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Abstract

The Critical Assessment of Genome Interpretation‐5 intellectual disability challenge

asked to use computational methods to predict patient clinical phenotypes and the

causal variant(s) based on an analysis of their gene panel sequence data. Sequence

data for 74 genes associated with intellectual disability (ID) and/or autism spectrum

disorders (ASD) from a cohort of 150 patients with a range of neurodevelopmental

manifestations (i.e. ID, autism, epilepsy, microcephaly, macrocephaly, hypotonia,

ataxia) have been made available for this challenge. For each patient, predictors had

to report the causative variants and which of the seven phenotypes were present.

Since neurodevelopmental disorders are characterized by strong comorbidity, tested

individuals often present more than one pathological condition. Considering the
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overall clinical manifestation of each patient, the correct phenotype has been

predicted by at least one group for 93 individuals (62%). ID and ASD were the best

predicted among the seven phenotypic traits. Also, causative or potentially

pathogenic variants were predicted correctly by at least one group. However, the

prediction of the correct causative variant seems to be insufficient to predict the

correct phenotype. In some cases, the correct prediction has been supported by rare

or common variants in genes different from the causative one.
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interpretation

1 | INTRODUCTION

Neurodevelopmental disorders (NDDs) are a spectrum of disease

conditions affecting brain development. Affected patients have

increased manifestations as their childhood progresses, as the

pathogenic conditions disturb normal brain development. Manifesta-

tions usually start with a nonspecific form of intellectual disability

(ID), characterized by limitations both in intellectual functioning

(reasoning, learning, problem solving) and in adaptive behavior, which

covers a range of everyday social and practical skills. However,

additional manifestations, such as autism spectrum disorders (ASD)

and epileptic seizures, can arise (Bowley & Kerr, 2000; Tonnsen et al.,

2016). Structural abnormalities of the cranium (i.e. microcephaly,

macrocephaly) may also be present at birth or appear postnatally.

People with ID show also a delayed motor development, which

become evident with abnormalities in gait, such as ataxic gait (i.e. a

lack of coordination in movement with a tendency to fall), hypotonia

(general muscle weakness), or with “unconscious” active motor

behaviors (e.g. dyskinetic–dystonic movements or stereotypies;

Almuhtaseb, Oppewal, & Hilgenkamp, 2014). NDDs are clinically

and phenotypically diverse, but driven by a substantial and over-

lapping genetic component, with numerous shared risk genes

underlying these conditions (Mitchell, 2011). In particular, complex

conditions such as ID and ASD have already been associated to

hundreds of different genes. Next‐generation sequencing (NGS) has

led to the identification of many new NDDs genes with an excess of

de novo mutations when compared with controls (Iossifov et al.,

2014). Despite remarkable genetic heterogeneity, the findings from

NGS and improvement in systems biology approaches, unraveled

convergent biological pathways involved in brain development and

help our understanding of disease pathophysiology (An et al., 2014;

Barabási, Gulbahce, & Loscalzo, 2011; Krumm, O’Roak, Shendure, &

Eichler, 2014; Pinto et al., 2014).

As NDDs can in principle be diagnosed even before birth by

genetic tests, this has led to an increasing application of NGS in

clinical practice. Medical laboratories are routinely asked to screen

hundreds of patients, which are either affected by NDDs or at risk of

developing the condition. The limiting factor for successful diagnosis

has, therefore, become the identification of causative mutations to

associate to given pathogenic phenotypes. As most of these

mutations are extremely rare or private, the problem is one of

interpreting the effects of scores of variants of unknown significance

on a wide range of candidate genes. This background fits well into the

framework of the Critical Assessment of Genome Interpretation

(CAGI) experiment, which has a declared goal of assessing methods

to help interpret the effects of variants of unknown significance. A

similar challenge was present in the CAGI‐4 experiment with the

Hopkins gene panel, where predictors were asked to predict

phenotypes based on the results of a genetic screening performed

on a set of 83 genes associated to 14 different conditions (Chandonia

et al., 2017).

The setup of the CAGI‐5 ID challenge starts from a similar

background. The Padua Genetics of Neurodevelopmental Disorders

Lab at the Department of Woman and Child Health, the University of

Padua (henceforth, Padua NDD lab) has been using a gene panel to

diagnose different NDD subtypes for the past couple of years. For

the purpose of the CAGI‐5 challenge, a data set of 150 unpublished

pediatric patients was released. Starting from the gene panel

sequencing data, predictors were asked to predict (a) the phenotypes

and (b) their causative or potentially causative variations for each

patient. Phenotypes have been derived from the clinical notes

collected by geneticists visiting the patients. Candidate variants have

been validated by segregation analysis, that is verifying their absence

in the parents according to the de novo paradigm, inherited from

affected parents. It should be noted that this is a difficult “open

world” CAGI challenge, as clinical notes may be somewhat subjective

and only a subset of genes have been screened. Furthermore, the

phenotypic traits to predict are pathophysiology conditions that can

be present in different NDDs, thus, in contrast to the CAGI‐4
Hopkins challenge, patients may manifest more than one of these

phenotypes, in different combinations.

The challenge is realistic as it well represents the difficulty of

assigning causative mutations to complex neurological diseases in

clinical practice. In a few selected cases, consistent predictions were

used to challenge previous assumptions and have led to a revised

molecular diagnosis.
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2 | MATERIALS AND METHODS

2.1 | Sequencing, variant nomenclature, and
analysis by the Padua NDD lab

Coding sequences and nearest flanking regions of 74 genes were

targeted for deep sequencing with a custom Ampliseq panel assay using a

mixture of oligonucleotides generating 1,834 amplicons covering 520 kb.

Multiple indexed libraries were pooled and sequenced on the Ion PGM

platform (Thermo Fisher Scientific). Alignment and variant calling were

performed with the Ion Torrent Suite Software v 5.02 (Thermo Fisher

Scientific). The panel of 74 genes was sequenced in 150 individuals

referred to the Padua NDD lab for intellectual disability with or without

autistic features. VCF files of the 150 patients were provided to the

CAGI‐5 organizers with clinical information regarding the presence of

seven “phenotypic traits” for each patient (Table S1). The clinical

information was provided by the patient's physician, who were asked

to fill a clinical record for each patient. When the clinician left a field

empty, we indicated information about the specific trait as not

available, although we cannot exclude that some patients may present

it. The Padua NDD lab also indicated the identified variants of the

sequenced genes that have been classified as causative, putative, or

contributing factors (see Table S2). Causative variants are supported by

segregation analysis and genotype‐phenotype correlation, while "puta-

tive" ones are rare or novel variants predicted as pathogenic for which

segregation analysis is not available. Contributing factors are rare or

novel variants predicted as pathogenic, inherited from apparently healthy

parents, mapping on genes that confer a risk but are not sufficient to

cause the disease, mapping on genes causing ASD susceptibility, or found

mutated in individuals with very mild phenotypes. Table 1 summarizes

the amount of patients with variants associated with each phenotype.

