explicitly queried
and genes are prioritized based on the numbers of variants of interest observed in them.
For instance, genes with a high number of VUS are of particular interest because of the
challenges in classifying such variants. We constructed a gene set ranked by the highest
number of unlabeled variants (VUS and gnomAD). We refer to this gene set as the highest
unlabeled variants set. Similarly, one may be interested in genes with the most number
of VUS along with P/LP variants. We also constructed a gene set ranked by the highest
total of VUS and P/LP. We refer to this gene set as the highest non-benign variants set.

Previous work introduced two sophisticated strategies to prioritize genes for MAVEs
in addition to the number of ClinVar VUS in a gene.2 The movability- and reappearance-
weighted impact score (MARWIS) incorporated patient data from Invitae to define vari-
ants’ movability and reappearance and give extra weight for reappearing and movable
VUS. The other score, difficulty-adjusted impact score (DAIS) was a specialized version of
MARWIS that was adjusted for protein length. DAIS was deemed to be better-performing
in practice and a set of 100 genes with the highest DAIS was made available to the commu-
nity. After applying the pre-processing steps in Section 2.2 to this set, 94 genes remained.
We refer to this gene set as the DAIS set.

(3) Single score optimization. We constructed five gene sets by directly optimizing the
five scores, derived to increase movability, correction and predictor improvement (Section
2.6). For each score, we picked the top-K genes to create a gene set of length K. We refer
to the resulting five gene sets as the highest movability-to-P, the highest movability-to-B,
highest correction-of-P, highest correction-of-B and the highest uncertainty sets. As these
gene sets represent the best selection for their corresponding score, no other gene set can
be better w.r.t. that score.

(4) Multiple score optimization. In order to obtain a single gene set that improves on
all three objectives simultaneously, we implemented an approach to optimize a weighted
combination of the five scores. The weights are learnt to incentivize improvement over the
assayed gene set on all five scores (Section 2.6). The resultant gene set is referred to as
the combined score set. This gene set makes tradeoffs between the five scores depending
on how well the assayed gene set performs on each score.

(5) Random selection. To create a baseline gene set of length K, we sampled K genes
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randomly from the starting gene set and refer to this gene set as the random set.

We evaluated these different strategies by computing their score distributions in terms of
MoveP (g), MoveB(g), CorrectP (g), CorrectB(g), and Entropyadj(g). Then, we tested whether
the single score optimization strategy was significantly better than all other strategies using
one-sided Wilcoxon rank-sum tests. We also tested whether the multiple score optimization
strategy was better than those that were used to generate the assayed and DAIS gene sets.
To ensure a fair comparison, we only compared gene sets of the same length. Since the assayed
and DAIS are extant gene sets of fixed length, they determined the length constraints on the
remaining gene sets. For comparisons with the assayed set, K was set to 68, and for those
with the DAIS set, K was set to 94.

2.6. Multiple score optimization

Let G be a starting set of genes available to be assayed. Let A ⊆ G (e.g., assayed set) be an
existing gene set of length K, determined to be suitable for assaying based on some criteria.
We present an approach to create a novel gene set optimized to improve over A, w.r.t. the
five scores, derived to increase movability, correction and predictor improvement (Section 2.4).
Let w = [wi]

5
i=1 be a weight vector with five non-negative entries such that

∑5
i=1wi = 1. Let

S1, S2, S3, S4 and S5 be short-hands for MoveP ,MoveB,CorrectP ,CorrectB, and Entropyadj,
respectively. We define the combined weighted score as

Combinedw(g) =
∑5

i=1wiSi(g)

where S(g) denotes a score S(g) after z-score normalization on the entire gene set G. The
normalization ensures that the scores are on the same scale, which in turn allows us to define
an optimization criteria that treats each score equally. It also allows the weights to be on
the same scale, which makes it easier to find a good solution. In order to learn the optimal
w, we first create a sample, W , containing 105 candidate weights from Dirichlet(1, 1, 1, 1, 1), a
uniform distribution over the space of five dimensional probability vectors. For each candidate
w ∈ W , we sort the genes in G in the decreasing order of Combinedw(g). The top K genes are
picked in a candidate gene set OK

w . For a set of numbers X, let Median(X) and Prctile90(X)

denote the median and the 90th percentile of those numbers. For G ⊆ G, let Si(G) denote the
set containing the ith normalized score evaluated on genes in G. If the median or the 90th

percentile of any normalized score on OK
w is less than that on A, then discard w, i.e., for any

i, if Median
(
Si(OK

w )
)
< Median

(
Si(A)

