
Making k-means even faster

Greg Hamerly∗

Abstract

The k-means algorithm is widely used for clustering,
compressing, and summarizing vector data. In this
paper, we propose a new acceleration for exact k-means
that gives the same answer, but is much faster in
practice. Like Elkan’s accelerated algorithm [8], our
algorithm avoids distance computations using distance
bounds and the triangle inequality. Our algorithm uses
one novel lower bound for point-center distances, which
allows it to eliminate the innermost k-means loop 80% of
the time or more in our experiments. On datasets of low
and medium dimension (e.g. up to 50 dimensions), our
algorithm is much faster than other methods, including
methods based on low-dimensional indexes, such as k-d
trees. Other advantages are that it is very simple to
implement and it has a very small memory overhead,
much smaller than other accelerated algorithms.

1 Introduction

The k-means algorithm is a popular method for auto-
matically classifying vector-based data. It’s used in var-
ious applications such as vector quantization, density
estimation, workload behavior characterization, image
compression, and automatic topic identification, among
many others. It’s been identified as one of the top-10
algorithms in data mining [18].

Because it’s such a widely used algorithm, k-means is
often used as a subroutine of other learning, coding,
and compression algorithms. Many proposed methods
are wrappers around k-means, running it many times.
For example, a practitioner might try many different
initializations to find a high-quality solution. Recent
stability-based model selection algorithms also call for
running k-means many times with different k values [2].
Since it’s so widely used, k-means should be as fast as
possible.

The most popular algorihtm for k-means is known as
Lloyd’s algorithm [13]. The two primary steps in this
iterative algorithm are:

∗Department of Computer Science, Baylor University;

greg hamerly@baylor.edu

1. for each data point x

• for each cluster center c (the ‘innermost loop’)

– compute the distance between x and c

• assign x to its closest cluster center

2. move each center to the mean of its assigned points

These two steps repeat until the algorithm converges.
Given an initial set of centers, this algorithm will move
toward a (local) minimum of the k-means criterion,
which is the sum of squared distances between each
point and its assigned center. While this algorithm can
be programmed so that the outer loop in step 1 is over
data points or over centers, the way we have presented
uses the least memory. The innermost loop over centers
is where the algorithm spends the majority of its time.
The algorithm we present in this paper eliminates the
need to execute this loop 80% of the time or more (in
our experiments).

This paper’s focus is on accelerating Lloyd’s algorithm,
but there are many other algorithms that try to opti-
mize the k-means criterion, either in conjunction with
or as replacements of Lloyd’s algorithm. They include
random restarts, local search [12, 6], and simulated an-
nealing [12]. Since Lloyd’s algorithm is sensitive to its
initialization, another line of research focuses on pro-
viding an initialization that will lead to a high-quality
solution [11, 16, 1].

Some factors that can cause k-means to be slow are:
processing large amounts of data, computing many
point-center distances, and requiring many iterations to
converge. A primary method of accelerating k-means
is applying geometric knowledge to avoid computing
point-center distances when possible. Elkan’s algorithm
[8] exploits the triangle inequality to avoid many dis-
tance computations, and is the fastest current algorithm
for high-dimensional data. Several tree-based accelera-
tions have also been proposed, such as Moore’s anchors
hierarchy [15], which is effective in high dimensions, and
k-d tree algorithms [17, 12], which are very fast on low-
dimensional data.

In this paper we present a new method of accelerating
Lloyd’s algorithm which builds on Elkan’s algorithm.

Our algorithm is significantly faster than any competing
algorithm in data of dimensions up to about 50, and we
investigate the reasons it is so fast. They are:

• Novel lower bound: the lower bound used in our
algorithm usually allows it to eliminate the inner-
most k-means loop 80% of the time, or more.

• Simplicity: it is simple to code, and therefore easy
to optimize.

• Low latency: it does not require the construction
of a spatial index, so the algorithm can begin
executing quickly.

• Iterative: the algorithm does not rely on recursive
function calls, as do many algorithms that use
tree indexes, so it saves costly function calls in
performance-critical code.

• Small memory footprint: it uses far less memory
than existing accelerated algorithms.