To evaluate the putative clinical impact of the variants, the

following criteria were applied: (a) allele frequency <0.002% in

the Gnomad database, or <0.45% for variants in autosomal‐
recessive genes, as indicated by (Piton, Redin, & Mandel, 2013;

Whiffin et al., 2019) (b) absence of the variant in other samples

(in‐house database), (c) stop gain, frameshift and splicing variants

were a priori considered to be most likely pathogenic, (d) for

missense mutations, amino acid conservation and consensus of

pathogenicity predictions were evaluated, (e) inheritance mode,

(f) phenotypic consistency with the clinical signs associated to

mutations in the same gene.

It is important to note, that for a diagnostic purpose, the

thresholds used by the Padua NDD lab to filter candidate variants,

have been calculated based on the assumption that the patient

phenotype follow a Mendelian transmission.

Whiffin et al. (2019) demonstrated that for humanMendelian disease

clinical genome interpretation is empowered by using high‐resolution
variant frequencies. To select candidate variants responsible for ID, Piton

et al. (2013) suggested to filter variants with a frequency compatible with

the incidence of the disease (i = 2% in the general population). Since the

repeat expansion on FMR1 gene remains the most frequent cause of

X‐linked forms of ID and given the genetic heterogeneity of NDDs, we

expect that mutations in other genes account for less than 0.1% of all ID

cases, resulting in a disease frequency <0.002% (i = 0.02×0.001).

Variants in genes associated to recessive disorders should not exceed

the threshold of 0.45% (√0.002%).

2.2 | Challenge format

Participants were provided with 150 VCF files, one per patient, a

detailed description of the seven disease phenotypes given in

Table S1, the 74 gene identifiers, the gene captured regions used

in sequencing the patients in browser extensible data format, a

submission template, and a submission validation script. Further-

more, participants were informed that each patient may have

more than one phenotypic trait, and all have at least one.

Participants were asked to submit the predictions of phenotypic

traits and causative variants for each patient, based on their

gene panel sequences. For each submission, participants were

required to predict the probability that a patient has a referring

phenotypic trait in each of the 7 phenotypic classes provided, as

well as the predicted causal variant(s) from the gene panel

sequence data set for every disease class with a non‐zero
probability. Each predicted disease class probability also included

TABLE 1 Patients for whom Padua NDD lab identified at least one causative or potentially disease variant in the answer key, summarized by
phenotype

Phenotype Patients Disease causing Putative Contributing factor All variants

ID 49 25 18 12 55

ASD – autistic traits 31 14 12 10 36

Epilepsy 18 9 8 2 19

Microcephaly 8 5 2 1 8

Macrocephaly 4 4 0 0 4

Hypotonia 6 4 1 1 6

Ataxia 3 1 2 1 4

Note: Each variant is specific for each patient and one patient can be associated to more than one phenotype.
Abbreviations: ASD, autism spectrum disorder; NDD, neurodevelopmental disorder.
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a mandatory standard deviation (SD) field indicating the confidence

prediction, with low SD indicating high confidence and high SD

indicating low confidence.

2.3 | Assessment

The prediction assessment was focused on evaluating the predictive

ability of the different submissions, considering their performance on

each disease phenotype. This approach has been successfully used for the

analysis of multilabel classifier performance, since it focuses on a set of

two‐class prediction problems (Fawcett, 2006). It also simplifies the

assessment procedure, allowing to compare and highlight different

method performances on each single phenotype, instead of evaluating

them considering the whole predicted class matrix (150×7, one

prediction for each patient and phenotype).

Predicted disease classes for each submission were assessed

against the clinical phenotype given in the Padua NDD lab answer

key, using the procedure described below. When the predictors

did not provide a probability value leaving the asterisk on the

template file, it was treated as probability zero in the assessment.

The first phase of the assessment procedure was the conversion of

submitted probability values to positive (1) or negative (0) classes. The

conversion was done by each phenotype column, considering as

threshold the probability value which maximizes the Matthew correlation

coefficient (MCC) for that phenotype. We compared all probability values

of each phenotype with the corresponding threshold and assign 0 or 1 if

the value is lower or higher, respectively. In addition, different

performance measures were used to assess the predictions for each

phenotype. Sensitivity and specificity have been used to evaluate the

model capability to detect positive cases and discriminate between

positive and negative classes. TheMCC, accuracy (ACC) and F1 measures

have been used to evaluate both negative and positive predictions at the

same time (see Section 2 for details). Particularly, MCC has been proven

to be less influenced by an unbalanced data set (Vihinen, 2012), as

is the case of this challenge where some phenotypes are completely

unbalanced (Figure 1c). Receiver operating characteristic (ROC) curves

have been produced comparing experimental and predicted probability

values for each phenotype. The Area Under ROC curve (AUC) was

calculated for these.

The R scripts used to perform the assessment are publicly

available from the GitHub repository at URL: https://github.com//

CAGI‐ID‐assessment.

2.4 | Prediction methodology

A total of four groups, plus a late prediction (which can be found in

the Suppl. Material), submitted predictions for the ID challenge. The

group prediction approaches are summarized in Table 2 and

described in detail below.

F IGURE 1 Summary of CAGI‐5
intellectual disability challenge
experimental data. (a) For the 150 patients
included in the study, the Padua NDD lab
noted at least one mutation relevant to the
phenotype in the 33% of the patients (b)
Variant classes distribution. (c) The
number of patients where the presence or
absence of the phenotype was ascertained
by a clinician. CAGI‐5, Critical Assessment
of Genome Interpretation‐5; NDD,
neurodevelopmental disorder
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2.4.1 | Group 1 (Mooney–Radivojac Lab)

Annotation of the protein‐coding variant in the raw VCF files was

performed using ANNOVAR (http://annovar.openbioinformatics.org/

en/latest/), including extraction of wild type and mutant protein

sequences (Wang, Li, & Hakonarson, 2010). Pathogenicity prediction

scores were assigned to missense, stop gain, and frameshifting indel

variants with Mutpred2 (http://mutpred.mutdb.org/; Pejaver et al.,

2017) and Mutpred‐LOF (http://mutpredlof.cs.indiana.edu/; Pagel

et al., 2017). In each individual, phenotypic trait risk was determined

based only upon the variant with the highest pathogenicity

prediction score across a set of phenotype‐specific risk genes. For

each phenotypic trait, a list of risk genes that are known to harbor

disease‐causing variants associated with that phenotypic trait was

compiled from the Human Gene Mutation Database (HGMD;

Stenson et al., 2017).