)
or Prctile90

(
Si(OK

w )
)
< Prctile90

(
Si(A)

)
, then discard

w. This ensures that each remaining weight leads to a gene set with higher median and 90th

percentile on each of the five score distributions compared to the A. Let Wgood be the set of
remaining candidate weights. If Wgood ̸= ∅, a w ∈ Wgood is guaranteed to give a better gene set
than A on each of the five scores. In order to select an optimum weight from Wgood, we define
the following optimization criteria to find weights that lead to largest cumulative increase in
the the normalized score medians compared to A:

C(w) =
∑5

i=1

[
Median

(
Si(OK

w )
)
−Median

(
Si(A)

)]
.

The optimum weights are given by wopt = argmaxw∈Wgood
C(w). The corresponding gene set,

OK
wopt

is the optimal gene set, referred to as the combined score set. Note that if a gene set
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of a different size, K1 ̸= K, is needed, the top K1 genes sorted based on Combinedwopt
(g) are

selected. The resultant set is referred to as OK1
wopt

.

2.7. Functional and phenotypic enrichment analyses

To evaluate the biological and clinical relevance of the multiple score optimization strategy,
we ranked all genes by their combined score and conducted a functional enrichment analysis
on the top 100 genes using the g:GOSt function in the gProfiler web-server.17 We used our
starting gene set of 3,829 genes as the background set. Any Gene Ontology (GO) and Human
Phenotype (HP) Ontology terms that were significantly enriched in the top 100 genes, after
correcting for multiple hypothesis testing (P -value < 0.05) were recorded.

3. Results

3.1. Multiple score optimization outperforms knowledge-driven and simple
data-driven strategies

We compared multiple gene sets (see Section 2.5), constructed through diverse prioritization
strategies on the five scores, covering the three clinical objectives: movability, correction and
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Fig. 1. Score distributions 68-gene sets constructed based on seven prioritization strate-
gies. A. Score distribution of movability to pathogenic (left) and benign (right),B. Score distribution
of correction of pathogenic (left) and benign (right) variants, C. Uncertainty score distribution.
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predictor improvement (Figure 1). All the sets in this comparison had 68 genes, to be consistent
with the assayed set. Unsurprisingly, for any given score, the highest single score gene set, being
the best set for the score, outperformed all other gene sets. As expected, the combined score set
performed better than the assayed gene set because it was explicitly constructed to improve
over the assayed set. Overall, the combined score set performed better than all other gene sets
except the respective highest single score sets. There were two exceptions to this. In the case of
movability-to-B score, the combined score set did not perform better than the highest unlabeled
variants and highest non-benign variants gene sets, suggesting that the number of unlabeled
variants may be a strong determinant of movability-to-B due to the high prior probability of
benignity in general. In particular, the scope of improvement in movability-to-B score over
the highest unlabeled variants set is limited as can be observed in comparison to highest
movability-to-B set, the best possible set for that score. Furthermore, among all comparisons
of the combined score where it performs better, it does so with statistical significance, except
in one case: comparison with highest non-benign variants set on movability-to-P score.

