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ABSTRACT

Motivation: One of the major problems in shotgun proteomics is the

low peptide coverage when analyzing complex protein samples.

Identifying more peptides, e.g. non-tryptic peptides, may increase

the peptide coverage and improve protein identification and/or

quantification that are based on the peptide identification results.

Searching for all potential non-tryptic peptides is, however, time

consuming for shotgun proteomics data from complex samples, and

poses a challenge for a routine data analysis.

Results: We hypothesize that non-tryptic peptides are mainly

created from the truncation of regular tryptic peptides before

separation. We introduce the notion of truncatability of a tryptic

peptide, i.e. the probability of the peptide to be identified in its

truncated form, and build a predictor to estimate a peptide’s

truncatability from its sequence. We show that our predictions

achieve useful accuracy, with the area under the ROC curve from

76% to 87%, and can be used to filter the sequence database for

identifying truncated peptides. After filtering, only a limited number of

tryptic peptides with the highest truncatability are retained for non-

tryptic peptide searching. By applying this method to identification of

semi-tryptic peptides, we show that a significant number of such

peptides can be identified within a searching time comparable to

that of tryptic peptide identification.

Contact: predrag@indiana.edu; rarnold@indiana.edu; hatang@

indiana.edu

1 INTRODUCTION

Due to its high throughput, the shotgun approach has become a

dominant strategy in proteomics. Protein mixtures are treated

by trypsin digestion typically followed by reversed-phase liquid

chromatography tandem mass spectrometry (RP-LC/MS/MS)

(Aebersold and Mann, 2003; Resing and Ahn, 2005; Russell

et al., 2004; Yates, 2004). The MS/MS spectra obtained from

the mass spectrometer are often searched against a protein

database by a computer program, e.g. Mascot (Perkins et al.,

1999) or Sequest (Yates et al., 1995). In this peptide

identification process, usually only those peptides that follow

the rigorous trypsin cleavage rules, i.e. cleavages after a basic

residue (arginine or lysine) except when followed by a proline,

are considered. We note that missed trypsin cleavage sites and

variable post-translational modifications are often included in

searches and increase the size of the search, however, these

types of searches are not discussed here. It has been shown that

only � 10–15% of all tryptic peptides from a given protein

sample can be identified with typically 50% of the protein

identifications based on a single tryptic peptide (States et al.,

2006) and that the intrinsic chemical properties of a tryptic

peptide have an effect on its probability of being observed in a

shotgun proteomics experiment (Lu et al., 2007; Mallick et al.,

2007; Tang et al., 2006). Therefore, identifying more peptides,

e.g. non-tryptic peptides, preferably at low computational costs

would increase the confidence of the proteins identified from

the tryptic peptides and potentially increase the overall number

of protein identifications.

It is commonly known that trypsin is a specific protease, but it

was not well understood how specific trypsin was when treating

a protein mixture until a recent work by Olsen et al. (2004).

They used the high mass accuracy of a linear ion-trap-FTICR

mass spectrometer to exclude precursor ions with less than

1 p.p.m. mass accuracy from consideration. In these experi-

ments, spectra that would have otherwise been assigned to non-

tryptic peptides were not able to meet this criterion. This work

provides evidence in support of the searches for fully tryptic

peptides only. Nevertheless, many shotgun proteomics experi-

ments rely only on highly sensitive but lower mass accuracy ion

trap instruments. Due to their fast scan rates and the ability to

accumulate precursor ion species that would not produce well-

resolved, high mass accuracy precursor signals such as in a linear

ion-trap-FTICR instrument, these instruments can select and

fragment low-abundance non-tryptic peptides. Others have, in

fact, shown that non-tryptic peptides are readily identified in

proteomics experiments (Tsur et al., 2005), and demonstrated

the relationship between digestion solvents and existence of non-

tryptic peptides (Strader et al., 2006).
To estimate how many non-tryptic peptides we can identify

in a typical shotgun proteomics experiment, we acquired two*To whom correspondence should be addressed.
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sets (A and B, see Methods section) of MS/MS spectra from
two different synthetic mixtures of standard proteins using two
different MS/MS instruments (linear ion-trap versus LTQ-