Gene lists were extended, particularly those with fewer

known risk genes (macrocephaly, hypotonia, and ataxic gait),

with the PhenoPred (https://www.phenopred.org/) web tool

(Radivojac et al., 2008) and a gene prioritization algorithm.

Confirmed risk genes have been used as “seed" genes on the

human protein‐protein interaction network for running a net-

work propagation algorithm (Nabieva, Jim, Agarwal, Chazelle, &

Singh, 2005). The propagation algorithm was performed in a

fivefold cross‐validation manner so as to get an initial score

between [0, 1] for all the genes. The AlphaMax algorithm (Jain,

White, & Radivojac, 2016) was used to estimate the positive

proportion of the risk genes and calibrate those initial scores to

be proper probability scores measuring the likelihood of a gene

being associated with the disease. For each phenotypic trait, the

probability was MutPred2 or MutPred‐LOF score of the highest

scoring variant in the associated risk genes.

2.4.2 | Group 2 (Moult Lab)

The 150 VCF files (one VCF file per patient) provided for the

challenge were annotated using the Varant tool (http://compbio.

berkeley.edu/proj/varant/Home.html), including region of occurrence

(intron, exon, splice site, or intergenic), observed minor allele

frequencies (MAF), mutation type, predicted impact on protein

function, and previously established associated phenotypes reported

in ClinVar (Landrum et al., 2014). The RefGene (Pruitt et al., 2014)

gene definition file was used for gene and transcript annotations in

Varant. In addition, in‐house scripts were written to further annotate

the VCF files with HGMD (Stenson et al., 2003) disease‐related
variants, with dbscSNV (Jian, Boerwinkle, & Liu, 2014) and SPIDEX

(http://tools.genes.toronto.edu/; Xiong et al., 2015) variants that

potentially alter splicing, and with REVEL (Ioannidis et al., 2016)

scores for missense variants. A quality control analysis was

performed to exclude outlier samples (see Supporting Information

Material). The transition/transversion ratio (Ts/Tv) and heterozy-

gous/homozygous ratio were compared with the 1000 Genomes data

set for the genomic regions captured for sequencing in the challenge

data set. Comparison of common, rare, and novel variant counts

across samples was also performed. The 74 genes were mapped to

one or more of the seven phenotype traits using two independent

approaches generating two different gene‐phenotype mapped files.

In addition to the OMIM database, the Genetic Home Reference

(https://ghr.nlm.nih.gov/) or Human Phenotype Ontology (https://

hpo.jax.org/app/) databases, respectively, were used to map the

phenotypes to the genes. The variant prioritization procedure was

performed on each of these phenotype lists. Only rare variants (MAF

less than or equal to 1% in Exac (http://exac.broadinstitute.org) or

novel variants (not reported in ExAC), flagged as PASS in the VCF

files, were considered. Indels in low complexity regions (LCR) were

TABLE 2 Computational approaches adopted by different groups

Group

Annotation Gene‐Phenotype Variant impact

Filters

Inheritance
modelID Submission Name Frequency

Low
quality

1 1.1 Mooney‐
Radivojac

ANNOVAR HGMD, PhenoPred, and PPI
for network propagation

MutPred2 and
MutPredLOF

– – –

2 2.1 Moult Lab Variant OMIM+GHR, OMIM+HPO 13 levels of
variant impact

SNVs > 1%, SNVs in
LCR low
complexity region

yes yes

2.2

2.3

2.4

2.5

2.6

3 3.1 Lichtarge
Lab

ANNOVAR Diffusion on CTD
(Comparative
Toxicogenomics Database)
associations

Evolutionary
Action

No yes no

3.1

3.3

4 4.1 Brenner Lab CHESS v0.1 Phenolyzer VEP, REVEL
score

SNVs MAF > 5% yes yes

4.2

4.3

Abbreviations: HGMD, Human Gene Mutation Database; LCR, low complexity regions; MAF, minor allele frequencies.
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excluded from the analysis, based on the LCR data set precomputed

for the human genome by Li (2014). A strand bias filter was used to

remove variants whose alternate allele was present only on one

strand of the reads mapped to the variant position. Variant

prioritization was based on two main criteria, variant quality, and

variant impact, that were applied in a sequential manner to each

sample. For each criterion, five different levels of variant quality and

13 different types of variant impact were defined respectively (for

more details see Suppl. Material). Putative causative variants

identified were further filtered for inheritance model associated

with the gene, according to the available information for the gene

concerned in OMIM and Genetic Home Reference database.

To compute a probability score, that is the probability of a variant

causing a disease phenotype, a number of ad hoc procedures

were used. An exception was for missense variants, where the

probability was assigned using the extent of consensus among the

four missense‐analysis methods, previously calibrated from HGMD

data and a control set of interspecies variants. Other variant types

were subjectively assigned probabilities depending on the severity of

the impact. Furthermore, depending on the considered mode of

inheritance, the probability score was adjusted. Ad hoc probabilities

of a correct variant call were also assigned to each variant based on

the variant quality filters (see Supporting Information Material). Six

different predictions were performed based on the two different

gene‐phenotype lists and different combination of probabilities.

2.4.3 | Group 3 (Lichtarge Lab)

Variants of poor sequencing quality (QUAL < 80) were excluded

from the analysis and the rest variants were annotated with

ANNOVAR (http://annovar.openbioinformatics.org/en/latest/;

Wang et al., 2010). There were three submissions that used (a)

only missense, (b) missense and nonsense, and (c) all variations.

The effect of each variant was estimated with the evolutionary

action (EA) (http://mammoth.bcm.tmc.edu/uea/) equation (Kat-

sonis & Lichtarge, 2014) and the function loss of each gene was

calculated as: LOFg = 1‐∏(1‐EAi/100), where ∏ indicates the

product for all mutations i in that gene. Nonsense and fs‐indel
variants were given EA of 100, while silent variants were given

EA of 0. Genes were also weighted for their ability to tolerate

mutations (wg), calculated as the fractional rank of the average

EA score of mutations seen in the gnomAD data (Lek et al., 2016).