The assayed set performed slightly better than random on most scores. Moreover, its
score distributions were far away from that of the corresponding highest single score set.
This suggests that there is a huge scope of improvement on the set of genes currently being
assayed, with respect to clinical objectives. On all score criteria, the performance of the highest
publication set is quite similar to that of the assayed set. This is consistent with the previous
observation that genes with fewer publications are less likely to be functionally tested.9
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Fig. 2. Score distributions for top 94 genes prioritized by our proposed strategies and
by existing data-driven strategies. A. Score distribution of movability to pathogenic (left) and
benign (right), B. Score distribution of correction of pathogenic (left) and benign (right) variants,
C. Uncertainty score distribution. DAIS, 94 genes out of the top 100 genes ranked by the difficulty-
adjusted impact score.2
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3.2. Multiple score optimization outperforms existing clinically motivated
prioritization strategies

We next compared our single and multiple score optimization strategies to a previously pro-
posed strategy that explicitly aimed to improve clinical variant classification, DAIS2 (Figure
2). Since the DAIS set comprised of 94 genes, we considered the top 94 genes with the high-
est single and combined scores. The single and multiple score optimization strategies yielded
statistically significant improvements over DAIS in all situations, with one exception. When
considering the movability-to-B score, the combined score set showed improvement over DAIS,
although not significantly, similar to our observations in Section 3.1.

3.3. Multiple score optimization yields clinically relevant genes

We characterized the properties of the highest-scoring genes in the combined score set and
investigated to what extent our strategy aligned with biomedical interests. Among the top 20
genes, six genes were in our assayed gene set, and 12 genes were also prioritized by DAIS,
albeit with differences in ranking (Table 1). All identified genes generally have a large number
of variants recorded in ClinVar and gnomAD, with the exception of SCN10A, which has no

Table 1. Missense variant counts and scores for the top 20 genes from the combined
score gene set. Similar counts and scores are available for all genes in this study here:
https://igvfgenecard.shinyapps.io/GeneCardApp/ Genes in bold were also present in the as-
sayed set. The Movability and Correction scores are rounded to the closest integer. The Combined
score is given as the weighted sum of the five scores after z-score normalization. The weights for
movability-to-P, movability-to-B, correction-of-P, correction-of-B, and uncertainty were 0.143, 0.160,
0.380, 0.310, and 0.006, respectively.

DAIS
rank

ClinVar Movability Correction Entropy
adjustedRank Gene P/LP B/LB VUS gnomAD Total to P to B of P of B Combined

1 TSC2 32 80 185 2178 273 2716 318 2035 29 17 0.8 13.3
2 BRCA1 10 120 206 2817 160 3303 181 2727 71 11 0.5 10.5
3 LDLR 40 635 62 564 176 1437 155 547 265 4 0.9 10.1
4 FBN1 39 873 17 1338 536 2764 335 1451 257 2 0.9 9.9
5 BRCA2 9 57 236 5453 325 6071 173 5533 37 6 0.3 7.5
6 IDS 1055 120 57 49 125 351 32 134 39 10 0.7 7.0
7 MYH7 2 271 17 1284 297 1869 355 1129 150 2 1.1 6.7
8 SCN1A 66 452 39 670 361 1522 283 683 146 3 1.0 6.6
9 NF1 11 232 19 2750 224 3225 261 2632 162 0 0.5 6.4
10 MSH2 4 73 26 1757 123 1979 369 1409 28 6 1.0 5.9
11 COL4A5 1839 414 87 66 372 939 72 347 80 6 0.7 5.6
12 SCN8A 468 122 44 346 250 762 125 438 43 6 0.9 5.3
13 SCN5A 63 83 33 1058 386 1560 361 998 23 5 1.0 5.3
14 MLH1 8 122 33 1103 80 1338 175 957 62 4 0.8 5.0
15 SCN10A 391 0 55 381 831 1267 226 930 0 6 0.8 4.8
16 FLNA 211 32 85 560 493 1170 150 858 16 6 0.8 4.7
17 CACNA1S 323 12 44 393 777 1226 251 858 3 6 0.9 4.7
18 FBN2 155 33 58 708 1005 1804 300 1331 13 5 0.9 4.6
19 TP53 1 143 76 717 27 963 176 525 54 4 1.0 4.5
20 ABCA4 130 235 17 582 845 1679 252 1110 109 0 0.8 4.3