Orbitrap) in two independent proteomics labs. We observed
among many of the MS/MS spectra that remain unassigned in a
routine tryptic peptide search would be identified if the search

were performed to include non-tryptic peptides, also referred
to as truncated (tryptic) peptides. Furthermore, a majority
(490%) of these non-tryptic peptides are semi-tryptic peptides,

which are truncated from one end (either N-terminal or
C-terminal) of the tryptic peptide, thus preserving one trypsin
cleavage site. Since these samples are made by mixing standard

proteins, these truncated peptides are likely formed due to
chemical phenomena in the experimental procedures, and are
not necessarily the result of proteases in the sample or other

biological processes.
The effect of tryptic peptide truncation is demonstrated

in Figure 1. In this example, the truncation occurs at the
C-terminus of the peptide, so that y-ions are shifted in m/z

across the four peptides while b-ions are not. The y-ions labeled
y6, y9 and y11 in part A correspond to fragmentation at the
locations of the dashes in YLEFI-SD-AII-HVLHSK with

a single charge retained on the C-terminal fragment.
Fragmentation between the same residues results in ions y4,
y7, and y9 in part B and ions y3, y6 (present but not labeled),

and y8 in part C. For the fully tryptic peptide, these fragment
ions are among the most intense in the spectrum. For the first
two truncated peptides (loss of SK followed by loss of H) the

corresponding ions are rather strong. However, in the tandem
mass spectrum of the final truncated peptide (further loss of
VL) the corresponding peptides are not observed. The varying

LC retention times for these peptides (see caption of Fig. 1)
suggest that these species are present in the proteolytic digest
sample, and not created in the electrospray ion source of the

mass spectrometer. The strong signal-to-noise ratio of these
MS/MS spectra along with the LC-MS data provides convin-
cing evidence that peptide truncation is an observable

phenomenon in shotgun proteomics experiments.
Even though many truncated peptides may be identified in a

shotgun proteomics experiment, it is inefficient to apply a

conventional database search to identify them, because there
are many more potential truncated peptides than tryptic
peptides. For instance, one single tryptic peptide of length l

can result in 2�(l� 1) semi-tryptic peptides, and l�(l� 1)/2
truncated peptides. Hence, even the semi-tryptic search may
take at least 10 times more time than the tryptic peptide search.

One way to address this issue and speed up the truncated
peptide searching is to utilize peptide sequence tags that are
generated by the de novo sequencing tools (Frank and Pevzner,

2005) to filter non-tryptic peptide sequences in the database
(Frank et al., 2005). This approach, however, performs well
only for high quality MS/MS spectra, from which good

sequence tags can be generated.
In this article, we adopt a different approach for database

filtering. We first show that truncation of tryptic peptides is not

a uniformly random process—some tryptic peptides are more
likely to be truncated than others. We then hypothesize that
this non-uniform probability is due to the different chemical

properties of tryptic peptides that likely affect the stability of

peptides in solution. Based on this observation, we propose to

predict the truncatability of a tryptic peptide, i.e. the

probability of the peptide to be identified in a truncated

form, and build a predictor to estimate a peptide’s truncat-

ability from its sequence. We show that our prediction achieved

high accuracy and can be used to filter the sequence database

for identifying truncated peptides. After filtering, only a limited

number of tryptic peptides with high predicted truncatability

are retained for a truncated peptide search. Since semi-tryptic

peptides comprise the majority of non-tryptic peptides in a

proteome experiment, we applied this method to accelerating

semi-tryptic searches. Our results show that a significant

number of semi-tryptic peptides can be identified using

computational search times comparable to those needed for

conventional tryptic peptide searches.

2 TRUNCATABILITY OF TRYPTIC PEPTIDES

The truncation of a tryptic peptide can be viewed as the loss of

one or more amino acids from the N- and/or C-terminus of the

fully tryptic peptide. In addition to the biological mechanisms

inside a living cell, e.g. proteolytic activities, peptide truncation

may be caused by various chemical mechanisms during sample

preparation, handling and storage. Even though the process

of in-source decay in the mass spectrometer is well understood,

we believe that truncation is mainly not facilitated in this way,

since we consistently observe that truncated and full tryptic

Fig. 1. Ion trap tandem mass spectra for (A) the tryptic peptide

YLEFISDAIIHVLHSK for horse myoglobin and truncated versions

of the same peptide, (B) YLEFISDAIIHVLH, (C) YLEFISDAIIHVL

and (D) YLEFISDAIIH. Selected sequence-specific ions are labeled,

although all strong peaks in each spectrum can be assigned as sequence

fragments. The LC/MS data corresponding to the four peptides are

listed as (peptide, mass, m/z observed, Mascot score, LC retention time,

LC-MS peak area): (YLEFISDAIIHVLHSK; 1884.01; 943.66; 96;

