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Abstract
Critical evaluation of computational tools for predicting variant effects is important considering their increased use in disease 
diagnosis and driving molecular discoveries. In the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) 
challenge, a dataset of 28 STK11 rare variants (27 missense, 1 single amino acid deletion), identified in primary non-small 
cell lung cancer biopsies, was experimentally assayed to characterize computational methods from four participating teams 
and five publicly available tools. Predictors demonstrated a high level of performance on key evaluation metrics, measuring 
correlation with the assay outputs and separating loss-of-function (LoF) variants from wildtype-like (WT-like) variants. The 
best participant model, 3Cnet, performed competitively with well-known tools. Unique to this challenge was that the func-
tional data was generated with both biological and technical replicates, thus allowing the assessors to realistically establish 
maximum predictive performance based on experimental variability. Three out of the five publicly available tools and 3Cnet 
approached the performance of the assay replicates in separating LoF variants from WT-like variants. Surprisingly, REVEL, 
an often-used model, achieved a comparable correlation with the real-valued assay output as that seen for the experimental 
replicates. Performing variant interpretation by combining the new functional evidence with computational and population 
data evidence led to 16 new variants receiving a clinically actionable classification of likely pathogenic (LP) or likely benign 
(LB). Overall, the STK11 challenge highlights the utility of variant effect predictors in biomedical sciences and provides 
encouraging results for driving research in the field of computational genome interpretation.

Introduction

The STK11 gene, formerly known as LKB1 (Liver Kinase 
B1), encodes the enzyme Serine/Threonine Kinase 11 
(NP_000446.1) that is considered to be a “master kinase” 
and functions as a tumor suppressor. It regulates many intra-
cellular signaling networks, impacting metabolism, pro-
liferation, transcription, and cell morphology (Hezel and 
Bardeesy 2008; Lenahan et al. 2024). Unlike most mam-
malian kinases that are activated by autophosphorylation 
of their activation loop, STK11 activity is regulated by its 
interaction with pseudokinase STRAD� and the scaffolding 
protein MO25 forming a heterotrimeric complex, where its 
activation loop is stabilized in a conformation competent 
for substrate binding (Zeqiraj et al. 2009). Autophospho-
rylation of STK11 occurs outside the activation loop in the 

kinase (residues 49–309) and C-terminal regulatory (resi-
dues 309–433) domains (Sapkota et al. 2002; Baas et al. 
2003). The connection between autophosphorylation and the 
activation of STK11 is still not well understood.

STK11 phosphorylates many members of the microtubule 
affinity-regulating kinases family, with AMPK being studied 
most extensively (Lizcano et al. 2004; Nguyen et al. 2013). 
STK11 plays a significant role in the p53 signaling axis, 
activated in response to various cellular stresses, such as 
oncogene activation, DNA damage, and replication stress 
(Borrero and El-Deiry 2021). It physically associates with 
p53 in the nucleus and enhances p53’s transcriptional activ-
ity, impacting cell proliferation and apoptosis (Zeng and 
Berger 2006).

The exact mechanism(s) underlying STK11-mediated 
activation of p53 are still unclear. It is possible that this acti-
vation occurs directly through STK11-mediated phosphoryl-
ation of p53, or indirectly through the activation of AMPK 
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and NUAK1 (Hou et al. 2011; Zeng and Berger 2006; Don-
nelly et al. 2021). However, regardless of the mechanism, 
intact STK11 function is important for p53 activation.

STK11 is a significant disease gene due to its involvement 
in both the rare genetic disorder, Peutz–Jeghers syndrome 
(PJS), and cancer. Germline mutations in STK11 lead to 
uncontrolled cell growth and the formation of polyps in the 
gastrointestinal tract, characterizing PJS (Zyla et al. 2021; 
Khanabadi et  al. 2023). Somatic alterations in STK11 
are most prevalent in lung cancer, however, they are also 
observed in other cancer types such as breast, head, and neck 
cancers (Pons-Tostivint et al. 2021; Krishnamurthy et al. 
2021). Notably, STK11 variants are frequently observed 
in non-small cell lung cancer (NSCLC) adenocarcinomas 
and are associated with poor survival (La Fleur et al. 2019). 
Recent studies have highlighted the substantial impact of 
STK11 mutations in the highly prevalent KRAS-driven 
NSCLC adenocarcinomas, presenting distinct biological 
characteristics, therapeutic susceptibilities, and immune 
profiles (Skoulidis et al. 2018). STK11 alterations in KRAS-
driven NSCLC adenocarcinomas are associated with low 
PD-L1 (Programmed Death-Ligand 1) levels, leading to 
reduced efficacy of anti-PD-1 monoclonal antibody therapy.

Functional and computational characterization of vari-
ants in disease genes such as STK11 is critical for the suc-
cess of genomic medicine (Rost et al. 2016; Shendure et al. 
2019; The Critical Assessment of Genome Interpretation 
Consortium 2024). The increasing rate of genetic testing has 
resulted in a growing number of newly identified variants. 
However, the pace of variant discovery has surpassed the 
rate of variant interpretation. The pathogenicity/benignity of 
many variants cannot be established conclusively, leading to 
the variant of uncertain significance (VUS) categorization 
being the largest category in clinical databases (Landrum 

et al. 2016). Functional assays and computational tools are 
often used to provide evidence for moving VUS to patho-
genic/benign categories and improving variant interpretation 
(Richards et al. 2015). However, experimentally character-
izing the impact of all variants in a disease gene is often 
infeasible due to costs and technological limitations. Conse-
quently, for many disease genes, only a few variants are char-
acterized functionally. In contrast, computational predictions 
for pathogenicity and functional effect are readily available 
for most variants (Zhu et al. 2020), making them a versatile 
tool for improving variant interpretation, broad functional 
characterization of underlying mechanisms, and prioritiza-
tion of experimental studies (Mort et al. 2010; Katsonis et al. 
2022; Chen et al. 2023). Thus, continual improvement of 
computational approaches and their independent evaluation 
is important.