The weighted loss of function of each gene (wg*LOFg) was used as

a starting value for diffusion across the CTD gene‐disease
network (Mattingly, Colby, Forrest, & Boyer, 2003). Diffusion

scores were calculated for each disease (Lin et al., 2018) and a

collective burden was calculated for each of the seven disease

categories (normalized between 0 and 1). The relative ratios of

the collective burden of the disease categories were used as the

probability that a patient belongs to that disease category. The

variants that contributed most to the collective burden of each

disease category were reported as the causal variants.

2.4.4 | Group 4 (Brenner Lab)

This group used their software CHESS v0.1 adjusting

some parameters to perform predictions for the CAGI‐5 ID challenge.

Public data used on CHESS are variant frequency data

from GNOMAD v2.0.2 (https://gnomad.broadinstitute.org/; Lek

et al., 2016), precalculated variant deleterious scores by REVEL

(https://sites.google.com/site/revelgenomics/; Ioannidis et al., 2016),

and clinical evidence data from ClinVar (Landrum et al., 2016;

downloaded on 2017‐10‐02). Phenotype matching scores for all

genes were calculated using Phenolyzer (Yang, Robinson, & Wang,

2015). Precalled variants from the case exome were annotated with

data using VEP (McLaren et al., 2016), GNOMAD variant frequency

data, ClinVar evidence, and the precalculated REVEL scores. To

reduce the computing burden, common (variants with MAF > = 5%)

and non‐protein‐altering variants have been excluded from the

analysis. The selected variants were scored based on the quality of

data, impact severity, phenotype‐match score (see Supporting

Information Material). Different scoring adjustments were also

performed based on the inheritance mode considered. The three

submissions correspond to three models with different stringency in

the final decision, based on variant frequency in the 150 patient

cohort and the probability score threshold used for each prediction.

3 | RESULTS

3.1 | Summary of experimental data and
submissions

Four groups submitted a total of 13 predictions for the CAGI‐5 ID

challenge. Group 2 submitted 6 predictions, groups 2 and 3 submitted

three predictions each. In addition, a late submission (Group 5) was not

considered for the general assessment but can be found in the

Supporting Information Material. Table 2 summarizes the participating

groups, computational methods, and their submissions.

An overview of the genetic and clinical data used in the ID

challenge is shown in Figure 1. The 150 patients in the challenge can

be divided into two groups: (a) patients for whom the Padua NDD lab

identified at least one causative or potentially disease variant in the

answer key (50 patients, 33%) and (b) patients for whom the Padua

NDD lab excluded the presence of potentially pathogenic variants

(100 patients, 67%). The total number of variants associated to at

least one phenotype is 56 and variants are unique of each patient.

In Table 1 is shown how variants are distributed in the different

phenotypes. These variants were classified by the Padua NDD lab

according to their possible effect as follows (Figure 1b): causative (25

variants), putative (18 variants) and contributing factor (13 variants).

However, all variants were treated equivalently for purposes of

assessing and ranking predictions.

Most of the patients with identified variants have at least one

causative, and 16 and 13 patients show at least one putative or

contributing factor variant, respectively. Combinations of different

variant types in the same patient were observed only in a limited

number of cases.
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Phenotypic features were associated to each patient by a

clinician. Although all patients have at least one feature assigned,

the phenotypes were not equally represented in all patients. Figure

1c shows that most of the patients have ID, ASD, or epilepsy. Other

phenotypes (microcephaly, macrocephaly, hypotonia, and ataxia)

were less frequently observed in these patients. Nevertheless, for

many patients, no information was available about the presence or

absence of a phenotype. Analyzing the overlap among phenotypes in

patients, most patients have in common the phenotypes ID and ASD

(39 patients), and ID, ASD, and Epilepsy (21 patients; Figure S2).

3.2 | Phenotype prediction assessment

In this CAGI‐5 challenge, the phenotype assessment was performed

individually for each of the seven phenotypic traits assigned by the

Padua NDD lab. Figure 2 shows the number of groups predicting

correctly a patient phenotype when it was present. The ID phenotype

was best predicted by most of the groups for about 90% of ID

patients. ASD was the second best phenotype predicted among the

patients. Despite the limited number of patients with microcephaly

(18 patients), this phenotype was correctly predicted in about 60% of

cases by most of the groups. Other phenotypes, such as epilepsy,

macrocephaly, hypotonia, and ataxia, were poorly predicted by the

different groups.

Considering only patients for whom the presence or absence of a

phenotype was ascertained by a clinician (Figure 1c), it is important

to observe the patient coverage by each submission. Figure S1 shows

the number of patients with predictions in each submission for the

different phenotypes; at least one prediction was made for all

possible patients. However, Group 3 and 5 submissions did not

predict any probability values for many patients, particularly in ASD,

epilepsy, macrocephaly, hypotonia and ataxia phenotype. Figure S1

also shows the number of patients for whom the phenotype was

correctly predicted.

The overall submission performance was assessed using AUC for

each phenotype, with MCC, ACC, and F1 measures used to better

evaluate predictions. Figure 3 shows a summary of the AUC values

obtained by each submission in the different phenotypes. In addition,

Figure 4 and Table S3 show the ROC curves and performance

measures, respectively, for all submissions in each phenotype. Since

the overall predictions are far from a perfect performance, the

prediction assessment for each phenotypic trait was performed also

in the group of patients where the Padua NDD lab noted a potentially

causative variants like previous CAGI challenge assessments (data

not shown; Chandonia et al., 2017). However, this did not show any

improvement of predictor performance.

For the ID phenotype, submission 4 of Group 2 achieved the

highest AUC value (0.78), followed by submissions 2, 6, and 3 of same

group and submission 3 of Group 3. Indeed, submission 3.3 obtained

the highest overall performance considering all measures. They

correctly predicted 146 patients out 150, and a moderate correlation

with patient clinical data. ASD was the second most noted phenotype

in patients by the Padua NDD lab. While all Group 4 submissions and

submission 2.3 reached higher AUC values than other groups, AUC

values (average 0.56) and ROC curves remain close to random.

Submission 4.3 and 1.1 achieved the best performance considering

the other measures, with submission 1.1 equal in ACC, MCC and F1.

Both submissions well identified patient phenotype in almost 100%

of the cases.

Despite the rather good AUC, ACC and F1 values reached by some

groups for the ID phenotype, and also for ASD, the MCC values remain

quite low. Since MCC is not influenced by unbalanced categories, it

shows a more realistic picture of prediction performance. As most of

patients have the ID and ASD phenotypes, the confusion matrix is

completely biased towards true positive values due to the highly

F IGURE 2 The number of patients with
the phenotype. Colors represent the
proportion and number of groups which
correctly predicted the phenotype
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imbalanced classes. This causes the ROC curve and consequent AUC

not to reflect correctly the real predictor performance.