41.89; 3.54� 106), (YLEFISDAIIHVLH; 1668.89; 836.00; 98; 42.60;

4.68 106), (YLEFISDAIIHVL; 1531.83; 767.76; 90; 44.54; 3.29 106),

(YLEFISDAIIH; 1319.68; 661.14; 66; 38.82; 8.75 105).
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peptides elute at different retention times in liquid
chromatography.
Given a tryptic peptide, we define its truncatability as the

probability that this peptide is observed in any truncated form

in a standard proteomics experiment (e.g. where quantities
of all proteins are similar). The requirement of a standard

proteomics experiment enables us to better understand
physicochemical properties of truncated peptides by eliminating

the influence of protein quantities. In this article, we focus on

the most popular platforms, the LC coupled to ion-trap (linear
or 3D) mass spectrometers. We view the truncatability of a

tryptic peptide as an intrinsic property of a peptide for a given

set of experimental conditions, and hence expect that it can be
predicted from the peptide sequence. We also emphasize that

we are particularly interested in the extremely truncatable
peptides, i.e. the tryptic peptides that are not observed as fully

tryptic peptides, but only in their truncated form(s). We rely on

these peptides to improve the peptide coverage when analyzing
shotgun proteomics data, but note that other truncated

peptides can also be useful, e.g. in protein quantification
studies based on spectral counts.

3 METHODS

3.1 Data sets

Here we utilized three data sets of MS/MS spectra. Data sets A and B

were acquired from synthetic protein mixtures and data set C

was acquired from a real proteome sample. Both synthetic samples

(A and B) contained proteins that were mixed at similar concentrations.

These samples were suitable for studying and learning truncatability of

the peptides. Data set C was suitable for studying effects of predicted

truncatability in a biological setting. Data sets A and C were previously

used by Tang et al. (2006) and are described here for the self-

containment of this study.

3.1.1 Data set A Data set A contained 12 model proteins mixed

at equimolar quantities. The sample was reduced with dithiothreitol

(DTT), alkylated with iodoacetamide (IAM) and digested with trypsin

at 37�C for 18 h. After acidifying the sample, peptides were loaded onto

a 15mm by 100�m i.d. trapping column packed with 5�m BioBasic

18 particles with 300 Å pores (Thermo Hypersil-Keystone, San Jose,

CA, USA). Peptides were separated using a 30-min reversed-phase

LC gradient from 3% to 40% acetonitrile at 250 nl/min (Eksigent

Technologies, Livermore, CA, USA) on a 15 cm, 75�m i.d. capillary

column pulled to a small (�10�) tip and packed in-house with 5�m

C18 coated particles (Betasil C18, Thermo Hypersil-Keystone,

San Jose, CA, USA). As peptides eluted from the column, they were

electrosprayed into the source of a Thermo Electron (San Jose, CA,

USA) LTQ linear ion trap mass spectrometer and analyzed by mass

spectrometry and tandem mass spectrometry.

3.1.2 Data set B Data set B contained 18 proteins mixed at

similar concentrations and was digested with trypsin after treatment

similar to that for data set A. The samples were loaded onto the trap

column with a 3�l/min flow rate after the split, and then the reversed-

phase gradient was from 2% to 40% mobile phase B in 90min at

150�l/min flow rate before the split and 2�l/min after the split. A

linear ion trap/Orbitrap (LTQ-Orbitrap) hybrid mass spectrometer

(ThermoFinnigan, San Jose, CA, USA) equipped with an ESI

microspray source was used for MS/MS experiments. The mass

spectrometer was set so that one full MS scan was acquired in the

Orbitrap parallel to three MS/MS scans in the LTQ linear ion trap on

the three most intense ions from the full MS spectrum. The resolving

power of the Orbitrap mass analyzer was set at 60 000 for the precursor

ion scans (at m/z 400).

