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A B S T R A C T

Purpose: We previously developed an approach to calibrate computational tools for clinical variant
classification, updating recommendations for the reliable use of variant impact predictors to provide
evidence strength up toStrong. A newgeneration of tools using distinctive approaches has since been
released, and these methods must be independently calibrated for clinical application.
Methods: Using our local posterior probability-based calibration and our established data set of
ClinVar pathogenic and benign variants, we determined the strength of evidence provided by 3
new tools (AlphaMissense, ESM1b, and VARITY) and calibrated scores meeting each evidence
strength.
Results: All 3 tools reached the Strong level of evidence for variant pathogenicity andModerate
for benignity, although sometimes for few variants. Compared with previously recommended
tools, these yielded at best only modest improvements in the trade-offs between evidence
strength and false-positive predictions.
Conclusion: At calibrated thresholds, 3 new computational predictors provided evidence for
variant pathogenicity at similar strength to the 4 previously recommended predictors (and
comparable with functional assays for some variants). This calibration broadens the scope of
computational tools for application in clinical variant classification. Their new approaches offer
promise for future advancement of the field.
© 2025 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

The classification of variants as pathogenic or benign by
clinical genetic testing laboratories is a key component of
modern genomic medicine. The American College of Medi-
cal Genetics and Genomics (ACMG) and the Association for
Molecular Pathology (AMP) have made recommendations to
standardize the practice of clinical variant classification.1

These recommendations identified distinct sources of evi-
dence regarding the pathogenicity or benignity of a variant
(eg, genetic, functional, computational, case observation, and
population data), assigned strengths to them, and specified
rules to combine evidence to classify a variant into 1 of 5
classes: pathogenic, likely pathogenic, uncertain significance,
likely benign, or benign. Rules for multiple evidence types
subsequently have been refined to improve classification.2-4

In the original ACMG/AMP recommendations, the PP3 and
BP4 criteria evidence from computational tools (eg, rule-
based, statistical, and/ormachine-learning-based)was limited
to the weakest strength, ie, supporting-level evidence. How-
ever, powerful, new variant impact predictors (VIPs) have
rapidly emerged, with over 400 now developed.5

Recently, we undertook a rigorous quantitative calibration
of computational tools, demonstrating that some tools could
reliably provide higher levels of evidence strength.6 Our
approach maps scores from a computational tool to local
posterior probabilities, which, in turn, correspond to levels of
evidential strength in theACMG/AMP recommendations and
points in a Bayesian framework-based adaptation of these
recommendations: Indeterminate or 0 points, Supporting or
±1 point, Moderate or ±2 points, Strong or ±4 points, and
Very Strong or ±8 points.7,8 By applying this approach to 13
tools that predict the impact of missense variation, we
demonstrated that at certain score thresholds, 4 tools can
provide Strong evidence for pathogenicity and Moderate
evidence for benignity: BayesDel,9 MutPred2,10 REVEL,11

and VEST4.12 Based on our findings, ClinGen13 recom-
mended modifications to the PP3 and BP4 criteria that stip-
ulated consistent use of a single tool defined in advance (per
laboratory or per gene) with score thresholds calibrated to
specific evidential strength levels up to Moderate benign
(BP4_Moderate; −2 points) and Strong pathogenic
(PP3_Strong; +4 points). Additional context about these
clinical recommendations is provided in Stenton et al,14 along
with practical guidance on their intended use and their im-
plications for variant curation in disease-associated genes.

Since then, advances in protein structure prediction,
protein language models, and experiments, such as deep
mutational scanning and massively parallel reporter assays,
among others, have led to the emergence of new VIPs, with
claimed improvements in predictive performance when
compared with existing tools.15-19 However, it is unclear if
these improvements in performance translate to the clinical
context, in which computational tools serve as one line of
evidence for variant pathogenicity/benignity among many.
Furthermore, the objectives of these tools may vary, often
focusing on the discovery of novel variants in research
studies rather than the assertion of clinical pathogenicity and
predicting different notions of variant impact, eg,
distinguishing unobserved from observed ones. Thus,
default score thresholds for these tools do not necessarily
correspond to those for strengths of evidence defined by the
ACMG/AMP recommendations. Here, we estimate thresh-
olds corresponding to ACMG/AMP evidential strength for
newer computational tools, using the same rigorous data sets
and approaches. We also estimate additional thresholds for
the above 4 previously calibrated tools corresponding to the
ACMG/AMP point-based system for variant classification.8