The presence or absence of the Epilepsy phenotype was poorly

predicted by most groups, with an average MCC value of 0.05. This

phenotype was particularly difficult, as roughly half of the patients

had the disease. The best performances were achieved by Group 4

and submission 1.1, predicting adequately more than 60% of patients.

While performance measures show modest values, Group 4 obtained

the highest AUC (0.56) and group 1 the best MCC, AUC, and F1

values (see Table S3).

Information about the presence or absence of Microcephaly

and Macrocephaly was available for about half (81) of the

patients. Microcephaly was reported in 18 patients and Macro-

cephaly in 12. Predictions for Microcephaly performed modestly,

the best AUC being reached by submission 4.3, which correctly

predicted 42 patients. Group 1 also predicted most of the

patients with the phenotype (15 correct). In addition, most group

2 submissions obtained the best MCC and ACC values compared

to other groups, predicting correctly 66 patients. However, best

MCC values are again poor compared to other measures,

denoting the effect of unbalanced categories in the predictions.

Group 2 predictions were biased to identify patients without the

phenotype (63 of 63 patients) and just three patients with the

disease. On the contrary, submission 4.3 was biased to predict

patients with the disease (17 of 18 patients) and 25 patients

without the phenotype.

Performance assessment for macrocephaly shows similar results

as microcephaly. Group 4 submissions performed better than other

groups in terms of AUC. Submission 4.3 predicted the highest

number of patients correctly (68 of 69 patients without the

phenotype and 3 of 12 patients with the phenotype). Submissions

4.1 and 4.2 predicted correctly the highest number of patients with

the phenotype (8 of 12 patients). Group 2 scored quite well in the

prediction of patients without the phenotype, their submissions

mostly predicting most of the patients where the phenotype was not

noted. MCC values among submissions are again low, meaning that

predictions were significantly biased.

The hypotonia phenotype was positively or negatively noted in

68 patients by the Padua NDD lab. AUC values reached by different

groups are poor, averaging around 0.5. Indeed, performance

measures such as MCC and ACC are lower than in other phenotypes.

Submission 4.3 obtained the best AUC, MCC, and ACC values

compared with other groups, correctly predicting 44 patients (6 of 28

with the phenotype and 38 of 40 without the phenotype).

Submissions 2.1 and 2.3 predicted most of the patients with the

phenotype (17 and 16, respectively).

The ataxia phenotype was noted positively and negatively in 54

patients and only 11 patients had the disease. Submissions 4.1, 4.3,

2.1, 2.2, and 2.5 predicted well most of the patients but were biased

to detect patients without the phenotype. Submissions 2.3 and 2.4

correctly predicted the presence of the disease in 7 and 8 patients,

respectively. Consequently, the best AUC and MCC values were

obtained by submission 2.4.

The overall submission ranking of this challenge was made

considering the average AUC rankings for each phenotype. Table 3

shows the position reached by each submission in the different

phenotypes. The best average ranked was submission 4.3, followed

by other submissions of the same group.

For the CAGI‐5 challenge, the assessment was performed also for

each patient considering their overall clinical manifestations (Table

S4). Only 39 patients have the seven phenotypes negatively or

positively assigned by Padua NDD lab. Among them, 13 patients

F IGURE 3 Overall performance for each submission on phenotype prediction. (a) Each cell represents the AUC values. The color scale
ranges from dark (+1, perfect performance) to white (0, bad performance). White means random performance. (b) Each cell represents MCC
values. The color scale ranges from green (+1, perfect correlation) to red (−1, negative correlation). White means no better than random
prediction. AUC, area under ROC curve; MCC, Matthew correlation coefficient
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(33%) were correctly predicted by at least one group, two patients

were correctly predicted by two groups and three patients

were correctly predicted by three groups. Four of these individuals

have at least one variant. Group 2 was the best and predicted

correctly the phenotype of eight patients taking into account all their

submissions (six submissions). Particularly, submission 2.4 predicted

well seven patients. Sixty‐three patients (53%), among 119

with information about at least three phenotypes, were correctly

F IGURE 4 ROC curves for each
phenotype. Submissions are colored by
predictor group. ROC, receiver operating
characteristic
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predicted by at least one group. Group 1 and Group 4 submission

3 were the best, correctly predicting 24 of 63 patients.

Furthermore, in this challenge, we performed the assessment

in predicting the overall clinical manifestation only for the

38 patients where the Padua NDD lab noted a causative or

putative variant. For 22 of them (58%), the whole phenotype

was correctly predicted by at least one group. Submission 3

Group 4 and Group 1 predicted correctly the phenotype in the

same number of patients (13; 34.2%), seven with causative and

six with putative variants. On the other side, among the 100

patients with at least one assigned phenotype and where the

Padua NDD lab did not report either a causative, putative or

contributing factor variant; 63 (63%) were correctly predicted by

at least one group. Considering only the patients with at least

three assigned phenotypes (80), 22 (27%) of them were

correctly predicted by at least one group. Again submission 4.3

and Group 1 were the best groups in this subset of patients

without pathogenic variants.

3.3 | Variant prediction assessment

Predictors have also been assessed for their ability to detect

variants in patients where clinicians have noted at least one

variant probably associated to the phenotype. Figure 5 shows

variant predictions for all patients and phenotypes by the

different submissions. The amount of experimental variants with

their corresponding classification are shown in the first three

bars on the plot. Submissions of Group 2 show the highest

amount of well‐predicted variants associated to the different

patient phenotypes (37 of 56). Indeed, Group 2 outperformed

other groups for causative (16 of 25), putative causative (12 of

18) and contributing factor (9 of 13) variants. Submission 3 of

TABLE 3 Overall ranking among phenotypes by each submission

Submission ID ASD Epilepsy Microcephaly Macrocephaly Hypotonia Ataxia Avg. Ranking Final

4.3 6 4 1 1 3 1 11 3.86 1

4.1 10 1 2 3 1 7 13 5.29 2

4.2 9 3 4 4 2 5 10 5.29 2

3.3 7 12 5 9 6 3.5 8 7.21 4

2.3 4 2 12 12 10 8 3 7.29 5

3.2 12 7 6 9 6 3.5 8 7.36 6

1.1 11 9 3 2 4 11 12 7.43 7

2.1 5 5 13 7 11 6 5 7.43 7

2.4 1 11 8 13 9 10 1 7.57 9

3.1 13 8 7 9 6 2 8 7.57 9

2.2 2 10 9 5 13 13 4 8 11

2.5 8 6 11 6 8 12 6 8.14 12

2.6 3 13 10 11 12 9 2 8.57 13

Note: Individual phenotype ranking for each submission was made considering the performance measured by AUC.
Abbreviations: ASD, autism spectrum disorders; AUC, area under ROC curve.

