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Accurate peptide identification from tandem mass spectrometry experiments is the cornerstone 
of proteomics. Although various approaches for matching database sequences with experimental 
spectra have been developed to date (e.g. Sequest, Mascot) the sensitivity and specificity of pep-
tide identification have not yet reached their full potential. This is in part due to the tradeoffs be-
tween robustness and accuracy of the existing methods with respect to the non-uniform nature of 
peptide fragmentation and bond cleavages induced by different mass spectrometers. Accord-
ingly, it is expected that new approaches to de novo predicting peptide fragmentation spectra 
will enable more accurate peptide identification. To address this problem, here we used a data-
driven approach to learn peptide fragmentation rules in mass spectrometry, in the form of poste-
rior probabilities, for various fragment-ion types of doubly and triply charged precursor ions. We 
show that the accuracy of our neural-network based methodology is useful for subsequent pep-
tide database searches and that the most useful rules of fragmentation significantly differ across 
ion and precursor types. 

1 Introduction 

Recent advances in separations and mass spectrometry have enabled a surge in the 
comprehensive analysis of cellular proteins, commonly referred to as proteomics.1,2 
The critical development in this area is the ability to identify a peptide, or in some 
cases entire proteins, from the fragment ions generated by tandem mass spectrome-
try.3 Various dissociation methods have been introduced, including commonly used 
gas phase collision-induced dissociation (CID),4 surface-induced dissociation,5 
photodissociation,6,7 electron-capture dissociation,8 and electron transfer dissocia-
tion.9 The resulting tandem mass spectra are compared with in silico, i.e. computer 
generated, spectra derived from peptides in the available protein database.10 The 
commonly used protein identification tools often use ad-hoc rules11 or unified prob-
abilistic models12,13 to estimate the likelihood that a given experimental spectrum 
was generated from each sequence contained in the database. The final assignments 
and confidence levels are then based on both the scores and database content.14,15  

In practice, the peptide fragmentation into various ions may differ for several 
reasons. For many peptides, cleavages of amide bonds dominate the fragmentation 
and produce a series of b- and y-ions. For other peptides, the enhanced fragmenta-
tion at some types of amino acid residues may dominate. Also, the charge carried by 
the precursor ion affects electron distribution along the cleaved peptide backbone. 



Finally, fragmentation method and the energy level used in the experiments are also 
known to largely change the global behavior of peptide fragmentation. 

The development of chemical theory of peptide fragmentation, e.g. the “mobile 
proton” model,16-18 enabled the de novo prediction of fragmentation spectra from 
peptide sequences. Using a kinetic model, Zhang made the first successful attempt at 
predicting the low-energy CID spectra of singly and doubly charged peptides.19 He 
recently introduced a simplified model that can accommodate peptides with three or 
more charges as well as sequences of increased lengths.20 However, it is not clear 
how this approach could be extended to the other types of mass spectrometry in-
struments. 

An ability to obtain large amounts of peptide fragmentation data relatively 
cheaply sprung the development of data-driven approaches and machine learning 
techniques. Elias et al.21 were first to successfully utilize a set of well annotated 
fragmentation spectra acquired from an electrospray ion-trap mass spectrometer in 
an attempt to infer the probabilistic rules of fragmentation. As a proof of concept, 
they learned a decision tree for the b- and y-ion fragmentation of the doubly charged 
precursors and used their model to significantly improve on Sequest scores of tryptic 
peptides. In addition, Elias et al. confirmed previously known rules of peptide frag-
mentation and presented a large set of new ones. 

In this paper, we extend this approach to the triply charged precursors in addition 
to other, harder-to-predict, ion types (b–H2O, b–NH3, b–H2O–NH3, etc.). We note 
that it is not a trivial extension for two reasons. First, from the standpoint of protein 
identification, triply charged (+3) peptides seem to be much more difficult to iden-
tify than doubly charged (+2) peptides. For example, in the dataset used herein (Sec-
tion 2.1), there were roughly four times as many doubly charged peptides (16,056) 
as triply charged peptides (4,130) that could be reliably identified by Mascot. This 
indicates that the current peptide identification tools may be better suited to the +2 
charged peptides even though there may be a general preference to form +2, rather 
than +3 precursor ions. The distributions of fragment ions observed in +2 vs. +3 
precursor ions are different. For instance, many +2 b- and y- fragment ions can be 
observed in the fragmentation spectra of the +3 precursors. For the +2 precursors, 
+1 b- and y-ions dominate the fragmentation spectra, whereas few, if any, of the +2 
b- and y-ions can be observed. We illustrate these differences between the +2 and +3 
precursors in Figure 1, where the same peptide was used to produce peptide frag-
mentation spectra. Second, the fragmentation mechanism of +3 ions is less under-
stood than that of the doubly charged ions.22 As a result, the new rules of fragmenta-
tion could be important since it is not as easy to develop a de novo prediction 
method for the +3 precursors as for the +2 precursors.19 