To facilitate a thorough and unbiased evaluation of 
computational tools, the Critical Assessment for Genome 
Interpretation (CAGI) consortium has worked with several 
experimental groups to incorporate functional data from 
recent studies for a blind assessment of predictors in a 
number of challenges (The Critical Assessment of Genome 
Interpretation Consortium 2024). Since the functional data 
is not available in the public domain during or before the 
prediction submission window, it cannot be used in model 
training. The approach ensures that the tools’ performance 
is characterized accurately, unaffected by model overfitting 
to training data, thereby also ensuring a fair comparison 
between tools. Each CAGI challenge is undertaken in four 
stages: (1) Challenge development, (2) Prediction season, 
(3) Assessment season and (4) Dissemination (Fig. 1). The 
STK11 challenge, in the sixth CAGI edition, invited com-
putational groups to submit their predictions on 28 coding 
variants (all but one missense) found in NSCLC biopsies, 

Fig. 1   Four stages of a CAGI challenge: All data containing the gen-
otypes or variants and the corresponding phenotypic labels are col-
lected from experimental and clinical labs (data providers) during the 
Challenge development stage. The prediction season starts when the 
challenge is opened to the community, inviting computational groups 
to submit their predictions. If the challenge involves providing a train-
ing set, a set of genotypes or variants are released with the ground 
truth phenotypic labels as the training set. Note that for the CAGI 6 
STK11 challenge a training set was not provided. The remaining 
genotypes or variants are provided as a test set without the ground 
truth labels. During the prediction season the participants submit phe-
notype predictions on the test set. The ground truth phenotypic labels 

are typically made public by the data providers after the prediction 
season, provided the data does not contain any sensitive information. 
Additionally the data is also made available on the CAGI website, 
accessible to researchers after signing a data use agreement. During 
the assessment season, assessors are appointed to evaluate the per-
formance of the submitted predictions and state of the art baseline 
methods on the test set. The identity of the participating teams are not 
revealed to assessors until they present the assessment results to the 
larger community via online events organized for this purpose. Dur-
ing the Dissemination stage the results are presented to a wider audi-
ence though the CAGI conference and publications under the CAGI 
special issues or collections
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that were functionally profiled with an in vitro gel-shift 
assay measuring autophosphorylation and a cell-based 
p53-dependent luciferase reporter assay (Donnelly et al. 
2021). Four participating models and five publicly available 
tools were evaluated and compared using the functional data 
on key evaluation metrics. The experimental replicates were 
used to quantify the consistency of the assay, to establish an 
upper limit on the predictive performance due to experimen-
tal variability, and to assess whether the predictors are com-
parable to the assays in characterizing the variants’ kinase 
activity. Lastly, clinical variant classification was performed 
by combining the evidence from the functional assays, com-
putational tools, allele frequency from population data and 
other co-located pathogenic variants to move variants with 
uncertain significance to clinically actionable categories.

Challenge design and participation

A total of 28 STK11 (NP_000446.1) variants from primary 
non-small cell lung cancer (NSCLC) biopsy specimens were 
assessed for biological impact in Dr. Seward’s laboratory at 
the Department of Pathology and Laboratory Medicine, Uni-
versity of Vermont. The variants were released to the com-
munity through the CAGI website, inviting computational 
groups to submit their predictions for each variant’s kinase 
activity. The challenge was publicly announced on May 
20, 2021, the set of variants was released on June 8, 2021, 
and the submissions were accepted from June 21, 2021, to 
August 31, 2021. A relatively short prediction season was 
impacted by the timeline for the public release of the ground 
truth data (Donnelly et al. 2021).

The participants were asked to calibrate their predictions 
as the percentage of the wildtype activity retained divided 
by 100, wherein 0 indicates no activity, 1 indicates wildtype 

activity and values of 0.2 and 1.2 indicate 20% and 120% 
wildtype activity. The submitted predictions were evalu-
ated against experimentally validated kinase activities. Four 
teams participated in the challenge, collectively submitting 
14 predictors (Tables 1, 2). Two teams submitted six predic-
tors each and the other two teams submitted one predictor 
each. In addition to evaluating the submitted predictions, we 
also evaluated five publicly available tools as baselines; see 
“Models and baselines”.

Experimental data

The CAGI6 STK11 challenge presented 27 missense vari-
ants and 1 single amino acid deletion (Fig. 2, Table 3) 
identified in primary NSCLC biopsy specimens with <1% 

Table 1   Table listing each predictor, its main reference if available, types of features utilized, and sources of training data

Method name References PolyPhen, SIFT, 
Provean based 
features

Structure 
based 
features

PSSM, MSA 
based features

Model Database

3Cnet Won et al. (2021) No Yes Yes Neural Network, 
Random Forests

ClinVar, gnomAD, 
UniRef

Evolutionary action Katsonis and 
Lichtarge (2014)

No No Yes Mathematical model 
for evolutionary 
action of variants on 
fitness

UniRef & nr NCBI

Protein language 
model

Sun and Shen (2023) No No No BERT-based masked 
language modeling

Pfam-rp15, UniProt

Bologna biocomput-
ing

Savojardo et al. 
(2016), Manfredi 
et al. (2021)

No INPS3D: 
Yes; 
Deep-
REx: 
No

Yes INPS3D: Support 
Vector Regression; 
DeepREx: Stack of 
LSTM layers

INPS3D: S2648; 
DeepREx: PDB, 
UniProt

Table 2   Table showing each predictor and individuals involved in 
developing or submitting to the STK11 CAGI challenge

Team Members

3Cnet Kyoungyeul Lee
Junwoo Woo
Dong-wook Kim
Changwon Keum

Evolutionary action Panagiotis Katsonis
Olivier Lichtarge

Protein language model Yang Shen
Yuanfei Sun

Bologna biocomputing Giulia Babbi
Rita Casadio
Pier Luigi Martelli
Castrense Savojardo
Matteo Manfredi
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allele frequency in gnomAD (Karczewski et al. 2020). 
The STK11 activity of each variant was assessed experi-
mentally via (1) a luciferase reporter assay, measuring an 
STK11 variant’s effect on TP53’s transcriptional activity, 
and (2) a gel-shift assay, putatively measuring whether 
an STK11 variant undergoes auto-phosphorylation or not 
(Donnelly et al. 2021).

For the luciferase assay plasmids containing cDNAs 
encoding each of the STK11 variants (STK11/eGFP) were 
transfected into A549 cells along with a plasmid encoding 
TP53 response element with a firefly luciferase reporter 
(PG13-luc) and a transfection control plasmid with Renilla 
reniformis luciferase reporter (pRL-SV40). The luciferase 
activity, adjusted for transfection efficiency, serves as a 
measure of an STK11 variant’s effect on TP53’s tran-
scriptional activity. In addition to the somatic variants, 
the luciferase activity for the wildtype (WT) STK11, a 
kinase-dead point mutation (p.K78I), and empty vector 
(EV) were also measured, as a positive control, negative 
control, and baseline, respectively. Seventeen biological 
replicates were performed, each measuring the activity 
for a subset of STK11 variants, across 2–3 technical rep-
licates. The two controls and baseline (WT, p.K78I, and 
EV) were measured across all biological and technical 
replicates. Each variant from the set of 28 cancer biopsy 
variants was validated in 3–6 biological replicates.