F IGURE 5 Predicted variants distribution. Category “Experimental” is the amount of variants which were identified and classified by the
Padua NDD lab. Each bar represents the amount of variants and type predicted by each submission. NDD, neurodevelopmental disorder
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Group 4 was the second group predicting most of the variants.

They correctly predicted 29 variants (11 causative, 9 putative

causative, and 9 contributing factor variants).

In addition, Figure 6 shows the fraction of each mutation type

well predicted by the different groups. It is possible to see that just

a small amount of variants were well predicted by all groups. The

28% of causative and 15% of contributing variants were correctly

identified by at least three groups. On the other hand, 17% of

putative variants were well predicted by at least three groups.

Table 4 contains the fraction of well‐predicted variants by each

group submission. Group 2 did not only predict most variants but

also obtained the highest fraction of correctly predicted variants,

calculated as the amount of variants well predicted divided by all

the predicted variants for all patients and phenotypes

Table S2 summarizes all variants noted by the Padua NDD lab and

the groups which predicted them correctly. All 25 causative variants,

except the SHANK3 frameshift indel chr22:51159830:A:TTC in patient

MR1970.01, were correctly predicted by at least one group. After the

initial assessment, we realized that this complex genetic event (nucleotide

substitution chr22:51159830:A:C plus a TT insertion) was molecularly

characterized by Sanger validation of the chr22:51159830:A:C

variant, but the variant caller plugin failed to call the insertion at near

position of the same reads. However, Group 4 correctly predicted

chr22:51159830:A:C as a potentially pathogenic variant.

The Padua NDD lab considered some causative missense

variants difficult to interpret (ATRX: p.N1377S; RAB39B p.F193L;

GRIA3 p.R216Q; MED13L p.G706E), since pathogenicity predic-

tions were discordant, allele frequency in control cohorts higher

than expected, or proband phenotype partially consistent with

those associated to the gene. However, the majority of the

groups was able to predict these correctly. One example is

the maternally inherited X‐linked p.F193L of the RAB39B gene

associated to recessive X‐linked mental retardation syndrome

(MR‐XL72, OMIM 300271) or to Waisman syndrome, which is

characterized by ID and early‐onset Parkinson disease (OMIM

311510). This variant is predicted damaging by three out

of 12 computational tools provided by ANNOVAR (LRT, Mutation

Taster, and fathmmMKL), is moderately conserved during

evolution, and present in a hemizygous state in two control

cohort individuals. However, the variant maps to the C‐terminal

hypervariable tail of RAB39B which is relevant for protein

interactions involved in protein targeting. The mother transmit-

ting the p.F193L variant has a mild phenotype, consistent with

F IGURE 6 Amount of variants
classified by their effect. Colors indicate
the proportion and number of groups
which correctly predicted those variants

TABLE 4 Summary of variants prediction assessment by each
submission

Submis-
sion

Correctly
pred.
variants

Total
pred.
variants

Correctly
pred.
variants/
Exp.
variants

Correctly
pred.
variants/
Total pred.
variants

1.1 16 228 0.29 0.07

2.1 37 174 0.66 0.21

2.2 37 171 0.66 0.21

2.3 37 174 0.66 0.21

2.4 37 171 0.66 0.21

2.5 37 174 0.66 0.21

2.6 37 171 0.66 0.21

3.1 12 129 0.21 0.09

3.2 16 135 0.29 0.12

3.3 16 148 0.29 0.11

4.1 16 157 0.29 0.10

4.2 10 113 0.18 0.09

4.3 29 290 0.52 0.10
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those reported in the literature associated to a missense

mutation at the close p.Gly192Arg position (Mata et al., 2015).

At least one group correctly predicted 16 of 18 putative

mutations. In particular, seven variants were indicated by the

majority of the groups. Three of these seven variants were inherited

and suspected to contribute to the disease together with other

genetic or environmental factors. For the other four cases, after the

CAGI‐5 assessment, we contacted the families to follow‐up the

molecular finding carrying out segregation analysis of the identified

variants. Only one family answered our call, which allowed us to

characterize the de novo status of the p.Y381H variant in the CASK

gene. Even if the pathogenicity predictions were discordant, this

variant was absent from control cohorts and in silico analysis

suggested a structural role of this residue in the homo and

heterodimerization of the CASK protein (Aspromonte et al., 2019).

The proband phenotype is also consistent with those associated with

CASK‐related disorders.

In addition, at least one group correctly predicted the 13 variants

classified as contributing factor, of which seven were indicated by the

majority of the groups. This variant class is particularly relevant for

autism susceptibility.

3.4 | Novel variant predictions

Commonly predicted variants were also used to support those

variants which were not considered by the Padua NDD lab. To check

whether some relevant variant may be lost in the filtering process,

the Padua NDD lab revised all of these 615 variants, which include

492 exonic (80%), 75 intronic (12.5%), 9 splicing (1.5%), and 6 5′/3′‐
UTR (untranslated region; 1%) variants.

Among the exonic variants, 80 (16.2%) were excluded for high

allele frequency in the general population (MAF >0.002%). 150

variants with MAF <0.002% were excluded due to being present

more than once in the cohort. One hundred and eighteen predicted

to be likely gene disrupting variants (frameshift insertion, frameshift

deletion, stop gain) were classified as sequencing errors after the

visual check of the raw data.

Focusing on variants indicated by the majority of the groups, we

selected some variants to be reconsidered for Sanger validation and

may be involved in the proband phenotype. In particular, for patient

MR2001.01, three different groups (2, 3, and 4) predicted as

potentially pathogenic two variants in NRXN1, p.L708I, and p.I649V

(NM_004801; 2:50765412 and 2:50765589 rs200074974). These

variants were not reported to the patient due to being predicted

neutral by the majority of the used computational methods. Variants

of the NRXN1 gene are associated to schizophrenia, ASDs, or the

autosomal‐recessive Pitt‐Hopkins‐like syndrome 2, which is char-

acterized by severe ID, developmental regression, hyper breathing,

autistic behavior, and dysmorphic features. One of the putative

variants found in MR2001.01, p.I649V, was reported in the literature

in a patient with schizophrenia, inherited from the affected mother

(Gauthier et al., 2011). Patient MR2001.01 has borderline ID with

autistic traits and other behavioral psychiatric manifestations, such

as depression and anxiety. Thus, its phenotype is not fully consistent

with the recessive Pitt‐Hopkins‐like disorder. However, we

performed segregation analysis and found that the two NRXN1

variants were absent from the DNA of the mother and the healthy

sister. This suggests that the two rare variants might be transmitted

in cis from the father, who is not available for further investigation.