The results of our study indicate that, for most of the ions, it is possible to pre-
dict the peptide fragmentation spectra with a useful accuracy. Furthermore, the ob-
tained predictions can be used in a straightforward way to improve a simple correla-
tion-based scoring function for peptide identification. 



2 Methods 

As previously mentioned, the major objective of this study was to use automated 
techniques in order to learn peptide fragmentation rules in the form of posterior 
probabilities and then utilize the trained model for peptide identification. The origi-
nal problem of predicting spectral peak intensities was converted into a simpler and 
easy-to-interpret classification problem, in which the peak intensity was first nor-
malized and then binned into two groups based on a threshold. Formally, given a 
precursor sequence S and its charge qS ∈ {+2, +3}, we aimed to estimate the follow-
ing set of probabilities: P(I(i) ≥ t | S, qS), where I(i) is the peak intensity of any 
fragment ion i ∈ {precursor–H2O, b–H2O, b–NH3, b–H2O–NH3, y–H2O, y–NH3, y–
H2O–NH3, b2, y2} and t is an appropriately chosen threshold. In this study, by de-
fault, t is equal to 1% of the total intensity of the spectrum. 

2.1 Datasets 

Two groups of samples were prepared from isolated rat brains. The first group was 
produced by homogenizing hippocampus tissues and separating the lysate into four 
different fractions by differential sedimentation. The second group was produced by 
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Figure 1. MS/MS spectra of the A) +2 and B) +3 precursor ions of peptide MLQLVEESKDAGIR ac-
quired in consecutive scans of an LC-MS/MS experiment using an ion trap mass analyzer. Selected pre-
cursor m/z values are A) 795.2 and B) 530.69. 



separately lysing tissue from six different brain regions (amygdala, caudate puta-
men, frontal cortex, hippocampus, hypothalamus, and nucleus accumbens). All 
samples were digested separately with proteomics grade (modified) trypsin in the 
presence of an acid-labile surfactant. Tryptic peptides were separated by nano-flow 
reversed-phase liquid chromatography and electrosprayed directly into a ThermoF-
innigan (San Jose, CA) LCQ Deca XP ion-trap mass spectrometer which recorded 
mass spectra and data-dependent tandem mass spectra of the peptide ions. By using 
dynamic exclusion, the mass spectrometer was limited to acquiring only one tandem 
mass spectrum for a given parent m/z over a 60-second window. Tandem mass spec-
tra were filtered based on a total spectrum signal of 1 million counts for the first 
group of samples and 300 million counts for the second group of samples. All spec-
tra were searched against protein sequences for R. norvegicus in the Swiss-Prot da-
tabase23 using Mascot12 for peptide identification. Searches were performed with 
variable modifications of protein N-terminal acetylation and methionine oxidation 
selected and a maximum of one missed cleavage site. Mascot result files were 
parsed using a Protein Results Parser program written in-house to create a single 
training set with all peptides having Mascot scores of 40 or higher. 

We normalized each spectrum to sum to one and divided all precursor peptides 
into doubly and triply charged. Peak intensities were estimated for the following ion 
types: precursor–H2O, b, b–H2O, b-NH3, b–H2O–NH3, y, y–H2O, y-NH3, y–H2O–
NH3, for the doubly charged precursors, while b2 and y2 ions were also considered 
for the triply charged ions. The set of precursor peptides of a given charge was fil-
tered to prevent multiple copies. If two or more precursor peptides were identical, 
the one with the highest Mascot score over all fragment ions was retained. The data-
set contained a significant number of identical precursor sequences and was reduced 
by factors of 9.3 and 6.3 for the doubly and triply charged peptides, respectively. 
The total counts of fragment ions corresponding to the set of unique precursor se-
quences are shown in Table 1. 