For the gel shift assay, mutant proteins were transfected 
into A549 cells lacking functional STK11. The STK11 
heterotrimeric complexes were immunoprecipitated with 
anti-Flag beads and kinase assays were performed on the 
immunoprecipitated complexes. The kinase reactions were 
then subjected to SDS-PAGE electrophoresis and trans-
ferred to nitrocellulose membranes, followed by Western 
Blot analysis with anti-STK11 monoclonal antibody, and 
detected with anti-mouse-HRP. The evaluated variants 
either demonstrated (1) a single unmodified band, rep-
resenting an inability to auto-phosphorylate, or (2) two 
bands, an unmodified band and a shifted higher molecular 
weight band, presumably the result of autophosphorylation 
(although the possibility of phosphorylation by another 
cell kinase cannot be excluded) indicating the variant 
behaved as WT. The addition of phosphatase eliminated 
the second band, confirming it was the product of phos-
phorylation. The assay was essentially binary, classifying 
the variant as WT-like or loss of function (LoF).

The luciferase assay gave a continuous activity value 
for each variant. The data providers classified each variant 
as either WT-like or LoF by applying a suitable thresh-
old (Donnelly et al. 2021). The class labels from the two 
assays agreed on 27 out of the 28 variants, with the disa-
greement on p.H202R, assigned a LoF label as per the 
luciferase assay and a WT-like label as per the gel-shift 
assay.

Assessment methods

In our assessment, we used the data from the luciferase assay 
for our main results. The results of the gel shift assay are 
provided in Supplementary File 8. The two assays agree 
on the classification labels for all variants, except p.H202R 
(Table 3). Due to the high agreement between the two assays 
and the availability of the continuous activity values and 
replicates for the luciferase assay, we deemed it to be better 
suited and sufficient for the primary assessment. The predic-
tors were evaluated over a regression and classification task 
to measure their performance on the luciferase assay.

Ground truth for evaluation

The luciferase activity measured in the assay was normal-
ized relative to the wildtype activity after correcting for the 
background activity using the following formula.

where all the raw activity values come from the same bio-
logical and technical replication. The normalization scaled 
the activity values such that values ≤ 0 correspond to no 
activity, values = 1 correspond to WT activity, and values 
> 1 correspond to greater than WT activity. Note that the 
data providers used a different normalization approach that 
scales the relative activity on a larger scale than 0–1. We 
used a 0–1 scale based on the CAGI challenge guidelines. 
The relative wildtype activity (R-WT) for variant i was aver-
aged across all biological and technical replicates to give a 
robust measure of its R-WT activity, which we consider the 
ground truth for the activity prediction task.

To evaluate the methods on a binary classification task, 
we assign a ground truth class label, WT-like or LoF, to 
each variant by thresholding its R-WT activity. If it is less 
than 0.6, the variant is considered to be LoF, otherwise it is 
considered WT-like. The class labels thus obtained are iden-
tical to those from the data providers (Donnelly et al. 2021).

In this manner, out of the 28 variants, 13 were classified 
as WT-like, while the remaining 15 were classified as LoF 
(Fig. 2). We validated the ground truth classifications and 
the R-WT activity against known pathogenic and benign 
variants in ClinVar (2024-01-27) and HGMD (2021-04). Out 
of 28, 6 variants (p.F354L, p.R297S, p.A241P, p.D194Y, 
p.P179R, p.G163R) were known to be pathogenic (P/LP or 
DM) or benign (B/LB) without any conflicting information. 
The ground truth classifications for these variants were con-
sistent with the clinical assertions; i.e., all pathogenic vari-
ants were labeled as LoF and all benign variants as WT-like. 
The assays were therefore considered reliable.

R-WT ActivityVar =
ActivityVar − ActivityEV

ActivityWT − ActivityEV
,



131Human Genetics (2025) 144:127–142	

Evaluation set

Since 6 variants (p.F354L, p.R297S, p.A241P, p.D194Y, 
p.P179R, p.G163R) out of the 28 were known to be patho-
genic or benign without conflicting information in clinical 
databases, we removed them from our final evaluation set, 
to ensure that the evaluation set does not include variants 
possibly used to train the predictors. There were 14 other 
variants in the clinical databases that were either annotated 
as a VUS in ClinVar, a DM? in HGMD or had conflicting 
information and consequently were retained in the evalu-
ation set.

Since many tools are developed primarily for predict-
ing the effects of missense variants, we also investigated 
performance on a reduced evaluation set, obtained by the 
removal of p.K84del.

Evaluation metrics

To evaluate the predictors, we considered two sets of met-
rics for (1) R-WT activity prediction and (2) predicting the 
ground truth class label (WT-like or LoF). For the R-WT 
activity prediction, we used Pearson’s correlation and Ken-
dall’s Tau, as standard performance metrics for regression. 
For the binary class label prediction, we used the area under 
the ROC curve (AUC).

Since the submission guidelines explicitly elicited predic-
tions for R-WT activity, the predictions from the submitted 
model were used unaltered for computing Pearson’s corre-
lation and Kendall’s Tau. However, since computing AUC 
requires a prediction score for which a higher (lower) value 
corresponds to the positive (negative) class, LoF (WT-like), 
we negated the predictions (multiplying by −1 ) for the AUC 

Table 3   CAGI6 STK11 challenge dataset of 28 variants found in primary NSCLC biopsy specimens

Variants excluded from evaluation are marked by an asterisk in the first column. ClinVar (2024-01-27) and HGMD (2021-04) annotations, 
before the prediction submission deadline, are shown along with experimental results, as well as each variant’s allele count (AC) and allele fre-
quency (AF) in gnomAD (v4.1.0)
VUS variant of uncertain significance, P pathogenic, LP likely pathogenic, B benign, LB likely benign, DM disease-causing mutation, DM? pos-
sible disease-causing mutation

p.SYNTAX 
(NP_000446.1)

chr19:g.SYNTAX (GRCh37) ClinVar HGMD gnomAD gnomAD R-WT activity [25%, 
75%]