We then compare and contrast these clinically performant
methods with 3 recently published ones. Finally, we discuss
our findings in light of the development and use of
computational tools in the clinical classification of variants,
reiterating the important role that we expect such tools to
play in the future.
Materials and Methods

Data sets, calibration procedures, and post hoc
analyses

We applied the methods and data sets developed in Pejaver
et al.6 Specifically, we used the ClinVar 2019 data set for
calibration and the ClinVar 2020 set for post hoc assess-
ments of tools and their thresholds. We used the gnomAD
data set (v2.1.1) for both calibration and post hoc assess-
ments.20 We calibrated each tool using our local posterior
probability-based approach and estimated score thresholds
through bootstrapping with the same parameters and local
likelihood ratio cutoffs as before. We adopted the same post
hoc assessment pipelines as in the study by Pejaver et al.6

Selection of computational tools and data
preparation

We selected tools for this study using a purposive sampling
strategy. Based on recency of publication (within the past 4
years), the use of modern machine learning approaches
(such as protein language models), their performance in the
Annotate All Missense challenge21 in the Critical Assess-
ment of Genome Interpretation (CAGI),22 anecdotal feed-
back on interest in adoption by the clinical genetics
community, and the minimal need for access to original
training data, we chose 4 tools for calibration: Alpha-
Missense,18 ESM1b,17 EVE,15 and VARITY16 (specifically,
VARITY_R, the model trained on only rare variants).
Important for this effort and also for utility within the
clinical genetics community, these tools make precomputed
scores for all possible single-nucleotide or amino acid var-
iants freely and publicly available, albeit in slightly different
formats and with gene/protein identifiers from different
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databases. To address these differences, we developed
customized mapping protocols for each tool to maximize the
number of variants in our data sets with scores, leaving 3
tools with sufficient data for calibration (Supplemental
Materials and Methods). Except for VARITY, none of these
tools were explicitly trained on variants from ClinVar.23

However, for VARITY, the precomputed score for each
variant was assigned by a version of the model that did not
include that variant in the training set. Therefore, no
additional filtering of the data sets against the training data
set of each tool was performed.
Results

Recently published tools can provide up to strong
evidence for pathogenicity

Our local posterior probability-based calibration approach
enabled the estimation of score thresholds for Alpha-
Missense, ESM1b, and VARITY_R that corresponded to
distinct evidential strength levels within the ACMG/AMP
variant classification guidelines. We found that all 3 tools
were able to reach at least the Moderate level for benignity,
with VARITY_R reaching Strong (BP4), and the Strong
level of evidence for pathogenicity (PP3) (Table 1,
Figure 1A). However, the score thresholds at which these
were achieved were more stringent than the thresholds
Table 1 Estimated threshold intervals for all tools in this and our p
sequence variant interpretation

Method

Benign (BP4)

InStrong
(−4) (−3)

Moderate
(−2)

Supporting
(−1)

BayesDela - ≤ −0.520 [−0.519,
−0.360]

[−0.359,
−0.180]

MutPred2a ≤0.010 [0.011,
0.031]

[0.032,
0.197]

[0.198,
0.391]

REVELa ≤0.016 [0.017,
0.052]

[0.053,
0.183]

[0.184,
0.290]

VEST4a - ≤0.077 [0.078,
0.302]

[0.303,
0.449]

AlphaMissenseb - ≤0.070 [0.071,
0.099]

[0.100,
0.169]

ESM1bb - ≥8.8 [−3.1,
8.7]

[−6.3,
−3.2]

VARITY_Rb ≤0.036 [0.037,
0.063]

[0.064,
0.116]

[0.117,
0.251]

The intervals correspond to 3 pathogenic, 1 indeterminate, and 3 benign inte
guidelines. The ACMG/AMP guidelines are expected to transition to a point-based s
corresponding to each evidential strength interval in this system. Although the 2
and Strong (4 points), intervals for the 3-point strength of evidence are also report
guidelines. A “–” implies that the given tool did not meet the likelihood ratio (po
strength.

ACMG, American College of Medical Genetics and Genomics; AMP, Association
aAll intervals are the same as those reported in our previous study,3 with addit

±3 points as per the point-based system.
bCalibrated in this study.
recommended by the tool developers. In fact, the recom-
mended thresholds for AlphaMissense (0.564) and ESM1b
(−7.5) do not meet the Supporting level of evidence for
pathogenicity or benignity based on our calibration. Overall,
all 3 tools exhibited similar behavior to the 4 best-
performing tools from our previous study, even when
considering newer intervals between Moderate and Strong
according to the ACMG/AMP point-based system (Table 1).
When we attempted to calibrate EVE, it nominally appeared
to reach the Moderate level of evidential strength for both
pathogenicity and benignity. Score thresholds for Support-
ing and Moderate were 0.684 and 0.845, respectively, for
pathogenicity, and 0.137 and 0.209, respectively, for
benignity. However, EVE predictions were available only
for a subset of genes in our calibration set, leaving about
half of the benign/likely benign variants unscored.
Furthermore, unscored genes showed a marked skew in ratio
of pathogenic to benign variants. Because of potential
sampling bias, we lack confidence in the applicability of the
measured thresholds, rendering us currently unable to
recommend their use in clinical variant classification.