A preliminary peptide identification using the new scoring based on the pre-
dicted fragment spectra was performed using the whole set of available proteins 
from R. norvegicus, containing 35,085 proteins (from the NCBI web site).  

2.2 Data representation 

To enable learning, each sequence fragment S was encoded into a fixed-length vec-
tor representation. More specifically, sequence S = s1s2,…sn was represented by a 
vector of binary and real-valued features. Assuming the cleavage occurred between 
positions k and k + 1 in S = s1s2,…sn, the following features were constructed for all 
b- and y-ions: (i) amino acid compositions of the prefix subsequence s1s2,…sk and 
the suffix subsequence sk + 1sk + 2,…sn; (ii) lengths of both fragments, k and n – k; (iii) 
first neighbor prefix/suffix amino acids, sk and sk + 1, and second neighbor pre-
fix/suffix amino acids sk – 1 and sk + 2; (iv) N- and C-terminal residues, s1 and sn; (v) 



parent mass m; (vi) ion masses, mprefix and msuffix; and (vii) N-terminal acetylation. 
We also incorporated a number of features introduced by Elias et al.: gas phase ba-
sicity, helicity, hydrophobicity, and isoelectric point, both average and for the resi-
dues sk and sk + 1.21 Individual amino acids were encoded using a binary data repre-
sentation,24 expanded by adding oxidized methionine residue, while the composi-
tional attributes were real-valued. To encode precursor–H2O ions, we ignored the 
features related to the cleavage site. Overall, b- and y-ions were represented by 202 
features, while the precursor–H2O ion encoding contained 76. 
 
Table 1. The total count of ions corresponding to the unique precursor sequences. An ion was considered 
present (positive cases) when its peak intensity exceeded 1% of the total spectral intensity. Otherwise, the 
ion was considered absent (negative cases). 

Doubly charged precursors Triply charged precursors Ion 
Positives Negatives Total Positives Negatives Total 

precursor – H2O 239 1484 1723 64 590 654 
b 5210 16916 22126 950 12000 12950 
b – H2O 1700 20426 22126 206 12744 12950 
b – NH3 678 21448 22126 117 12833 12950 
b – H2O – NH3 249 21877 22126 121 12829 12950 
b2 - - - 1343 11607 12950 
y 9323 12802 22126 1639 11311 12950 
y – H2O 431 21695 22126 132 12818 12950 
y – NH3 286 21840 22126 101 12849 12950 
y – H2O – NH3 145 21981 22126 107 12843 12950 
y2 - - - 1953 10997 12950 

2.3 Model selection and training 

Predictors of ion intensities were built as ensembles of two-layer feed-forward neu-
ral networks, which, if provided with enough data, are known to be universal ap-
proximators of bounded functions.25 A particularly useful property of these models 
is that the expected number of data points necessary for successful training is linear 
with the number of weights and that the training is relatively fast. Each model in an 
ensemble contained h ∈ {1, 2, 4, 8, 16, 32} hidden neurons and one output neuron, 
all with sigmoidal activation function, and was trained using the resilient propaga-
tion algorithm.26  

Since the threshold t for the quantization of the peak intensities was set to 1% of 
the total peak intensity, each resulting dataset was high-dimensional and class-
imbalanced (even at 1% cutoff there were much fewer positives than negatives). 
Thus, we randomly under-sampled the majority class to the size of the positive class 
to train each network from a class-balanced dataset. However, to effectively use 
whole dataset, a different selection of negatives was made for each network in the 
ensemble.  



Prior to network training, a t-test feature selection filter was employed to filter 
out unpromising features. The threshold for feature retention, tf, was varied from the 
following set of values: {0.001, 0.01, 0.1, 1}. Clearly, in the case of tf = 1 all fea-
tures were retained. Finally, to remove correlated features we applied the principal 
component analysis and retained 95% of the variance. Feature selection thresholds 
and the number of hidden neurons were selected using a separate validation set for 
each individual model (20% of the training set), therefore producing only the final 
set of estimated accuracies. Each ensemble contained 30 neural networks. 