TP53 mediated Autophosphorylation
AC AF Luciferase assay 

result
Assay result

D194Y* g.1220487G >T P/LP DM − 0.09 [ − 0.24, 0.08] LoF LoF
G56W g.1207078G>T − 0.08 [ − 0.1, 0] LoF LoF
P179R* g.1220443C>G DM − 0.01 [ − 0.04, 0.1] LoF LoF
S193Y g.1220485C>A 0.02 [ − 0.02, 0.15] LoF LoF
S216F g.1220629C>T VUS 0.15 [0.01, 0.36] LoF LoF
P221R g.1220644C>G 0.19 [0.04, 0.37] LoF LoF
F148S g.1219391T>C 0.20 [ − 0.03, 0.44] LoF LoF
G163R* g.1220394G>C LP DM 0.22 [0.06, 0.32] LoF LoF
A241P* g.1220703G>C DM 0.27 [0.09, 0.46] LoF LoF
R297M g.1221975G>T 0.32 [0.17, 0.43] LoF LoF
H202R g.1220587A>G VUS 5 3.16E−06 0.34 [0.19, 0.49] LoF WT
W308R g.1222985T>C VUS 0.38 [0.19, 0.52] LoF LoF
G242V g.1220707G>T DM? 0.38 [0.31, 0.43] LoF LoF
R297S* g.1221976G>T P 0.41 [0.32, 0.49] LoF LoF
G251C g.1221228G>T 0.56 [0.36,0.79] LoF LoF (weak)
S31F g.1207004C>T 0.69 [0.56, 0.89] WT WT
P275L g.1221301C>T VUS 0.81 [0.72, 0.91] WT WT
K84del g.1207153_1207155delAAG​ VUS 7 4.34E−06 0.90 [0.61, 1.09] WT WT
R211Q g.1220614G>A VUS/LB 29 1.81E−05 1.00 [0.79, 1.18] WT WT
Q112E g.1218459C>G VUS 2 1.24E−06 1.06 [0.69, 1.17] WT WT
G155R g.1219411G>A VUS 3 1.90E−06 1.07 [0.8, 1.13] WT WT
R104G g.1218435A>G VUS 6 3.72E−06 1.08 [0.92, 1.18] WT WT
R409W g.1226569C>T VUS/LB DM? 68 4.28E−05 1.11 [0.91, 1.18] WT WT
A417S g.1226593G>T VUS 16 1.02E−05 1.29 [0.86, 1.66] WT WT
A397S g.1226533G>T VUS/LB DM? 30 1.87E−05 1.30 [0.93, 1.6] WT WT
P280A g.1221315C>G VUS 1.47 [1.39, 1.68] WT WT
F354L* g.1223125C>G B/LB DM? 8225 5.10E−03 1.51 [0.93, 1.88] WT WT
K311N g.1222996G>T 1.62 [1.25, 2.03] WT WT
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computation. The same approach was adopted for the Exper-
imental-Max predictor; see “Experimental-Max”. Since all 
baseline predictors were built to give a higher value for func-
tion disruption or pathogenicity and were calibrated as a 
probability between 0 and 1, we transformed their output, ŷ , 
to 1 − ŷ for computing Pearson’s correlation and Kendall’s 
Tau. Their unaltered output was used to compute AUC.

If a tool did not predict on a variant, we replaced each 
missing prediction with an average of the prediction made 
on all other variants. This allowed evaluation of all tools on 
the same set of variants; i.e., the entire evaluation set, and 
consequently, ensured a fair comparison.

Uncertainty quantification

We calculated each performance metric on 1000 bootstrap 
variant sets created from the evaluation set by sampling with 
replacement (Efron and Tibshirani 1986). Each bootstrap 
variant set was of the same size as the evaluation set, i.e., 
containing 22 or 21 variants for the analysis with and with-
out p.K84del, respectively. Each bootstrap variant set for cal-
culating the classification metrics was obtained with strati-
fied sampling across WT-like and LoF variants and sampling 
with replacement within the two groups. This ensured that 
the number of LoF and WT-like variants was identical to 
that in the evaluation set. Each bootstrap variant set for cal-
culating the regression metrics was obtained with standard 
sampling with replacement from the evaluation set.

In this manner, we obtained 1000 bootstrap estimates 
of each metric. In Fig. 3 and Table 4 we show the 90% 
confidence interval for each metric, obtained from the 5th 
and 95th percentile of its bootstrap estimates. In Fig. 4 we 
provide a Gaussian approximation based 95% confidence 
interval for the AUC values as the 1.96× standard deviation 
derived from its bootstrap estimates.

Ranking

The methods were ranked based on their performance on 
three metrics: Pearson’s correlation, Kendall’s Tau, and 
AUC. The predictors were first ranked based on each of the 
three metrics separately. The final rank of a predictor was 
obtained by averaging its ranks over the three metrics. The 
ranking was performed first between the predictors submit-
ted by each team separately to pick the best predictor from 
each team. The ranking was then performed between the rep-
resentative predictors from all teams. The baseline predic-
tors were ranked separately from the submitted predictors.

Identification of difficult‑to‑predict variants

In Fig. 5, we quantify the difficulty in predicting each 
variant across predictors. For this analysis, we only incor-
porated the best predictor from each team (based on rank-
ing) that also had an AUC above 0.8. Thus only 3Cnet and 
evolutionary action qualified based on this criteria. We 

Fig. 2   Relative wildtype (R-WT) activity of each variant measured by 
the luciferase assay. The average activity over the biological and tech-
nical replicates is shown along with the 25th and the 75th percentile. 
LoF variants are displayed in orange, and WT-like variants in blue, 
separated based on an R-WT activity threshold of 0.6. Any variant 
with an asterisk above its identifier was classified without conflicts 
as pathogenic or benign in ClinVar (2024-01-27) (Landrum et  al. 
2016) and/or a disease mutation in HGMD (2021-04) (Stenson et al. 

2020) and has not been used in the assessment. Labels inside or on 
top of the bars indicate clinical classification in ClinVar and HGMD, 
including pathogenic (P), likely pathogenic (LP), variant of uncertain 
significance (VUS), benign (B), likely benign (LB), disease-caus-
ing mutation (DM), and possible disease-causing mutation (DM?). 
Abbreviations EV, KD, and WT stand for empty vector, kinase-dead 
point mutation (p.K78I), and wildtype, respectively



133Human Genetics (2025) 144:127–142	

Table 4   Performance of the best 
model from each participating 
team, publicly available baseline 
models and Experimental-Max 
along with 90% confidence 
interval

Participant models are listed in the order of their rankings. Baseline models are ranked separately, and also 
listed in order of their rankings

 Methods Pearson’s correlation Kendall’s Tau AUC​
[5%, 95%] [5%, 95%] [5%, 95%]