3.1.3 Data set C Data set C was generated using a complex

proteome sample from Drosophila melanogaster. Drosophila genotype:

elav-GAL4 (Stock number: Bloomington/458) flies were grown for one

day and decapitated. Heads were collected on dry ice and stored at

�80�C. Proteins were extracted, reduced with DTT, alkylated with

IAM and digested with TPCK-treated trypsin. Tryptic peptides were

isolated by C18 solid-phase extraction, vacuumed to dryness and stored

at �80�C until future use. Peptides were separated by nano-flow

reversed-phase liquid chromatography [15 cm� 75�m i.d. fused silica

capillary column pulled to a fine tip and packed with 5�m, 100 Å

amino-terminated C18 packing material (Michrom Bioresources,

Auburn, CA, USA), eluted with a gradient from 5% to 45%

acetonitrile at 250 nl/min]. Eluting peptides were electrosprayed directly

into the source of a Thermo Finnigan LCQ Deca XP ion trap mass

spectrometer and analyzed by MS (m/z 250–1500) and data-dependent

MS/MS on the three most intense ions.

Tandem mass spectra were searched against protein sequences for the

12 or 18 known proteins (data sets A and B) or all proteins from

D.melanogaster (data set C) using Mascot for peptide identification.

Searches were performed with fixed modification of carbamidomethyl

cysteine and variable modifications of protein N-terminal acetylation

and methionine oxidation selected and a maximum of one missed

trypsin cleavage site. Searches for the non-tryptic peptides in the same

data sets were performed using the same modification settings and

specifying semi-tryptic cleavage.

3.2 Learning peptide truncatability

We used neural networks to learn peptide truncatability. All peptides

identified solely in truncated forms comprised the set of positive

examples, while peptides identified as tryptic, regardless of their

truncated forms being identified, together with the peptides that were

not identified comprised the set of negative examples. For data sets A

and B, we used an experience-based default Mascot score threshold of

25 to determine positive identifications, while in the biological sample C

we used reversed proteome of D.melanogaster for the control of the

false discovery rate (5%) by searching both forward and reverse

databases together.

3.3 Data representation

Similar to our previous approach (Tang et al., 2006), each tryptic

peptide was encoded into a vector form based on its amino acid content

and various physicochemical and predicted properties derived from

amino acid sequence of the peptide itself and the neighboring

peptides within the parent protein. We encoded amino acid composi-

tions, N- and C-terminal residues, and properties such as charge and

aromatic content as well as hydrophobic moment (Eisenberg et al.,

1984), flexibility by Vihinen et al. (1994), B-factor prediction (Radivojac

et al., 2004) and disorder prediction (Obradovic et al., 2003; Romero

et al., 2001; Vucetic et al., 2003). All predicted properties were encoded

as averages within the peptide itself as well as �5, �10 and �15 residues

away from the N- and C-terminal residues. N- and C-terminal residues

of the peptides were encoded as binary variables. The total number

of features was 175.

3.4 Model training

An ensemble of 30 feed-forward neural networks was trained with the

final output being an average of individual members. Before network

training, we performed feature selection based on the t-test with

thresholds from {1, 0.1, 0.01}, where the P-value of 1 corresponds to

P.Alves et al.
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retaining all features. The t-test was performed after splitting each

feature individually into two samples based on the class labels. Then,

after the Z-score normalization, we performed the principal component

analysis retaining 95% of the variance in the sample due to the fact that

a large number of features were correlated. Each neural network

contained 1, 2 or 4 hidden neurons and was trained using the resilient

propagation algorithm (Riedmiller and Braun, 1993). To prevent

overfitting, all parameters were selected on the validation data (20% of

the training set) and only the final accuracies after the automated

parameter selection were reported.

3.5 Model evaluation

The accuracy of the model was estimated using out-of-sample testing

where all proteins from one data set were used for training and proteins

from the other data set were used for testing. For example, data set

A was used for training (20% of set A used for validation and para-

meter selection) and the final model only was evaluated on data set B.

We estimated the balanced-sample accuracy (accuracy), i.e. an average

between true positive and true negative rates, and the area under the

ROC curve (AUC).

