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Computational interpretation of human genetic variants 
comprises the development and application of analysis and 
prediction techniques aimed at elucidating the impact of 
variants in an individual’s genome on different organismal, 
cellular, and molecular phenotypes. A distinguishing charac-
teristic of this interdisciplinary field is a remarkable breadth 
of the phenotypes of interest and their genetic architectures, 
biological and environmental contexts, data modalities and 
data generating platforms, as well as computational tech-
niques developed to make sense of all available data. Even 
further contributing to the complexity of the field are the 
issues of safe deployment of the newly developed tools 
and mitigation of ethical challenges necessary for societal 
acceptance of both the research process and clinical applica-
tion (Szabo 2019; McInnes et al. 2021).

In the clinic, computational tools often incorporate 
patient, and sometimes family, genome variation data to 
identify individual or groups of variants with diagnostic (i.e., 
variants that cause the observed symptoms), predictive (i.e., 
variants that stratify individuals based on the risk of disease 
development), or pharmacogenomic (i.e., variants useful for 
tailoring the treatment) relevance (Rehm et al. 2015; Adhi-
kari et al. 2020; McInnes et al. 2021). And while a useful 
computational tool or pipeline need not precisely describe 
disease mechanisms in its predictions, it benefits from doing 
so (Rost et al. 2016) and is expected to work across diverse 
human populations or explicitly state such limitations (Pop-
ejoy and Fullerton 2016; Schwartz et al. 2021). Beyond the 
clinic, these tools could further contribute to the mechanis-
tic understanding of non-disease phenotypes, evolutionary 

processes, and would ideally be also useful to healthy indi-
viduals; e.g., in tailoring diets that will lead to longer and 
more fulfilling lives.

Existing computational analysis techniques and predictive 
models draw from different research communities. Relevant 
methods range from biophysics techniques and molecular 
dynamics to systems modeling to modern machine learn-
ing (Hu et al. 2019). Recent emergence of deep learning 
has spurred the latest wave of powerful and data-hungry 
approaches capable of learning arbitrary concepts given 
enough data and compute power (LeCun et al. 2015). How-
ever, biological and clinical data are complex, often defy-
ing modeling assumptions and thus requiring sophisticated 
and careful integration across different modalities (Žitnik 
et al. 2019), from -omics data to language-based records to 
images. Finally, data protections due to privacy concerns 
and competitive or international restrictions bring further 
difficulties and promote the need for distributed learning, 
learning from encrypted data, and model-to-data approaches 
(Wang et al. 2017; Yan et al. 2021).

Evaluation of method performance presents additional 
challenges (The Critical Assessment of Genome Interpreta-
tion Consortium 2022). Clinicians are generally interested in 
knowing whether a variant is pathogenic to potentially rec-
ommend treatment and surveillance strategies (Rehm et al. 
2015) and, consequently, cannot tolerate large fraction of 
false positive predictions (Pejaver et al. 2022). On the other 
hand, biomedical researchers may be more interested in pri-
oritizing variants for experimental studies and so a method’s 
ability to identify significant variants and its false discovery 
rate are differently balanced. The complexity of the field and 
the differences in expertise, combined with method avail-
ability, are also prone to encourage evaluation that leads to 
method misuse. This is common even within the research 
community; e.g., predictors aiming to identify variants with 
structural (Schymkowitz et al. 2005; Capriotti et al. 2005; Li 
et al. 2021) or functional (Bromberg and Rost 2007) effect 
can be suboptimally used as pathogenicity predictors.

In this special issue of Human Genetics, we present 11 
studies that advance the field of computational interpretation 
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of human genetic variation. We encouraged submissions that 
would review various aspects of the field, offer perspec-
tives on the current state of the art, include original method 
descriptions, or perform comprehensive method evaluation. 
Human variation and its downstream effects were considered 
in the broad sense, including germline and somatic, coding 
and noncoding, and single and multi-nucleotide variants. 
Effects on structure and function of single biological mac-
romolecules (DNA, RNA, protein) as well as whole-genome 
structure and function were of interest. At the same time, 
methods that address broad disease areas such as cancer, 
neurodevelopmental disorders, or those that consider disease 
through the lens of evolution, were invited. We received 25 
submissions of which 11 were accepted for publication, and 
are briefly summarized below.

In a thorough review of the state of the art of coding 
variant interpretation, Katsonis et al. (2022) highlight the 
importance of computational methods for exploration of dis-
ease, if not patient, specifics. The authors find that available 
methods are non-generically applicable and should be used 
in annotation of appropriate cohorts, with a full understand-
ing of their limitations. When applied in an informed fashion 
and evaluated rigorously (Pejaver et al. 2022; The Critical 
Assessment of Genome Interpretation Consortium 2022), 
the predictors can be considered essential tools for genome 
interpretation.