Two other variants have been reconsidered for Sanger validation

and segregation analysis, a non‐frameshift deletion and a synon-

ymous variant, belonging to a class of variants for whom pathogeni-

city prediction is difficult to obtain. In patient MR1289_01, an in‐
frame deletion in the CC2D1A gene (NM_017721:exon1:c.27_35-

del:p.10_12del) was indicated as potentially pathogenic by groups 4

and 5. Mutations in CC2D1A are associated to ID, autosomal‐
recessive 3 (MR‐AR3), which is partially consistent with the proband

phenotype. This position had coverage of 74×, alternative allele

frequency of 100% with a genotype quality of 24. At that position,

which is part of a repeat sequence, other patients analyzed in the

same experiment present sequence and alignment errors. However,

Sanger sequencing of this amplicon revealed that the MR2001.01

case carries this variant in a heterozygous state. No other variants

have been identified in the CC2D1A gene, which is completely

covered by gene panel sequencing. As alterations of the CC2D1A

have been implicated in NDDs only in recessive conditions, the final

outcome for the patient does not change.

In patient MR1769_01, one hemizygous synonymous variant

(NM_005120, c.3600C>T p.(Arg1200Arg) in the MED12 gene, has

been indicated as pathogenic by the Group 5 (late predictor). The

variant is predicted to potentially alter splicing by Human Splicing

Finder (Desmet et al., 2009). For this patient, we reported two

variants in the CNTNAP2 and FOXP1 genes, which we hypothesized

to act in a two‐hit model to determine the disorder, as previously

described by (O’Roak et al., 2011). Nevertheless, a mutation in the

MED12 gene could explain the family history evocative of an X‐linked
disorder, since the maternal uncle presents ID and ASD. However,

segregation analysis revealed that the mother transmitted

the MED12 variant to the two sons. Since the phenotype of the

MR1769.01 brother is not consistent with MED12‐related disorders,

we can exclude this variant as a main molecular cause of the

MR1769.01 phenotype.

3.5 | Assessment by group summary

3.5.1 | Group 1 (Mooney‐Radivojac Lab)

Considering individually each phenotypic trait, Group 2 predicted

correctly all individuals with ASD, 15 of 18 individuals presenting

microcephaly, and 60% of the epileptic patients. Furthermore, Group

1 predicted correctly the overall phenotype of 11 patients that other

groups did not predict correctly. Although, their method was less

accurate on the prediction of causative or putative variants indicated

by the Padua NDD lab, Group 1 was one of the two best at predicting

the correct combination of phenotype traits in cases where the

Padua NDD lab indicated a causative or putative variant. They also

performed better in the phenotype prediction for patients with at
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least three phenotypic traits available. Given the discrepancy

between the accuracy at predicting causal variants and phenotypic

traits, the Padua NDD lab checked the variants that they indicated

supporting phenotype predictions. Although some supportive

variants were classified as sequencing errors, many others were rare

variants in genes associated with the specific phenotype trait.

The Padua NDD Lab did not report these variants to the patient

due to their relatively high frequency and discordant predictions

among pathogenicity predictors. The Group 1 method differs from

that of other groups in the approach used to identify gene‐phenotype
association, particularly for traits with fewer known risk genes, such

as macrocephaly, hypotonia, and ataxic gait. The use of protein‐
protein interaction networks to expand genetic association with the

disease has been useful to select relatively low‐frequency variants

with the less functional impact that may contribute to the disease

expression. This is in line with the emergent model explaining the

genetic architecture of NDDs.

3.5.2 | Group 2 (Moult Lab)

their method was the most accurate in predicting the correct

combination of phenotypic traits in patients for whom the Padua

NDD lab provided information about all seven traits. Among these 13

individuals, Group 2 correctly predicted the phenotype of eight

patients considering all their submissions (six in total). In particular,

submission 2.4 predicted well seven patients and predicted correctly

the phenotype of 12 individuals that other groups did not. Group 2

was also one of the best in predicting the ID and ASD phenotype in

all 150 individuals. Furthermore, they predicted correctly the

individuals presenting ataxia and hypotonia, reaching the best AUC

for ataxia. Interestingly, their method was the most accurate in

predicting patients that did not present microcephaly or macro-

cephaly (together with Group 4), reaching the best MCC and ACC

scores. Furthermore, Group 2 was the most accurate in the

prediction of causal or likely pathogenic variants indicated by the

Padua NDD lab, with 66% correctly predicted. However, other

groups performed better in the phenotype prediction for patients

with causative/putative variants. This suggests that the identification

of the correct causative or likely pathogenic variant is not sufficient

to be able to predict all clinical manifestations in patients.

3.5.3 | Group 3 (Lichtarge Lab)

Their predictions were based on the evolutionary burden of

variations, thus the disease‐gene association was supported by rare

and common variants. Among patients with causative variants, Group

3 predicted correctly the overall clinical manifestations for patient

MR1974.01 that other groups, despite having identified the correct

variants, did not predicted correctly. The Padua NDD lab checked the

supporting variants indicated by Group 3 and, besides variants

classified as sequencing errors, they reported rare and common

variants clustering in genes associated to the specific traits. Probably

in some patients, the phenotype prediction could be inferred if the

set of analyzed genes contains rare and common variants associated

with the phenotypic trait. This is in line with the recent finding that

inherited common and rare variants cluster together with de novo

variants in convergent pathways to determine the disease.

3.5.4 | Group 4 (Brenner Lab)

Their prediction method obtained the best results considering the

average overall performance for the prediction of each phenotypic

trait. In addition, submission 3 of this group obtained the best MCC

values for ASD, Macrocephaly and Hypotonia, and best AUC values

for ASD, epilepsy, microcephaly, and hypotonia. Taking into account

those patients where the Padua NDD lab provided information about

all seven traits, this group correctly predicted only three patients.