3Cnet 0.783 [0.624, 0.909] 0.584 [0.390, 0.757] 0.933 [0.800, 1.000]
Evolutionary action 0.756 [0.592, 0.886] 0.515 [0.280, 0.710] 0.825 [0.654, 0.975]
Protein language model 0.186 [ − 0.093, 0.675] 0.411 [0.213, 0.590] 0.775 [0.567, 0.967]
Bologna biocomputing 0.321 [ − 0.064, 0.655] 0.264 [ − 0.056, 0.569] 0.733 [0.567, 0.875]
REVEL 0.821 [0.705, 0.916] 0.662 [0.473, 0.829] 0.950 [0.867, 1.000]
AlphaMissense 0.704 [0.414, 0.920] 0.610 [0.417, 0.790] 0.925 [0.825, 1.000]
MutPred2 0.682 [0.557, 0.811] 0.547 [0.352, 0.705] 0.933 [0.817, 1.000]
PolyPhen-2 0.613 [0.417, 0.786] 0.487 [0.283, 0.675] 0.883 [0.727, 1.000]
EVE 0.613 [0.368, 0.796] 0.396 [0.199, 0.605] 0.858 [0.700, 0.983]
Experimental-Max 0.836 [0.734, 0.917] 0.681 [0.558, 0.784] 0.964 [0.900, 1.000]

Fig. 3   Pearson’s correla-
tion, Kendall’s Tau, and area 
under the ROC curve (AUC) 
for submitted methods (blue), 
publicly available tools (grey) 
as baselines, and Experimental-
Max (grey). The error bars 
correspond to the 5th and 95th 
percentiles computed with 
1000 bootstrap samples. Only 
the best-performing method 
from each team is displayed. 
The submitted methods are 
shown in order of their average 
ranks on the three metrics. The 
baselines are also shown in the 
order of their average ranks and 
are ranked separately from the 
submitted methods
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additionally incorporated the publicly available baseline 
predictors (see “Models and baselines”) for this analy-
sis, since all of them had an AUC greater than 0.8. For 
each predictor, we quantified the difficulty of predicting 
a LoF variant as the false positive rate (FPR) of the pre-
dictor when using the predicted value at the variant as 
a classification threshold. In other words, it is the frac-
tion of variants in the WT-like set that were predicted to 
have a lower R-WT activity than the LoF variant at hand. 
Similarly, the difficulty in predicting a WT-like variant 
was quantified as the false negative rate (FNR) of the 
predictor based on the predicted value at the variant as 
the classification threshold; i.e., the fraction of variants 
in the LoF set that was predicted to have a higher R-WT 
activity than the WT-like variant at hand. An LoF (or 
WT-like) variant consistently having a high FPR (or FNR) 
across predictors is considered to be a difficult-to-predict 
variant. In this analysis, we considered all 28 variants, 
including those that were removed from the evaluation 
set for comparing predictors.

Clinical variant classification

Only 4 out of the 28 variants considered in this work are 
clinically actionable with a definitive ClinVar classification 
of P/LP or B/LP. To investigate if the remaining 24 variants 
could be moved to more definitive categories, we collected 
and combined the evidence available for each variant under 
the American College of Medical Genetics and Genom-
ics (ACMG) and the Association for Molecular Pathology 
(AMP) variant classification guidelines for rare genetic dis-
ease diagnosis (Richards et al. 2015). Precisely, we consid-
ered the functional assay results, computational evidence, 
allele frequency from population data and evidence from 
other co-located pathogenic variants by applying evidence 
codes PS3/BS3, PP3/BP4, PM2/BS1 and PM5, respectively. 
The original guidelines interpreted each evidence type on 
an ordinal scale of supporting, moderate, strong and very 
strong and provided rules to combine evidence strength to 
make pathogenic (P or LP) or benign (B or LB) assertion. 
For example, 1 strong, 2 moderate, and 2 supporting lines 

Fig. 4   The receiver operating 
characteristic (ROC) curves for 
the best-performing model for 
each team and the best baseline 
model REVEL. AUC values 
are shown along with 1.96 × 
standard deviation from their 
bootstrap estimates
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Fig. 5   Difficult-to-predict 
variants and differences among 
competitive methods. All 
methods with an AUC above 
0.8 were considered for this 
analysis. a The heatmap of the 
false positive rate of a method at 
each LoF variant; see “Difficult-
to-predict variants”. b The heat-
map of the false negative rate 
of a method at each WT-like 
variant. The variants with an 
asterisk are known pathogenic 
or benign variants in ClinVar 
and/or HGMD without any 
conflicting information
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of evidence lead to P, whereas 2 moderate and 2 supporting 
lines lead to LP. The recently developed point-based system 
for variant interpretation (Tavtigian et al. 2020) assigned 
points to each strength level: supporting, moderate, strong, 
and very strong evidence towards pathogenicity (benignity) 
correspond to 1 ( −1 ), 2 ( −2 ), 4 ( −4 ) and 8 ( −8 ) points, 
respectively. Here we use the point scale, under which a 
P, LP, VUS, LB, or B assertion is made if the total points 
from the evidence collected for a variant were in the range 
≥ 10 , [6, 9], [0, 5], [−6,−1] or ≤ −7 , respectively. The VUS 
category is further divided into VUS-low, VUS-mid and 
VUS-high categories corresponding to the range [0, 1], [2, 
3] and [4, 5], respectively.

Following the point-based system, if a variant was deter-
mined to be LoF from an assay’s output, we applied the PS3 
code with 1 point (supporting for pathogenicity), whereas 
if it was determined to be WT-like, we applied the BS3 
code with −1 point (supporting for benignity). Combining 
the results from the luciferase and the gel-shift assay, this 
approach resulted in giving 2 points for each variant anno-
tated as LoF by both assays, and −2 points for each variant 
annotated as WT-like by both assays. In the case of p.H202R 
where the two assays disagree, 1 point from the luciferase 
assay and −1 point from the gel-shift assay led to a net score 
of 0 points. We incorporated population data evidence by 
looking at a variant’s allele frequency from healthy con-
trols in gnomAD v4.1 where there are 5 P/LP variants, each 
with allele count of 1. All variants considered in this work 
were either absent from gnomAD v4.1 or were found with 
very low allele frequency (AF ⪅ 10−5 ), except for p.F354L 
with AF = 0.0051. Peutz–Jeghers syndrome (PJS) being an 
autosomal dominant trait, we applied PM2 only for vari-
ants absent from gnomAD as per the guidelines (Richards 
et al. 2015). Instead of applying PM2 as a moderate level 
evidence, as recommended by the original guidelines, we 
applied PM2 at a supporting level with 1 point based on 
the recent updates to the guidelines (ClinGen SVI Work-
ing Group 2019). For BS1 we used an allele frequency of 
0.001 as a threshold above which the the code was applied. 
Thus only p.F354L qualified for BS1 with −4 points (strong 
benignity). The remaining variants present in gnomAD v4.1 
with an allele frequency less than 0.001 were considered 
to have indeterminate evidence. Consequently, no evidence 
code was applied for these variants.