Sarquella-Brugada et al. (2021) investigate variant reclas-
sification (Harrison and Rehm 2019) using a patient cohort 
with inherited cardiac channelopathies. Their study suggests 
that a timely genome reanalysis—at no more than five-year 
intervals—may help ensure more accurate variant annota-
tion. Curiously, in their re-analysis of a cohort of previously 
treated patients, they find that most of the reclassification is 
due to the changes in reported variant frequencies over time 
and further identify a significant contribution from the less 
studied channelopathy-associated genes.

Sun et al. (2022a) describe a collection of modifier genes 
and variants that, through epistasis, significantly contribute 
to, rather than directly cause, observed phenotypes. They 
identify distinct properties of modifier variants (e.g., higher 
allele frequency) and present observations that are in line 
with both the differential functionalities of individual protein 
residues and with the polygenic nature of many disorders. 
The authors’ findings highlight the need to further explore 
causality pathways to enable high-resolution diagnostics and 
develop novel treatments. This work also opens new avenues 
for the studies of variable expressivity, penetrance, and other 
epistatic outcomes.

While multiple tools exist for the analysis of variant 
impact on protein function, it is worth re-emphasizing that 
proteins carry out their function within molecular pathways. 
The work by Ozturk and Carter (2022) investigates pro-
tein interaction interfaces and suggests that network-based 

assessments of variant effect carry previously uncaptured 
signal. They find that the effects of somatic variants are bet-
ter described via this approach than germline effects, sug-
gesting different modes of variant activity and constraints.

Jiang et al. (2021) integrate spatio-temporal gene expres-
sion data and protein–protein interactions with variant data 
to prioritize de novo exonic variants from patients with 
autism spectrum disorder. The data were integrated based 
on the principles of positive-unlabeled learning that enable 
score calibration based on the probability of a gene to be 
involved in autism as well as the probability of a variant 
to disrupt gene function. They demonstrate that such an 
approach discriminates among de novo variants between 
cases and controls and experimentally validate disruption 
of protein–protein interactions in their top-scoring missense 
mutation located in the ATP1A3 gene.

Similarly focused on a single phenotype, Sun et  al. 
(2022b) demonstrate that assessing coding variants in the 
mother’s genome for their impact on the corresponding pro-
tein functionality is sufficiently informative of the likelihood 
of embryonic aneuploidy. This work is in line with similar 
findings of machine learning applied to exonic variants to 
summarize traits or pathogenesis mechanisms in Crohn’s 
disease (Wang et al. 2019) as well as A. thaliana phenotypes 
(Raimondi et al. 2022).

Recent breakthroughs in biological sequence and struc-
ture analysis have been facilitated by the use of deep learn-
ing techniques (Jumper et al. 2021). In their work for this 
special issue, Marquet et al. (2021) demonstrate that high-
dimensional embeddings of protein sequences, combined 
with generalized amino acid substitution scores such as 
BLOSUM62 (Henikoff and Henikoff 1992), are able to pre-
dict effects of amino acid substitutions on protein function 
as well as methods that use multiple sequence alignments; 
i.e., evolutionary conservation.

This finding is particularly relevant in light of the work 
by Capriotti and Fariselli (2022), which asks an impor-
tant question about the value of conservation in describ-
ing variant impact. In comparison with a range of existing 
computational methods that use a variety of input features, 
the authors find that sequence evolutionary parameters are 
necessary and, alone, nearly fully sufficient to accurately 
identify pathogenic variants. These two studies combine to 
suggest that sequence alone, or together with generic con-
servation scores, may be sufficient to identify functional and 
pathogenic protein variants.

In a focus away from proteins, Waldern et al. (2021) 
review the molecular mechanisms of disease at the tran-
scriptome level. The authors confirm the importance of post-
transcriptional regulatory motifs, but also note that many 
disease-causing variants fall outside and even far away from 
well-defined regulatory motifs. They review evidence that 
these outside regions alter function via mRNA structure 
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disruption and highlight the examples of riboSNitches, dis-
ease-causing single nucleotide variants that affect regulation, 
dysregulating binding affinity to RNA-binding proteins and 
micro RNA (miRNA) as well as splice site accessibility, via 
changes to mRNA structure.

Villegas-Miron et al. (2022) study human miRNA vari-
ants and their ability to differentiate human populations. 
The authors show that these variants affect gene expression 
and that the excessive complexity of miRNA regulatory 
networks makes its variants culprits in changes of multiple 
pathways simultaneously. Importantly, these subsequently 
tend to be linked to a broad range of pathogenic processes.

Finally, Xia and Yanai (2022) study gene expression pat-
terns during spermatogenesis to investigate the possibility 
of expression-based control of germline mutation rates via 
an interplay of transcription-coupled DNA repair (promot-
ing lower mutation rate with increased gene expression) and 
transcription-coupled damage (promoting higher mutation 
rate with increased gene expression). They present results 
in support of the transcriptional scanning hypothesis, a pro-
cess leading to mutation rate reduction through transcrip-
tion-coupled DNA repair, as a more influential mechanism. 
Their results also contribute to a mechanistic explanation 
of higher rates of somatic variants in low-expression genes 
(Lawrence et al. 2013), thus adding another dimension to our 
understanding of mutation rates (Eyre-Walker and Keightley 
2007).
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