variants classified as pathogenic or likely pathogenic. In addition, our combined score also
prioritized important genes that may have been overlooked previously. For example, IDS,
which has more than 200 IDS variants were found in Hunter syndrome patients18 was ranked
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6th. COL4A5, with over 400 variants thata cause Alport syndrome, was (ranked 11th). Many
sodium voltage-gated channels (SCN )-related genes were also ranked within the top 20, and
mutations in these genes can lead to channel defects and cause channelopathies.19 Since the
objective of improving predictors may not necessarily yield genes that are clinically relevant,
we systematically explored the functional and phenotypic characteristics associated with the
combined score set. We conducted an enrichment analysis on the top 100 genes ranked by their
combined score and reported significantly enriched GO terms and the 40 most significant HP
terms (Supp. Figure 1A). This top-100 gene set was enriched in many biological processes
such as neuronal action, membrane depolarization, and molecular functions such as multiple
channel activities and transmembrane transporter activity. From the phenotypic perspective,
enriched high-level HP terms included abnormalities of different organ systems such as skin,
gastrointestinal tract, nervous system, among others (Supp. Figure 1B). More specific HP
terms included cardiovascular related disease, limitation of mobility, and stroke, among others.

4. Discussion

Genetic and genomic testing are now routinely used in healthcare systems to provide diagnoses
and infer lifetime risk for disease symptoms, particularly in the identification of hereditary
susceptibility to cancer, metabolic conditions, intellectual and physical developmental disor-
ders, among others. The classification of genetic variants detected in a patient’s gene panel
or genome is a key step in this context. In this regard, our study presented three objectives
that explicitly captured the goal of improving clinical classification of variants and derived
five scores to operationalize them. We derived an optimal gene set for each score and also
derived a combined score gene set by optimizing a weighted combination of the five scores to
explicitly improve over the existing assayed set.

As expected, all single score optimization strategies, led to the best performance on the
corresponding score. More importantly, evaluating the existing approaches relative to the sin-
gle score optimization, demonstrated a considerable performance gap, suggesting a significant
scope of improvement on each objective. Even though our combined score gene set was ob-
tained by optimizing directly over the three objectives relative to the assayed set, its observed
improvement over the assayed and DAIS gene sets on all scores is not entirely obvious due to
the inherent trade-offs between the objectives (movability vs. predictor improvement). This
is a further testament to the scope of simultaneous improvement on all objectives along with
an approach that demonstrably does so.

DAIS, a more sophisticated strategy, presented higher scores in general but did not out-
perform our approach. Unlike DAIS, our approach does not use any proprietary patient data,
but despite this, one-third of our genes overlapped with the DAIS set. Our approach can be
potentially complementary to DAIS, since we accounted for conflicting variants, incorporated
non-VUS and less biased gnomAD variants and focused on correction and predictor improve-
ment as objectives. Another strength of our strategy is its interpretability. The movability
scores and correction scores are interpreted as the expected number of pathogenic or benign
variants, and the uncertainty score as predictive uncertainty. In addition, our approach for
multiple score optimization could be easily extended to incorporate other scores such as DAIS,
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if appropriate data were available, or could directly optimize the combined score to improve
over both the assayed and DAIS sets.

Though our movability objective quantifies the expected number unlabeled variants in a
gene that are pathogenic (or benign), it is possible that after running a given assay the number
of variants moved to the P/LP (B/LB) categories as per the ACMG/AMP guidelines might
differ. This might happen either because the assay might not capture the functional mechanism
that leads to the disease, or the strength of the new evidence combined with existing evidence
might not be enough to move the variant. Without functional assay outcomes, this is difficult
to discern and is a limitation of our study. In future, when additional information on an
assay’s relevance to specific diseases is available, refined criteria that take that information
into account might better quantify the movement. Similarly, if all existing evidence for a
variant is accessible, the criteria may be refined to take it into account, as done so by Kuang
et al.2 Our study is currently limited in this regard, as ClinVar does not detail which specific
lines of evidence were used to classify a variant. Similar considerations apply to the correction
scores as well.

In conclusion, we defined three objectives in terms of improving clinical classification by
using variant pathogenicity predictors. Our final combined scores provided a list of prioritized
genes for MAVEs but this list will keep updating with iterated future work between prediction
and experimentation. All data sets, analysis scripts, and supplementary results for this study
can be accessed here: https://github.com/strongbeamsprout/Gene-Prioritization.
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