To quantify the computational evidence on the point 
scale, we used REVEL scores and applied the recently 
derived score intervals, corresponding to the evidence 
strength (Pejaver et al. 2022). Precisely, if the score for a 
variant was in the interval [0.644, 0.773), [0.773, 0.932) and 
[0.932, 1], PP3 was applied as supporting, moderate and 
strong, with 1, 2 and 4 points, respectively, whereas if the 
score was in the interval (0.183, 0.290], (0.016, 0.183] and 
(0.003, 0.016], BP4 was applied as supporting, moderate, 

strong, with −1 , −2 and −4 points, respectively. Other P and 
LP ClinVar variants at the same amino acid position were 
considered as evidence (PM5) if the REVEL score rounded 
to 2 decimal places of the tested variant was equal to or 
higher than the REVEL score of the co-located P and LP 
variants, with 2 points for the first P variant, 1 point for 
the first LP variant, and 1 point for any additional P or LP 
variant. Other B and LB variants at the same position were 
also considered but none were identified. Since the variants 
were obtained from cancer biopsies and not PJS cases, no 
case data was available for this study and consequently, de 
novo counts (PM6/PS2) or segregation data (PP1) was not 
considered.

Models and baselines

The participant teams used a diverse set of approaches in 
terms of the features, machine learning models and training 
datasets; see Table 1. The top performing model, 3CNet, an 
improved version of the base model from Won et al. (2021), 
used structure, conservation, and physical and biochemi-
cal features. A long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) network, trained on simulated 
variants from conservation data from UniRef (Suzek et al. 
2007), was used as a feature extractor. A random forest 
model based on the extracted features was then trained on 
variants from ClinVar (Landrum et al. 2016) and gnomAD 
(Karczewski et al. 2020); see Supplementary File 2. The sec-
ond best-performing method, evolutionary action, is based 
on a mathematical model for the action of coding mutations 
on fitness. Protein language model was based on Bidirec-
tional encoder representations from transformers (Devlin 
et al. 2019) (BERT) trained on Pfam (Mistry et al. 2021) 
representative proteome domain sequence data. Bologna 
Biocomputing created a meta predictor from three ΔΔ G 
predictors, INPS3D (Savojardo et al. 2016), PoPMuSiC 2.1 
(Dehouck et al. 2011) and FOLDEF (Guerois et al. 2002), 
and a sequence based residue solvent exposure predictor, 
DeepREx (Manfredi et al. 2021).

In addition to evaluating the submitted predictors, we also 
evaluated publicly available tools PolyPhen-2 (Adzhubei et al. 
2010), REVEL (Ioannidis et al. 2016), MutPred2 (Pejaver 
et al. 2020), EVE (Frazer et al. 2021), and AlphaMissense 
(Cheng et al. 2023). These tools were selected to represent the 
diversity of variant effect predictors, each employing distinct 
machine learning techniques. PolyPhen-2, one of the earliest 
variant effect predictors, uses a simpler Naive Bayes model. 
MutPred2 and REVEL have consistently ranked among the top 
performing methods across multiple coding variant challenges 
in CAGI (The Critical Assessment of Genome Interpretation 
Consortium 2024). MutPred2 is an ensemble of shallow, fully 
connected neural networks trained from scratch while REVEL 



136	 Human Genetics (2025) 144:127–142

is a meta predictor that combines 18 prediction scores from 
13 computational tools. In contrast to PolyPhen-2, MutPred2 
and REVEL, which all rely on traditional supervised learning 
approaches, EVE and AlphaMissense rely on more modern 
techniques: EVE employs a generative variational autoen-
coder, and AlphaMissense uses a language model. These 
tools are trained in an unsupervised and/or weakly supervised 
manner, without reliance on pathogenicity or functional effect 
labels.

Experimental‑Max

We derive an Experimental-Max predictor that incorporates 
the assay replicates to quantify its consistency and also the 
maximum achievable performance on all three metrics. The 
biological and technical replicates capture the variability of 
the assay in measuring the R-WT activity. We use the average 
R-WT activity across the replicates as the ground truth for 
evaluation; see “Ground truth for evaluation”. High variability 
of the replicates around the average indicates low consistency 
of the assay. Experimental-Max’s predicted R-WT activity on 
a variant is determined by first randomly picking a biological 
replicate in which it appears, and then using the R-WT activity 
of a randomly picked technical replicate within the biological 
replicate. Unlike conventional predictors, Experimental-Max 
is stochastic; i.e., has randomness in its output. Thus repeating 
the sampling is likely to give a different predicted R-WT activ-
ity for the variant. Consequently, the performance measured 
with Experimental-Max predictions over a set of variants is 
also stochastic. To obtain a robust estimate of a performance 
metric, we generated 1000 Experimental-Max predictors by 
resampling and averaged the performance computed over 
them. The confidence interval for Experimental-Max’s per-
formance in Fig. 3 and Table 4 is obtained as the 5th and 95th 
percentile of the 1000 estimates. Pearson corr. and Kendall’s 
Tau computed for Experimental-Max quantifies the consist-
ency of the assay in measuring R-WT activity, whereas its 
AUC quantifies the consistency in separating LoFs from WT-
like variants. Experimental-Max performance additionally 
serves as an upper limit to a predictor’s performance, since 
a predictor can not be expected to predict the assay output 
better than the replicates. The small gap between a predictor’s 
performance and Experimental-Max suggests that a predictor 
is comparable to the assay in estimating the true R-WT activity 
of the variants and separating LoFs from WT-like variants.

Results

Performance of submitted predictors

We evaluated the participant team models based on their 
performance on Pearson’s correlation, Kendall’s Tau, and 

AUC, computed on the evaluation set of 22 variants. The 
best-performing predictor from each team was first selected 
based on the three metrics as the top-ranking predictor from 
the team; see “Ranking”. The best-performing predictors 
from each team were then re-ranked based on the three 
metrics; see Figs. 3a and 4a, and Table 4.Among the four 
participant team models, 3Cnet performed the best on all 
three metrics: Pearson’s corr = 0.78, Kendall’s Tau = 0.58, 
and AUC = 0.93. Evolutionary action performed the second 
best: Pearson’s corr. = 0.76, Kendall’s Tau = 0.52 and AUC 
= 0.83. The performance of 3Cnet was better than evolution-
ary action with statistical

significance on all three metrics. Statistical significance 
was determined using a one-sided binomial test with a num-
ber of wins on 1000 bootstrap samples as the test statis-
tic. 3Cnet won 629, 687, and 838 times on Pearson’s corr., 
Kendall’s Tau and AUC, respectively, giving p-values less 
than 10−16 , 10−32 , and 10−110 , respectively. The p-value was 
computed as the probability that the Binomial(0.5, 1000) 
variable is greater than or equal to the number of wins.