3.6 Pipeline for identifying semi-tryptic peptides

The prediction of truncatable peptides is carried out off line on the

tryptic peptides in the database. Thus, sorting of all the peptides in the

database according to their truncatabilities represents a one-time

fixed computational cost. A subsequent proteomic search involves

only a pre-selected fraction of these peptides (e.g. top 25%) for

truncation using the semi-tryptic search option. Note that since the size

of the effective peptide database is increased after including all semi-

truncated forms of the most truncatable tryptic peptides, the threshold

for peptide identifications is expected to be higher than that of a regular

tryptic search to maintain the same false discovery rate. For the

biological data set described here, e.g. the Mascot score threshold

increased from 25 to 32 to maintain 5% false discovery rate. In a

slightly different scenario, the proteins that contain at least one

identified peptide (tryptic or non-tryptic) can be further searched with a

semi-enzyme option to increase their peptide coverage. We call this

procedure a two-step identification, where in the first step we identify

readily truncated peptides from a list of tryptic peptides (sorted

according to a decreased truncatability), and in the second step we

perform a semi-tryptic search on the peptides from the proteins

identified in the first step (or more precisely, all proteins hit by the

peptides identified by the truncatability-enhanced tryptic search).

4 RESULTS

4.1 Data sets

Mascot searches for tryptic peptides resulted in the identifica-
tion of 164 (114 tryptic, 31 tryptic and truncated and 19

extremely truncated), 134 (62, 29, 43), and 788 (645, 45, 98)

peptides for data sets A, B and C, respectively, each with a false
discovery rate of 5%. Spectra identified as tryptic peptides

could not also be assigned as non-tryptic peptides. Note that
for the biological sample (data set C), the sampling spends a

smaller proportion of time on less concentrated ions, resulting
in the smaller proportion of the identified non-tryptic peptides.

4.2 Analysis of truncated sites

We first analyzed amino acid biases of the identified truncation

sites for all three data sets (Fig. 2). In Figure 2A, the amino acid
preferences at the N-terminal side follow an interesting trend:

there is a significant enrichment of aromatic (F, W, Y) and a
significant depletion of acidic (D, E) and hydrophobic residues

such as G, P, V and I. While enhancement of truncation with
large hydrophobic residues on the N-terminal side is suggestive

of chymotryptic activity, we note that only 58.8%, 21.7%
and 48.0% of the truncation sites have F, W, Y or M on the

N-terminal side observed in data sets A, B and C, respectively,
indicating that a large number of truncations cannot be

explained simply by the activity of chymotrypsin or chymo-

trypsin-like activity of trypsin. Moreover, none of the peptides
identified in these samples could be assigned to chymotrypsin,

further suggesting that the protease itself was not present in
the sample in any significant amount. In comparison to the

N-terminal side, there is a much larger variability on the
C-terminal side of the truncation site (Fig. 2B). Although these

data sets were not large enough for complete understanding of
the truncation mechanisms, it appears that the possibility of a

peptide bond being broken may be influenced more by the
residue on its N-terminal side.

4.3 Feature analysis

To improve our understanding of the influence of various

properties on peptide truncatability, we used the t-test to rank

A B 

Fig. 2. Amino acid preference at the truncation sites in three data sets used in this study. Black bars—data set A, dark grey bars—data set B; light

gray bars—data set C. Each bar is calculated as (ft(a)—f(a))/(ft(a)þ f(a)), where ft(a) is the relative frequency of amino acid a at (A) N-terminal or

(B) C-terminal side of all truncated sites and f(a) is the relative frequency of amino acid a in all peptides observed as truncated in data sets A, B or C.

By definition, instances where there were no truncations for a certain residue result in a value of �1.
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individual features from the combined data sets A and B

(Table 1). Most significant features indicate that peptides with

high local flexibility as well as peptides with high hydrophobic

moments are negatively correlated with peptide truncatability.

In addition, there exists a positive correlation between the

peptide length and mass and the identification of extremely

truncated peptides. The mean lengths for the truncated peptides

(i.e. their full tryptic versions) in data sets A and B were 19.6

and 17.9, respectively. These peptides were on average longer

than identified tryptic peptides in both data sets (12.4 versus

11.4). Data set C contained several very long peptides (111, 106,

98, etc. residues) that resulted in their identification in multiple

truncated forms. These long tryptic peptides are extremely

truncatable peptides by nature, since they can only be detected

in truncated forms. The average length of the truncated

peptides in data set C was 28.6, while the average length of

the identified tryptic peptides was 15.7. The features shown in

Table 1 provide good initial insights into peptide truncation,

however, we note that additional experiments are needed to

fully understand its chemical basis.