Clinical calibration shows modest improvements
over existing computational predictors

We assessed the validity of our calibration by using the
score thresholds estimated in Table 1 to group variants from
the ClinVar 2020 (not used in calibration) and gnomAD data
revious study according to the ACMG/AMP recommendations for

determinate
(0)

Pathogenic (PP3)

Supporting
(+1)

Moderate
(+2) (+3)

Strong
(+4)

[−0.179,
0.129]

[0.130,
0.269]

[0.270,
0.409]

[0.410,
0.499]

≥0.500

[0.392,
0.736]

[0.737,
0.828]

[0.829,
0.894]

[0.895,
0.931]

≥0.932

[0.291,
0.643]

[0.644,
0.772]

[0.773,
0.878]

[0.879,
0.931]

≥0.932

[0.450,
0.763]

[0.764,
0.860]

[0.861,
0.908]

[0.909,
0.964]

≥0.965

[0.170,
0.791]

[0.792,
0.905]

[0.906,
0.971]

[0.972,
0.989]

≥0.990

[−10.6,
−6.4]

[−12.1,
−10.7]

[−13.9,
−12.2]

[−23.9,
−14.0]

≤ −24.0

[0.252,
0.674]

[0.675,
0.841]

[0.842,
0.914]

[0.915,
0.964]

≥0.965

rvals (Very Strong not shown because it was never reached) in the current
ystem,5 and the numbers in parentheses in the header indicate point values
015 guidelines do not include a strength level between Moderate (2 points)
ed because 3-point evidence will be recommended for future editions of the
sterior probability; Supplemental Materials and Methods) threshold for that

for Molecular Pathology.
ional columns for the interval corresponding to the indeterminate range and



Figure 1 Local posterior probability curves and comparison with previously calibrated tools. A. Pairs of curves for AlphaMissense,
ESM1b and VARITY_R. For each tool, the curve on the left is for pathogenicity (red horizontal lines), and the curve on the right is for
benignity (blue horizontal lines). The horizontal lines represent the posterior probability thresholds for Supporting, Moderate, Strong, and
Very Strong evidence as per current ACMG/AMP guidelines. A horizontal line representing the 3-point strength of evidence is also shown.
The black curves represent the posterior probability estimated from the ClinVar 2019 set. The gray curves represent 1-sided 95% CIs (in the
direction of more stringent thresholds), calculated from 10,000 bootstrap samples of this data set. The points at which the gray curves
intersect the horizontal lines represent the thresholds for the relevant intervals. B. The likelihood ratios within each interval on the inde-
pendent ClinVar 2020 set. Darker colors indicate higher values for pathogenicity and lower values for benignity (because these are positive
likelihood ratios). The limits for the color gradients are asymmetric, with ranges set between 0 and 1 for benignity, and 1 and 100 for
pathogenicity. A gray rectangle is introduced at the center for comparability with (C). C. The percentage of variants predicted to be within the
interval in the gnomAD set. Blue and red distinguish the evidential strength intervals for benignity from pathogenicity, respectively, with the
indeterminate interval colored gray. The color gradient corresponds to the value in the cells, regardless of color. Darker colors indicate higher
proportions. A white cell without a value indicates that the tool did not reach thresholds corresponding to that interval. The indeterminate
interval also included variants without any scores. ACMG, American College of Medical Genetics and Genomics; AMP, Association for
Molecular Pathology.
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sets, while also comparing them with the 4 previously
calibrated tools (Figure 1B and C). For the ClinVar 2020
set, we calculated likelihood ratios within each interval
defined by these thresholds, reflective of true- and false-
positive rates for the classification of pathogenic variants.
All tools met or exceeded (or, for benignity, were less than)
the expected likelihood ratio values corresponding to each
interval. The only exception to this was that some of the
previously calibrated tools did not meet the thresholds for
the 3-point intervals (Figure 1B). VARITY_R and