2.4 Performance evaluation of the fragmentation ion peak prediction 

A model was trained for each ion type separately using cross-validation. The non-
overlapping folds were chosen at the level of precursor sequences since one +2 pre-
cursor ion of length n can produce a combination of the b-ions (b1, b2, etc.), y-ions 
(y1, y2, etc.) and their variants with neutral losses which could create information 
leak if distributed independently over training, validation, and test sets. Triply 
charged ions could also produce a combination of +2 b-ions ( 2

1b , 2
2b , etc.) or +2 y-

ions ( 2
1y , 2

2y , etc.). Finally, the number of positive examples in each fold was bal-
anced in order to achieve stable and realistic estimate of classification accuracy. 

We measured sensitivity (sn) and specificity (sp) for each classifier. Sensitivity 
is defined as the percentage of positive examples, i.e. peaks over 1% of total inten-
sity, correctly predicted, while specificity is the percentage of negative examples 
correctly predicted. We also estimated a class-balanced accuracy acc = (sn + sp) / 2 
and the area under the ROC curve (AUC), both of which are essentially unaffected 
by the disparity in class sizes. The area under the curve was calculated using the 
trapezoid rule. 

2.5 Peptide identification based on the predicted spectra 

The predicted fragment spectrum was constructed by combining the outputs of indi-
vidual predictors for each ion type. Since individual predictors are trained on the 
class-balanced datasets, it is necessary to adjust their outputs according to the ob-
served prior probabilities of positives and negatives for each ion type.27 Given the 
class-balanced training set, an adjusted output score oadj of the predictor can be cal-
culated as 

)12(1 −⋅+−
⋅

=
pop

opoadj , 

where o ∈ [0, 1] is the output of a class-balanced trained model and p is the class 
prior for the positive examples. Different class priors were used for each fragment 
ion type. 

We use the simple correlation coefficient to score the matching between an ex-
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where m and I represent the mass and the intensity of each ion, respectively, and mi 

≈ mj means that the difference between these two mass values is smaller than the 
tolerance t of the mass spectrometer (t = 0.5). For the comparison purposes, we also 
predict spectra using ad-hoc rules for each peptide (Section 3.3). 

Figure 2. The amino acid preferences for peptide fragmentation. The frequencies of observing ion 
types (b-, y- or b2, y2) were plotted in grey scaling from 0 (white) to 1 (black). The rows indicate 
amino acid on the left-hand side, while the columns indicate amino acids on the right-hand side of 
the cleavage site. 



3 Experiments and Results 

3.1 Analysis of amino acid preferences at the cleavage sites 

Figure 2 illustrates the amino acid preferences for peptide fragmentation as influ-
enced by the amino acids on both sides of the cleavage site. Several expected trends 
are observed across all ion types, specifically the preference for proline on the C-
terminal side and the preference against proline on the N-terminal side of the cleav-
age site. The plots for the +2 precursors compare favorably with that shown previ-
ously28 for cleavage intensity ratios for +2 peptides with partially mobile protons, 
even though the data shown here represent all proton mobility types (mobile, par-
tially mobile, and non-mobile proton). Other interesting trends can be observed, 
such as the apparent preference for tryptophan (W) in the C-terminal position for +2 
and +3 precursors, preference against glycine (G) and serine (S) in the N-terminal 
position for +2 precursors, and preference for cleavage between amino acid pairs 
LW (y-ions), WP and YW (b-ions), MM (y2-ions), and WQ (b2-ions) for +3 precur-
sors. These trends are not fully understood at this time and may suggest previously 
unknown enhanced fragmentation sites. Note that Figure 2 does not account for the 
number of observed amino acid pairs at the cleavage site. 

3.2 Evaluation of the peptide fragmentation prediction 

Using the methodology presented in Sections 2.2-2.4, we trained classification mod-
els for twenty different ion types and evaluated performance of each model. In terms 
of varying learning parameters, we observed an increase in accuracy by 2-3 percent-
age points when ensembles of 30 models were used instead of a single model. In 
addition, the improvement of the non-linear models over the linear (a network with a 
single hidden neuron) was greater than 5 percentage points in some cases. We also 
note that in the case of b and y-ions, the number of selected hidden neurons reached 
its maximum (h = 32) indicating that an increase in dataset size and higher expres-
siveness of the classifier would likely cause an additional improvement in overall 
performance. The detailed evaluation of the classification accuracy appears in Table 
2, while two sample predictions of triply charged precursors are shown in Figure 3. 