4.4 Truncatability prediction

A predictor trained on data set A and tested on data set B

reached accuracy of 67.7% and AUC of 76.0%, while a

predictor trained on data set B and tested on data set A reached

accuracy of 73.6% and AUC of 80.0%. Data set C contained

proteins at different abundances and was not suitable for

training purposes. However, both data sets A and B proved to

be good training sets for the evaluation on the biological

sample C, reaching accuracy/AUC of 78.3%/87.4% and 77.9%/

86.3%, respectively.

Figure 3 shows a box plot of the scores of all peptides in

data set B, separated into four groups: (i) Neg—non-identified

peptides, (ii) Trp—peptides identified as tryptic only; (iii) Tru—

peptides identified as both tryptic and truncated and (iv)

XTru—extremely truncated peptides, i.e. peptides identified

only as truncated. The neural network for predicting peptide

truncatability was trained using data set A only. Figure 3 shows

increasingly larger scores between the four groups of peptides

with the extremely truncated peptides (XTru) having the

highest scores. This indicates that the highest truncatability

scores are most likely to result in identification of extremely

truncated peptides.

4.5 Using truncatability in proteomics searches

We used the truncatability predictor trained from the combined

data sets A and B to prioritize the search for the semi-tryptic

peptides in data set C. We evaluated the trade-offs between

the number of searched peptides and the number of identified

gained peptides. In Figure 4, we plot the fraction of gained

peptides as a function of the fraction of searched tryptic

peptides that can result in identification of semi-tryptic peptides

in data set C. The fraction of the gained peptides was calculated

by first searching the entire D.melanogaster database using

the semi-trypsin option, which roughly provided us with all

identifiable semi-tryptic peptides. Both forward and the reverse

sequences were searched at the same time in order to adjust

the acceptance thresholds of spectrum-to-peptide matches to

the increased database size. A Mascot threshold of 32 was used

to achieve a false identification rate of 5%. It is important

to note that this threshold is rather conservative for our

proposed approach, since in practice only a fraction of peptides

will be searched using the semi-trypsin option.
We separately evaluated an algorithm where top n% of the

tryptic peptides were used for the semi-enzyme search and

compared it with the two-step process (see Methods section).

In both cases, �50% of all peptides needed to be searched in

Table 1. Top 10 features estimated using the t-test on merged data sets

A and B

Fature WindowP-value CorrelationReference

Vihinen et al.

flexibility

�5 1.7� 10�8
� Vihinen et al.

(1994)

Hydrophobic

moment (angle 120�)

�15 2.6� 10�8
� Eisenberg et al.

(1984)

VL2-V disorder

predictor

�15 2.1� 10�7
� Vucetic et al.

(2003)

B-factor prediction �15 3.6� 10�7
� Radivojac et al.

(2004)

VLXT disorder

predictor

�15 4.3� 10�7
� Romero et al.

(2001)

VL2 disorder

predictor

�15 4.6� 10�7
� Vucetic et al.

(2003)

Peptide length N/A 1.0� 10–6 þ N/A

Hydrophobic

moment (angle 100�)

�15 1.0� 10�6
� Eisenberg et al.

(1984)

Peptide mass N/A 2.0� 10�6
þ N/A

Hydrophobic

moment (angle 160�)

�15 3.0� 10�6
� Eisenberg et al.

(1984)

Features of the same type, but averaged over flanking regions of different sizes,

are presented only for the best performing window.

Fig. 3. Box plot of four groups of peptides: (i) Neg—non-identified

peptides, (ii) Trp—peptides identified as tryptic only; (iii) Tru—peptides

identified as both tryptic and truncated and (iv) XTru—extremely

truncated peptides. The number of peptides contained in each group is

|Neg|¼ 171, |Trp|¼ 62, |Tru|¼ 29, |XTru|¼ 43.
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order to identify all 98 unique extremely truncated semi-tryptic

peptides (gained peptides). On the other hand, with only the top

10% of the tryptic peptides in the entire proteome, 50% of the

semi-tryptic peptides could be identified. Given that in the

biological sample proteins could be found at various concen-

trations and that proteins containing the most semi-tryptic

peptides may not even be present in the sample, this result

is very promising. As previously indicated, note that if a

fraction of total peptides is searched, the acceptance threshold

can be further reduced, thus enabling the identification of semi-

tryptic peptides that would not have been identified using the

no-enzyme or semi-enzyme search on the entire database at

the same false discovery rate. When indeed only the top 50% of

the most truncatable peptides were selected for the semi-tryptic

search, we identified 109 extremely truncated peptides as

compared to 98 in the full search (increase of 11%) with the

Mascot threshold reduced to 25 (for false discovery rate of 5%)