T. Bergquist et al. 5
AlphaMissense resulted in higher likelihood ratios in the
interval corresponding to Strong for PP3 than the 4 previ-
ously calibrated tools. However, it is unclear to what extent
this is driven by the small number of variants in this interval
relative to other intervals. No variant in the ClinVar 2020 set
received an ESM1b score of −24.0, effectively capping the
maximal strength for benignity achieved by ESM1b at
Moderate. For the gnomAD set, we calculated the propor-
tion of variants within each interval to assess how evidential
strength is distributed for each tool in variants from the
population (Figure 1C). VARITY_R and AlphaMissense
behaved as expected, in a manner similar to the 4 previously
calibrated tools, with the proportion of variants in the Strong
interval for pathogenicity being within the estimated prior
probability of pathogenicity (0.0441). However, Alpha-
Missense classified the smallest proportion of variants as
being within all 3 pathogenic intervals (0.125), slightly
lower than REVEL (0.133). It is unclear if this results from
AlphaMissense being trained on variants from gnomAD as a
proxy for nonpathogenic variants.

Discussion

In this study, we calibrated 3 recently published computa-
tional tools to align with the ACMG/AMP guidelines for
clinical variant classification. These tools reached clinically
useful evidential strength levels. However, in all cases, their
recommended (default) thresholds did not meet even the
Supporting level of evidence for variant pathogenicity.
These tools largely behaved similarly to 4 tools that we
previously calibrated and at best offer modest improvements
in the strength of evidence that can be applied while mini-
mizing the number of false-positive predictions in the
Supporting and Moderate categories. We extended our
previous study to include intervals corresponding to 3
classification points, anticipating the use of the point-based
system to weight evidence in the next version of the ACMG/
AMP standards. This calibration shares the limitations of
our previous study, including those related to the represen-
tativeness of data, potential circularities, prior probability
estimation, and gene- or disease-specific applicability and
variability.6,24 We did not calibrate methods that incorporate
allele frequency (AF) as an explicit or strong implicit feature
for 2 reasons. First, the use of a predictor incorporating AF
will limit use of evidence codes dependent upon AF in
variant classification, such as BA1. Such methods would be
impractical to use in most clinical classification pipelines.
Second, methods using AF require distinct calibrations for
different AF thresholds (or once for the most stringent AF
group), for which we currently lack sufficient data.21

The development of more advanced computational VIPs
has often been motivated by the idea that no computational
method can yet “be relied on alone for genetic diagnosis.”25

However, this is an inappropriate and unachievable bench-
mark for utility because no single source of evidence other
than high AF—computational or otherwise—can presently
be the sole criterion to determine the role of a variant in
disease. Clinical standards for the classification of rare
genetic variants always require the integration of multiple
lines of evidence, a principle fundamental to the ACMG/
AMP clinical classification framework.1 Consequently, the
term “likely pathogenic” in AlphaMissense’s claim of clas-
sifying “32% of all missense variants as likely pathogenic” is
inconsistent with terminology used in clinical variant
classification.

Historically, computational tools have been trained or
calibrated to predict various proxies for variant pathogenicity
that do not necessarily meet these clinical standards.
Consequently, their utility in clinical variant classification
was initially limited to providing Supporting evidence. Our
calibration provides a means to reconcile this misalignment
of developer and clinical perspectives by providing data-
driven, tool-specific guidance on use in clinical variant
classification. We found that the AlphaMissense and ESM1b
developers’ proposed thresholds did not reach the threshold
for supporting-level evidence; higher thresholds were
necessary to reach Supporting. At even higher thresholds,
AlphaMissense and VARITY_R can reach Moderate and
Strong pathogenicity evidence for some variants. This un-
derscores the importance of independent calibration of tools
used in clinical variant classification, just as critical assess-
ments (such as Critical Assessment Structure Prediction26

and CAGI22) have revealed how developers’ subtle knowl-
edge of their methods and data inadvertently influence the
results of their own assessments. Together with the ability to
provide Supporting and Moderate benign evidence, we
recommend these calibrated tools as potential alternatives
alongside the previously recommended tools.

Our results continue to suggest increasingly important
roles for computational predictors of variant impact in
interpreting genomic data for clinical diagnosis and
screening. The initial releases of this new generation of tools
performed comparably to the best predecessors, suggesting
potential for their future improvement. Moreover, these
distinct approaches may offer independent information
valuable for meta-predictors. Relative to most other lines of
evidence, computational tools have an outsized role because
they can be readily applied to every relevant genomic
variant. The continued development of enhanced in silico
variant impact prediction methods augurs promising ad-
vances in clinical variant classification.
Data Availability

Data sets described in the Materials andMethods are available
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