All participant models demonstrated improved perfor-
mance to varying degrees on the reduced evaluation set 
(removing p.K84del) containing only missense variants; see 
Figs. 3a and 4b. Performance of evolutionary action, Protein 
language model, and Bologna biocomputing improved sig-
nificantly on all three metrics, whereas 3Cnet only improved 
on AUC by a small margin. In fact, evolutionary action per-
formed better than 3Cnet on Pearson’s correlation (0.81 vs. 
0.78) and identically on Kendall’s Tau (0.581 vs. 0.581). 
3Cnet retained its advantage on AUC at 0.94 vs. 0.9 for 
evolutionary action. The significant improvement in evo-
lutionary action’s performance on the removal of p.K84del 
was observed because it predicted the indel as having the 
lowest R-WT activity in the evaluation set, whereas it retains 
enough activity to be deemed WT-like as per both assays. 
The ROC curves of evolutionary action and Protein lan-
guage model depicted improved behavior upon the removal 
of p.K84del since they no longer demonstrate a false positive 
error at 0 true positive rate; see Fig. 4.

Comparison with publicly available tools

We also evaluated the performance of publicly available 
tools, REVEL, AlphaMissense, MutPred2, PolyPhen-2, and 
EVE on the evaluation set as a baseline; see Figs. 3a and 
4a, and Table 4. REVEL was the top performing tool on all 
three performance metrics when compared to other publicly 
available tools and the submitted predictors: Pearson’s cor-
relation = 0.82, Kendall’s Tau = 0.66 and AUC = 0.95. Its 
improvement over the best-performing participant model 
3Cnet was significant on all three metrics with 720 (Pear-
son’s correlation), 801 (Kendall’s Tau) and 527 (AUC) wins, 
and p-values < 10−45 , < 10−86 and = 0.041 , respectively. 
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AlphaMissense was the second-best-performing tool. The 
top performing submitted predictor, 3Cnet, performed better 
than AlphaMissesnse on Pearson’s correlation and AUC, but 
not on Kendall’s Tau; see Fig. 3a and Table 4.

The performance of most publicly available tools 
appeared more or less similar with and without p.K84del 
(except correlations measured for PolyPhen-2 and EVE); 
see Figs. 3b and 4b. However, this could be an artifact of our 
imputation approach. Most publicly available tools (except 
PolyPhen-21) did not make predictions on p.K84del. For a 
fair comparison with participant models on the same set of 
variants, a prediction score for p.K84del was imputed using 
the average over other variants without missing predictions. 
Since p.K84del’s R-WT activity was in the intermediate 
range, the average-based imputation approach worked in 
favor of the tools and p.K84del’s inclusion in the evalua-
tion set did not affect their performance adversely, unlike 
evolutionary action, Protein language model, and Bologna 
biocomputing. The lower performance of EVE could be 
attributed to missing predictions for three other variants 
(p.A397S, p.R409W, p.A417S), in addition to p.K84del, 
which were also imputed by the average prediction.

Comparison with Experimental‑Max

The consistency of the assay was quantified by evaluating 
the Experimental-Max predictor. At Pearson’s corr. = 0.83 
and Kendall’s Tau = 0.68, the assay demonstrated medium 
level of consistency in measuring the R-WT activity; see 
Fig. 3a. The consistency was high in separating LoFs from 
WT-like variants at AUC = 0.96. In addition to quantifying 
assay consistency, Experimental-Max performance on the 
three metrics gave upper limits to a predictor’s performance, 
since a predictor can not be expected to better predict the 
assay output than the assay replicates. REVEL comes very 
close to Experimental-Max in its performance; with a gap 
of ∼0.01 on AUC, and ∼0.02 on Pearson’s correlation and 
Kendall’s Tau. The trend holds true even after the removal 
of the imputed variant p.K84del with a slightly worse gap of 
∼0.04 on Kendall’s Tau. The gap between the performances 
of 3Cnet, AlphaMissense, and MutPred2 with Experimen-
tal-Max is not too large either in terms of AUC ( ∼0.03 ). 
Overall, the comparison between the top performing mod-
els and Experimental-Max reveals that these predictors are 
comparable to the assay in terms of correlation with STK11 
variants’ R-WT activity and separating LoFs from WT-like 
variants. However, an evaluation on a larger set of variants 
might be necessary to confidently assert this claim.

Difficult‑to‑predict variants

In Fig. 5, we quantify the difficulty in predicting each variant 
over a set of competitive predictors having an AUC greater 
than 0.8. For a LoF (or WT-like) variant the difficulty is 
quantified as the FPR (or FNR) of each selected predictor at 
that variant; see “Identification of difficult-to-predict vari-
ants”. Some LoF variants (e.g., p.R297S, p.G242V, p.G56W, 
p.D194Y) are easy to predict by most methods. All LoFs, 
except p.H202R, had at least one method predicting lower 
activity than all WT-like variants, i.e., FPR = 0. Variant 
p.H202R was significantly difficult to predict as LoF by all 
predictors. Some WT-like variants (e.g., p.Q112E, p.A417, 
p.A397S) were easy to predict for most predictors. All WT-
like variants, except p.S31F and p.P275L, had at least one 
method predicting higher activity than all LoF variants, i.e., 
FNR = 0. The difficulty in predicting p.S31F and p.P275L 
can be explained by the observation that they have the lowest 
experimental R-WT activity values among all WT-like vari-
ants. Furthermore, in case of p.P275L multiple predictors 
have FNR as low as 0.07.