The performance of our models was also evaluated against a decision tree model 
proposed by Elias et al.21 We encoded the full set of features provided by the authors 
and trained a classifier for the b and y ions of the +2 precursors. We obtained classi-
fication accuracy of 73.5% (sn = 74.8%; sp = 72.1%) for the b-ion and 80.4% (sn = 
82.3%; sp = 78.6%) for the y-ion, the two ion types studies by Elias et al. The differ-
ences between our ensemble models and decisions trees are statistically significant, 
with p-values below 0.01 in both cases (binomial distribution was used to calculate 
p-values). The C4.5 decision tree software was used with the default parameters.29 
More detailed evaluations can be found at our research home page. 



Table 2. Classification accuracy [%] of the predictors on the doubly and triply charged ions; sn – true 
positive rate, sp – true negative rate, acc = (sn + sp)/2, AUC – area under the ROC curve.  

Doubly charged precursors Triply charged precursors Ion 
sn sp acc/AUC sn sp acc/AUC 

precursor – H2O 72.0 60.8 66.4/70.7 81.3 68.5 74.9/79.7 
b 80.4 75.4 77.9/85.8 80.6 71.9 76.3/84.6 
b – H2O 76.8 76.3 76.5/84.6 76.2 60.2 68.2/76.8 
b – NH3 75.8 76.0 75.9/82.8 76.9 65.0 70.9/78.6 
b – H2O – NH3 69.1 64.6 66.8/73.1 81.8 51.9 66.9/68.1 
b2 - - - 88.4 75.8 82.1/88.5 
y 84.7 79.3 82.0/89.5 88.9 79.1 84.0/91.4 
y – H2O 66.4 66.2 66.3/72.2 82.6 56.5 69.6/73.0 
y – NH3 70.3 70.8 70.6/79.0 81.2 59.8 70.5/77.8 
y – H2O – NH3 60.7 51.1 55.9/56.5 83.2 54.3 68.7/69.6 
y2 - - - 87.9 72.6 80.2/86.8 

3.3 Peptide identification experiments 

The quality of peptide identification was estimated by comparing the correlation 
scores between the experimental spectrum and the computer generated spectra for 
the true precursor sequence and 500 spurious tryptic peptides selected from the rat 
proteome. We estimated (i) the average difference between the score for the true 
peptide and the score for the best scoring random peptide, and (ii) the average rank 
of the true peptide in the context of 500 candidates. The mass of the true peptide m 
was used to get candidate tryptic peptides in the rat proteome whose masses ap-
proximately matched the mass of the experimentally measured peptide (within m – 1 
and m + 3). The candidate peptides were allowed to have up to one missed cleavage.  

The evaluation of peptide identification is presented in Table 3. Our new scoring 
scheme was compared to an ad-hoc (also referred to as simple) scoring in which all 
possible b and y fragment ions are assigned intensities of 1, b−H2O and y−H2O are 
assigned peak intensities of 0.5, b−NH3 and y−NH3 are assigned peak intensities of 
0.3, while b-H2O−NH3, y−H2O−NH3, b2 and y2 are assigned intensities of 0.1. Other 
fragment ions were assigned peak intensities of 0, as well as all fragment ions whose 
mass was greater than 2,000 due to the upper mass limit of the mass spectrometer. A 
negative score indicates that, on average, highest-scoring random peptides may be 
selected over the true peptides with higher confidence than the true peptides are se-
lected over highest-scoring random peptides. These experiments provide evidence 
that our approach to spectrum prediction may provide highly promising peptide 
identification.  

The spectra were classified into 8 categories according the chemical property of 
the peptides, namely +2 or +3 precursor, mobile (number of precursor charges is 
greater than total of H, K, and R) or non-mobile proton, and presence or absence of 
proline. While improvement over simple scoring is observed for all 8 categories, the 



greatest improvement appears to be for triply-charged precursors, especially with a 
mobile proton and proline. 
 
Table 3. The average difference in scores (diff) between the true peptide and the highest scoring random 
peptide and an average ranking of the true peptide (rank). To obtain scores and rankings we used 500 
random peptides from the rat proteome having approximately the same precursor mass as the true pep-
tide. The scores are separated for the cases of doubly vs. triply charged precursors, mobile vs. non-mobile 
proton, and presence vs. absence of proline (Pro) in the precursor sequence. Each field in the table was 
averaged using a set of 25 randomly taken precursor sequences (with 68% confidence intervals), identical 
for both scoring schemes. 