from 32. This number was obtained as an average when 50% of

the reverse database was randomly selected as decoy 100 times.
Possible identifications of new proteins and the increased

coverage of already identified proteins, especially those iden-

tified by a single peptide, can not only improve the confidence

of protein identifications, but also help to disambiguate

between paralogs in large gene families. Figure 5 shows the

distribution of the identified proteins for a given number of

peptide hits when the top 25% of the most truncatable peptides

(out of 760 617 peptides in total) were used to identify semi-

tryptic peptides. It can be observed that the number of proteins

in data set C containing two peptides or more increased from

102 to 113, i.e. 11%. At the same time, there was a significantly

higher increase in coverage of proteins identified by more than

two, three and four peptides, i.e. 25%, 53% and 87%,

respectively (Fig. 5). Ten additional proteins were identified

by at least one peptide by including semi-tryptic peptides.

4.6 Truncatability versus detectability

In our previous work, we proposed a concept of peptide

detectability as the probability that a peptide at standard

concentration will be identified in a standard proteomics

experiment (Tang et al., 2006). We note here that the peptide

truncatability is more or less related to detectability, because we

can only observe a truncated peptide if it is detectable.

However, it is obvious that the truncatability and detectability

of a peptide are two different properties. On the one hand, we

would classify a peptide as truncatable only if any of its

truncated forms is detected. Hence, the highly truncatable

peptides would be expected to be detectable, unless the

truncations significantly change their detectabilities. On the

other hand, peptides that are highly detectable would not

necessarily be expected to be highly truncatable. This reasoning

is supported by the correlation coefficient of 0.353, 0.611 and

0.597 between the two properties for data sets A, B and C,

respectively. The correlation between truncatability and detect-

ability can also be observed through the similar properties of

the truncatable and detectable peptides summarized in Table 1

of this study and table 3 from Tang et al. (2006). Peptides that

are highly hydrophilic (i.e. those having high flexibility and

disorder scores) are likely to be washed out in the RP trap and

thus have decreased detectability (Galea et al., 2006; Tang

et al., 2006). Those same peptides, on the other hand, are also

likely to produce truncatable peptides whose detectability will

not be very high. Therefore, it appears that the most important

features for finding detectable truncated peptides are highly

dependent on peptide detectability. However, the use of

Fig. 4. The fraction of gained peptides (unique extremely truncated

peptides) as a function of the fraction of searched tryptic peptides. The

fraction of gained peptides was calculated when the number of gained

peptides was divided by the total possible number of gained peptides,

obtained by the semi-enzyme search. Dashed (green) curve represents

database filtering based on predicted peptide truncatability; solid (blue)

curve represents filtering based on the two step process, while the dotted

(red) line represents a hypothetical baseline case in which peptides are

selected randomly.

Fig. 5. The number of proteins as a function of the cumulative number

of identified peptides in a proteomics experiment. Top 25% of the most

truncatable peptides in data set C were searched for non-tryptic

peptides. Dark gray bars represent the proposed approach with the

prediction of truncated peptides; light gray bars represent the search for

tryptic peptides only. Bootstrapping (on the level of identified peptides)

with 1000 rounds indicates that the difference between the two

distributions is significant.
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detectability scores, instead of truncatability, to prioritize
peptides for searching semi-tryptic peptides resulted in a
decreased performance by roughly 50% (data not shown)

suggesting that the two properties are indeed different.

5 DISCUSSION

We used trypsin-digested proteins from two synthetic mixtures
and a biological sample to demonstrate that non-tryptic
peptides, which we refer to as truncated peptides, appear in

solution and are readily identified in shotgun proteomics
experiments. These truncated tryptic peptides have distinguish-

able sequence characteristics that can be learned by a machine-
learning approach. Knowledge of these characteristics enables
the prediction of peptide truncatability that can filter out a

large fraction of tryptic peptides before performing a time
consuming exhaustive no-enzyme or semi-enzyme search for
non-tryptic peptides. For the biological sample, we show that