However, their method was one of the best in correctly predicting

patient phenotypes where the Padua NDD lab provided at least three

phenotypic traits. Despite their good performance to predict patient

phenotypic traits, Group 4 identified less causative or putative

variants than groups 2 and 5. However, Group 4 predicted correctly

the phenotype of eight individuals that other groups did not, two of

them carrying likely pathogenic mutations of the CASK gene and one

with a putative variant in the PHF8 gene. This suggests that Group 4

performed better for patients where they predicted correctly the

causative or putative variant, thus they were good in the association

of the gene with phenotypic traits. Group 4 used phenolyzer to

calculate the gene‐phenotype matching score. Phenolyzer has

been demonstrated to perform better than other available

tools in the prioritization of candidate genes for complex disease

(Yang et al., 2015).

4 | DISCUSSION

We have described the assessment of the CAGI‐5 ID challenge. This

challenge is based on the phenotype evaluation of patients using

gene panel sequences, in analogy to the CAGI‐4 Hopkins panel

challenge (Chandonia et al., 2017). Where the Hopkins panel was

testing for different monogenic diseases with Mendelian inheritance,

the ID challenge focuses on complex disorders. Neurodevelopmental

conditions are characterized by strong clinical comorbidity and a

complex genetic architecture (Mitchell, 2011). The genetic informa-

tion for each patient can at best be considered partial, as

compounded by the rather limited fraction of patients (33%) where

a putative or causative variant has been detected by the Padua NDD

lab. As such, the CAGI‐5 ID challenge can be expected to be more

difficult that the CAGI‐4 Hopkins panel. However, due to the genetic

heterogeneity seen in NDDs, the presence of negative cases in the

data set reflects the clinical practice, where the sequenced genes

cannot explain the phenotype of all tested individuals. This implies

that the identified rare variants should be interpreted with caution.

The phenotype prediction component of the ID challenge makes it

also similar to the Personal Genome Project (PGP) challenge from

previous rounds of CAGI (Cai et al., 2017). In the CAGI‐2 PGP challenge,
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participants were initially asked to predict the presence of a set of

phenotypic traits. Later CAGI editions turned the challenge into a

matching game between sets of phenotypic profiles and genetic data. The

ID challenge is similar to the original PGP challenge, but with a narrower

focus on NDDs. Like PGP, it emphasizes complex disease conditions

whose genetical bases are not fully understood. It is indeed increasingly

accepted that the genetic architecture of NDDs involves the interplay of

de novo, rare, and many common (>1% frequency) variants, which have a

potential role in phenotype variability and severity of the disease.

Furthermore, besides some well known monogenic conditions, there are

oligo‐ or polygenic forms with multiple gene‐gene or gene‐environment

interactions (Lesch, 2016; Mitchell, 2011).

Despite these difficulties, several predictors participating in the

CAGI‐5 ID challenge were able to achieve AUC >0.6 for three nontrivial

phenotypes (microcephaly, macrocephaly, and ataxia) and also for the ID

phenotype which was heavily biased to the positive case. Intriguingly,

Group 4 (Brenner lab) has been able to make acceptable predictions for

most of the individual phenotypic traits, except ataxia (Table 3).

Furthermore, considering the overall clinical manifestations of each

patient, for 93 individuals (62%) the correct phenotype has been

predicted by at least one group. In particular, Group 1 predicted 49 of

them (52%), Group 4 (submission 3) predicted 46 of them (50%) and 57

(61%) considering their three submissions. Finally, Group 2 correctly

predicted 43 of them (46%) considering all their six submissions. Group 2

in particular accurately predicted each of the seven phenotypic traits in

eight individuals and the overall phenotype in 12 patients that were not

correctly predicted by other groups. Even though this performance is not

promising, we have to consider the extreme difficulty to predict a

combination of several pathological conditions that often occur in

comorbidity with variable expression and severity.

The assessment on phenotype prediction has also been performed

considering only the patients with variants noted by the Padua NDD

lab, both considering each phenotypic trait individually and for the

combination of the seven traits. We hypothesized that the phenotype

of the individuals carrying a disease mutation must be easier to

predict. Furthermore, the Hopkins challenge in CAGI‐4 noted a higher

performance of the prediction methods in phenotype prediction of

cases where the Hopkins lab reported a variant, with at least one

group correctly identifying the disease class in 84% of these patients.

However, in the CAGI‐5 ID challenge, there were no improvements in

the performance of methods. Surprisingly, Group 2, which performed

better in the causative or putative variants prediction, was less

accurate in predicting phenotypic traits. Something similar occurs

when we tried to remove patients for whom no method was able to

correctly predict the phenotype (e.g. correctly predict the presence or

absence of each class). We again observed that while some methods

improved their performance, others decreased it.

In contrast to the Hopkins challenge, the Padua NDDs lab

participated in the assessment of the challenge and provided feedback

on predicted variants by the groups. This allowed us to observe that

variants supporting the predictions of some groups, in particular, Group 1

and Group 3, are rare or common variants with weak pathogenic

predictions. Some of these variants were previously excluded by the

Padua NDD lab as inherited from healthy parents (Aspromonte et al.,

2019). However, it seems that taking into account the contribution of

these inherited rare or common variants may help in the phenotype

prediction. This can be explained by the complex genetic architecture of

NDDs and the recent findings that different variants cluster in common

pathways to determine the expression of the disease (Mitchell, 2011).

Thus, particularly for phenotypic traits with little genetic information,

Group 1 used protein‐protein interaction networks to expand the gene‐
phenotype association, which has been useful to select relatively low‐
frequency variants with a less functional impact that may contribute to

the expression of the phenotypic trait. Moreover, Group 4 created their

gene‐phenotype association list using a well established tool for the

prioritization of risk genes in complex diseases.

However, no less important is that some groups made correct

predictions based on variants that were excluded by the Padua NDD

lab as sequencing errors. Methods using good quality filters, such as

groups 2 and 4, are more reliable than others. Nonetheless, the Padua

NDD lab reconsidered some of these predicted variants and validated

themwith Sanger sequencing and segregation analysis. Even if many of

the reconsidered variants did not change the molecular diagnosis of

the tested patients, the reassessment of the interpreted data allowed

to fix some rules in filtering sequencing errors and interpretation of

variants, such as synonymous variants, that can be missed as causative.

In particular, reassessing putative variants that were predicted by the

majority of groups as pathogenic, allowed us to select a limited set of

putative variants for further investigation. The re‐evaluation by

segregation analysis was possible only for one family that answered

our call. The variant resulted de novo, supporting the causative role of

a probably hypomorphic CASK mutation in a male with a phenotype

consistent with a CASK‐related disorder.

This CAGI‐5 challenge has provided a realistic framework to

assess the performance of prediction methods in clinical practice.

Despite all its inherent limitations, we believe it has demonstrated

promising results and avenues for possible future improvements. We

will hopefully be able to measure improvement over the next editions

of the CAGI experiment.
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