The LoF variant p.H202R has an average FPR of 0.537 
across the selected predictors, indicating that over half of 
the benign variants were predicted to have a lower R-WT 
activity on average. Thus it is an outlier LoF variant that 
is not predicted well by any competitive predictors. Don-
nelly et al. (2021) also made a similar observation based on 
the predictive tools considered in their assessment. Com-
pared to other LoF variants, p.H202R has a higher R-WT 
activity of 0.32; only five (p.R297M, p.W308R, p.G242V, 
p.R297S, p.G251C) out of the fifteen LoF variants have a 
higher R-WT activity. However, despite their higher activ-
ity, the five variants are well predicted by multiple predic-
tors, suggesting that the activity level of p.H202R does not 
explain the challenging nature of the variant. Interestingly, 
p.H202R is the only variant where the two assays differ in 
their classification. It is annotated LoF based on the lucif-
erase assay and WT-like based on the gel-shift assay (Don-
nelly et al. 2021); see Table 3. p.H202R is located in func-
tional regions VIB-VIII (amino acids 172–225), a part of the 
kinase domain specifically related to substrate recognition 
(Hearle et al. 2006), which affects its binding affinity to p53, 
but not its kinase activity. Since the luciferase assay meas-
ures an STK11 variant’s effect on the transcriptional activ-
ity of p53, it shows a reduced activity due to p.H202R. It is 
likely that the predictors perform well concerning the kinase 
activity prediction, but fail to capture p.H202R’s effect on 
binding p53.

Correlation between predictors

Computing the pairwise correlation between the predictors, 
we observed that the top-performing predictors were more 

1  A prediction for p.K84A was used by the tool as substitute for 
p.K84del.
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correlated with each other, compared to the correlation with 
the experimentally measured R-WT activity; see Fig. 6. This 
trend has been observed previously in many CAGI chal-
lenges (The Critical Assessment of Genome Interpretation 
Consortium 2024; Clark et al. 2019) and can be attributed 
to the predictors using similar features and training data.

Clinical variant classification

Performing variant classification by combining the newly 
available functional evidence from the assays with compu-
tational evidence from REVEL, population data evidence 
from gnomAD and evidence from co-located pathogenic 
variants (see “Clinical variant classification”) revealed that 
16 new variants could attain a clinically actionable LP (6 
variants) or LB (10 variants) classification for the diagnosis 
of Peutz–Jeghers syndrome (PJS); see Table 5. The variants 
that received a definitive classification included 1) 15 vari-
ants from the evaluation set whose clinical significance was 
unknown since they were either not observed in ClinVar 
and HGMD or were observed as DM? in HGMD or were 
observed in ClinVar as VUS or with conflicting annotations, 
2) 1 variant observed in HGMD as disease-causing muta-
tion (DM), but were absent from ClinVar and 3) 4 variants 
already observed in ClinVar with a definitive classification 
of either P/LP or B/LB. Although there were 8 variants that 
failed to receive a definitive classification, 5 (3) of them 
attained a VUS-high (VUS-low) status, moving them closer

to LP (LB) classification, thereby reducing the uncer-
tainty in their pathogenicity/benignity status. The 4 vari-
ants, already having definitive classification in ClinVar, 
received consistent classifications based on the four evi-
dence types. However, 3 out of the 4 variants were depos-
ited with stronger total evidence in ClinVar as they had P 
(p.R297S) or P/LP (p.D194Y) classification instead LP or B/
LB (p.F354L) classification instead of LB. Such differences 
in the classification are expected since we do not consider 
all types of evidence (e.g., case data) allowed by the clinical 

guidelines. Thus the total points and the clinical classifica-
tions (Final category) for other variants given in Table 5 
might change slightly if other types of evidence are also 
considered.

Discussion

The performance levels of the top methods in the STK11 
challenge were on the higher end compared to the previous 
biochemical effect challenges in CAGI (The Critical Assess-
ment of Genome Interpretation Consortium 2024). However, 
since the evaluation was performed on a small set of 22 vari-
ants, it is possible that the performance may not generalize 
to the same extent on other STK11 variants. Evaluation of 
a larger set of variants would be necessary to confidently 
characterize the performance of computational predictors on 
kinase activity prediction. Assuming that the results would 
indeed generalize, the high level of performance on STK11 
variants is partly because of advancements in machine learn-
ing and partly because the enzymatic activity of STK11 
might be easier to predict computationally compared to other 
biochemical effects/genes. The latter can be justified by the 
observation that the improvement in the performance for 
STK11 is also observed for well-characterized tools such 
as MutPred2, evolutionary action, and PolyPhen-2; see 
NAGLU and PTEN challenge results in The Critical Assess-
ment of Genome Interpretation Consortium (2024).

The top-ranking submitted method, 3Cnet, performed 
competitively with REVEL, the best-performing method 
overall. Interestingly, 3Cnet, based on modern deep learn-
ing approaches and LSTM architecture, with innovative use 
of simulated variants, is a simpler predictor compared to 
REVEL, a meta predictor that combines 13 other predictors 
in an ensemble.

The predictors were consistent on some LoF vari-
ants while differed on other LoF variants. All predic-
tors fail to predict the effect of p.H202R (LoF) on p53’s 

Fig. 6   Correlation between 
predictors. a Pearson’s corr., 
b Kendall’s Tau. Each off-
diagonal element gives the 
pairwise correlation between a 
pair of predictors. The diagonal 
elements give correlation 
between the predictor and the 
experimental R-WT activity 
for comparison. p.K84del was 
excluded while computing the 
correlations in this figure, since 
most publicly available tools do 
not make prediction on indels
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transcriptional activity, as measured by the luciferase 
assay. There is evidence suggesting that p.H202R might 
only affect STK11’s ability to bind with p53 and not its 
ability to function as a kinase; see “Difficult-to-predict 
variants”. It is likely that the tools are well correlated 
with STK11’s kinase activity overall but fail to capture 
the p.H202R’s role in binding p53. Our variant classifica-
tion analysis remained inconclusive towards establishing 
the pathogenicity/benignity of p.H202R.

A unique feature of the STK11 challenge was the pres-
ence of multiple biological and technical replicates in 
the data generation process, compared to similar CAGI 
challenges where only technical replicates were avail-
able (The Critical Assessment of Genome Interpretation 
Consortium 2024). We incorporated the replicates in an 
Experimental-Max predictor to quantify assay consistency 
and derive an upper bound to the predictive performance. 
The assay demonstrated medium consistency on the cor-
relation metrics and high consistency on AUC. Multiple 
models reached AUC levels close to the maximum achiev-
able AUC from Experimental-Max. REVEL also reached 
close to the maximum performance on Pearson’s corr. and 
Kendall’s Tau. The STK11 challenge is the first instance 
in CAGI to demonstrate that the computational tools could 
separate LoFs from WT-like variants and predict enzyme 
activity at a precision comparable to the assay, although a 
larger set of variants and more replicates are necessary to 
investigate this hypothesis thoroughly.

Our variant classification analysis justified clinical 
actionability on 16 variants (6 LP and 10 LB) that were 
previously had uncertain significance. This further high-
lights the importance functional studies and computational 
tools for improved variant classification when other types 
of evidence such as segregation data and prevalence in 
patients are not available or give inconclusive results 
(Table 5).
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