searching only the one quarter most truncatable tryptic
peptides (i.e. a saving of � 75% semi-enzyme search time) in
all observed proteins allows for � 80% of all identifiable semi-

tryptic peptides to be identified (Fig. 4). These additional
identified semi-tryptic peptides increase the sequence coverage
and confidence in protein assignments. We anticipate that

further (more dramatic) time saving can be gained by extending
our current approach to enable the prediction of the truncation

sites within the truncatable peptides. The non-random distribu-
tion of amino acid residues at the N-terminal side of truncation
sites (Fig. 2) indicates that these sites are likely predictable. In

that case, the number of semi-tryptic peptides that needs to be
searched can be reduced to a small constant for each
truncatable peptide. Consequently, it will require only compa-

rable time for non-tryptic and tryptic peptide searches.
While it may be expected that truncated peptides are more

readily observed in synthetic protein mixture samples than in

biological samples due to reduced complexity, we expect that
biological samples will have high abundance proteins whose
truncated peptides will be readily detected. The results for

sample C (Fig. 5) demonstrate this effect, showing that the
relative increase in identified peptides when multiple (3 or
more) peptides are identified is larger than when only one or

two peptides are identified for a protein. Even though the
identification of these truncated peptides may not help to

identify more low abundance proteins, the increase in peptide
coverage can provide useful information for protein inference
(Alves et al., 2007; Zhang et al., 2007) and label-free

quantification (Tang et al., 2006). Figure 2 supports the
argument that the mechanism of peptide truncation, although
not yet thoroughly understood, is consistent across both

synthetic and biological samples.
It may be argued that since a considerable fraction (in our

study � 50%) of non-tryptic peptides are resulted from the

chymotrypsin-like cleavages, i.e. after amino acid residues F,
W, Y or M (Bender and Kezdy, 1965), one can apply a trypsin/
chymotrypsin search, which considers peptide cleavage at all

trypsin-specific and chymotrypsin-specific sites. In our analysis,
however, even when we allow four missed cleavage sites in this
type of search, in which even a much larger peptide database is

searched against than using our approach, we can identify only

64% (score �32) of the semi-tryptic peptides that can be

identified (note that only a subset of the identified semi-tryptic

peptides are gained peptides) from the entire database, even

though 84% (score �25) of the fully tryptic peptides from a

trypsin search are found. This indicates that there are a number

of semi-tryptic peptides resulting either from truncation

mechanisms other than chymotrypsin-like cleavages or that

would require expanding the trypsin/chymotrypsin search even

further. Thus, the ideal approach to identification of semi-

tryptic peptides appears to be one where all potential semi-

tryptic forms from truncatable peptides are considered.
The prediction of truncatable peptides is also useful in stud-

ying the proteolysis mechanisms using shotgun proteomics.

Identification of semi-tryptic peptides resulted from in vivo

cleavages can be applied tomany important biological problems,

e.g. the determination of signal peptides, and the mapping of

protein degradation pathways. It is, however, important to

differentiate the peptide truncations resulting from in vivo

biological processes from those caused by chemical phenomena

during sample preparation. Our analysis of the synthetic protein

mixtures suggests the existence of the latter cause for peptide

truncation. It will be useful to predict chemically truncated

peptides (and their truncation sites), and exclude them from

consideration in biological truncation analysis.
While the training sets used in this study are relatively small,

and much larger proteomics data sets from biological sources

are available, it is important that biological sources of

truncation be eliminated or well characterized so that chemical

effects can be studied. The availability of more complex

standard protein mixtures would enhance such studies and

should be pursued. Further investigation is also needed in order

to elucidate the chemical mechanism(s) of peptide truncation.
Previously, we have shown that the estimated peptide

detectability can be used to improve protein inference and

label-free protein quantification (Alves et al., 2007; Tang et al.,

2006). Even though our prediction of peptide detectability is

largely consistent with the peptide identification results in

shotgun proteomics, i.e. the peptides with high detectabilities

tend to be observed more often than the ones with low

detectabilities, there are nevertheless some peptides with high

detectabilities that are still not identified, referred to as missed

peptides (Alves et al., 2007). We observed that the missed

peptides often have higher predicted truncatabilities than the

non-identified peptides (data not shown). Therefore, these

peptides may be missed despite their high detectability because

they are extremely truncatable. In the future, we plan to apply

the truncatability prediction to improve our protein inference

and quantification methods.
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