Doubly charged precursors Triply charged precursors 
Mobile proton Non-mobile proton Mobile proton Non-mobile proton 

Scoring 
scheme 

w/o Pro w Pro w/o Pro w Pro w/o Pro w Pro w/o Pro w Pro 
New 

di
ff 

Simple 
.32 ± .03 
.22 ± .02 

.26 ± .04 

.14 ± .03 
.30 ± .03 
.23 ± .02 

.24 ± .04 

.15 ± .02 
.13 ± .03 
−.01 ± .02

.14 ± .04 
−.03 ± .02

.22 ± .03 

.08 ± .02 
.25 ± .04 
.09 ± .03 

New 1.1 ± 0.1 1.4 ± 0.2 1.1 ± 0.1 1.5 ± 0.2 1.8 ± 0.7 1.5 ± 0.2 1.4 ± 0.4 1.2 ± 0.2 

ra
nk

 

Simple 1.1 ± 0.1 1.4 ± 0.2 1.0 ± 0.1 1.3 ± 0.2 9.0 ± 1.8 19.0 ± 4.5 2.3 ± 1.0 6.1 ± 2.2 

4 Discussion  

Machine learning approaches have been extensively applied to proteomics research.  
They, however, mostly focused on either the preprocessing of the spectrum or the 
post-processing the peptide identification results of conventional tools. For exam-
ples, binary classifiers30 and artificial neural networks31 were introduced to evaluate 
the quality of MS/MS spectra before they were used for peptide identification; sup-
port vector machines were also used to classify the positive protein identification 
based on Sequest output.32 Very little work, however, has addressed the potential of 

 
 
Figure 3. Experimental (upper panels) vs. predicted (lower panels) spectra for two triply charged precur-
sor ions. The left panels correspond to sequence HRDTGILDSIGRZ, while the right panels correspond 
to the sequence HVLSGTLGCPEHTYR. Note that the first sequence corresponds to the non-mobile 
proton w/o proline case, while the second sequence corresponds to the non-mobile proton with proline 
case. 



applying machine learning to the peptide identification itself. We extend the previ-
ous work by Elias et al.21 to the more challenging problem of predicting the full 
fragment spectra of peptides for both doubly- and triply-charged precursors. Our 
preliminary tests on the scoring of peptide identification showed encouraging results 
towards a new scoring scheme for peptide identification with better performance.  

All classifiers used in this study were trained on balanced samples. Certainly, 
balanced training provides good insight into the class separability since it is not re-
lated to the relative fraction between the positive and negative datasets. On the other 
hand, application of such a predictor may cause significant overprediction if applied 
to the representative imbalanced dataset. This problem, however, was easily re-
solved by adjusting the outputs of the predictor, depending on the class priors. Our 
choice of neural networks compared to other machine learning techniques (SVMs or 
decision trees) were based on our experience with using the models and the fact that 
only minor modifications will be required in order to learn peak intensities in a re-
gression-based approach. 

The empirical rules we derived from machine learning approaches in this paper 
will be also useful for understanding the fragmentation mechanism of triply charged 
ions. The enhanced cleavage on the N-terminal side of proline is consistent with 
previous observations for doubly charged ions.32 The data also suggest that trypto-
phan can enhance cleavage of the bond on its N-terminal side. Other subtle effects 
such as the rules regarding mobile versus non-mobile protons for +3 precursors will 
be the focus of future investigations.  

We stress that the method used in this paper is not restricted to any mass spec-
trometry instrument. As long as a large set of annotated spectra are available, our 
method can be applied to any proteomics platform. We intend to apply this method 
to other commonly used MS/MS instruments, e.g. Q-TOF or MALDI/TOF/TOF, as 
well as more specialized modes of fragmentation, e.g. photodissociation. 

The prediction of peptide fragmentation spectra may have other potential appli-
cations in protein analysis. It has been shown that the fragmentation patterns may 
correlate with protein local structures.33 Including the features of protein local struc-
tures in the prediction of peptide fragmentation spectra may result in a potential new 
approach to protein structure determination. 
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