As a result, we believe the algorithm proposed in this
paper will become the algorithm of choice for fast k-
means clustering on low-dimensional data. Further, our
algorithm complements Elkan’s algorithm, which is very
fast for high-dimensional data. In the conclusion, we
discuss methods of combining these two algorithms.

2 Related work

Many people have worked on accelerating clustering
algorithms. Some of this work has been in proposing
new clustering algorithms or approximation techniques
for existing algorithms [19, 9]. Our interest is in
accelerating Lloyd’s algorithm, so that the accelerated
version can be used anywhere Lloyd’s algorithm can be
used. Because k-means is so widely used, improving
its efficiency will have a large immediate impact. We
briefly review methods of accelerating k-means.

2.1 Low-dimensional acceleration For low-
dimensional data, indexing the data to be clustered is
an effective way to accelerate k-means. Kanungo et al.
[12] and Pelleg and Moore [17] separately came up with
similar ways of adapting a standard k-d tree for fast
k-means. Pelleg and Moore’s ‘blacklisting’ algorithm
operates as follows:

• Construct a k-d tree on the data to be clustered,
keeping sufficient statistics at each node about the
vector sum and number of all points in that subtree.

• When calculating the assignment of each data
point, filter the centers through the tree in a depth-
first recursive fashion. During the descent, prune
centers that cannot possibly be the closest to the
current subtree. If all but one center can be pruned,
stop descending that subtree and assign all its
points to the remaining center using the sufficient
statistics.

This method is highly effective for large numbers of
data points. However, Pelleg and Moore report that
it becomes slow when the dimension increases beyond
8. This is due to the curse of dimensionality – when
there are many dimensions, then points and centers
tend to be far from one another, and little pruning can
be done. There are several overhead costs that must
be considered as well. Constructing the k-d tree costs
O(n log(n)) for n data points, and roughly doubles the
memory cost of the algorithm. An algorithm which
traverses a non-linear structure like a tree is likely
to have poor spatial locality. Further, if the dataset
changes, updating the k-d tree to mirror these updates
is not trivial.

2.2 High-dimensional acceleration With high-
dimensional data, indexing schemes such as k-d trees do
not work well, to the point where examining every data
point (i.e. using no special data structure for accelera-
tion) can be much faster than algorithms intended for
low-dimensional acceleration. However, several alterna-
tive methods have shown promise.

Moore proposed the anchors hierarchy [15], a hierar-
chical structure for dealing with high-dimensional data
that obeys the triangle inequality. Two nice proper-
ties of this method are that it does not require a vector
embedding of the data, nor the ability to index individ-
ual dimensions. The paper showed significant speedups
(defined in terms of the number of distance calculations
required) on many different datasets, even up to 10,000
dimensions. Like the k-d tree, building and maintain-
ing the hierarchical structure can be complex and have
significant time and memory overhead.

The most efficient current method for high-dimensional
k-means clustering is Elkan’s algorithm [8]. His method
does not use any indexing structure, but keeps a number
of distance bounds that allow it to avoid unnecessary
distance computations. Our work is based on this
algorithm, so we discuss it in more detail in the following
subsection.

Partial distance search [4, 14] is a way to accelerate
algorithms like k-means that need to identify closest

points. It takes advantage of the fact that in such
algorithms we don’t need to know exact distances, only
which distance is the minimum. For example, suppose
we have calculated ||x − c||2, the squared distance
between a point x and a center c. When calculating
the distance from x to another center c′, the typical
calculation will proceed by summing squared distances
in each dimension. If this sum ever exceeds ||x − c||2,
then the distance calculation can stop early, since c′

cannot possibly be closer than c. The overhead of
partial distance search is usually only cost effective in
high dimension.

When dealing with high-dimensional sparse data, it is
often convenient to re-cast Euclidean distance compu-
tations in terms of inner products. Namely,

||x− c||2 = 〈x− c, x− c〉 = 〈x, x〉 − 2〈x, c〉+ 〈c, c〉

If we have pre-calculated 〈x, x〉 and 〈c, c〉, then com-
puting the squared distance between x and c requires
only a single inner product 〈x, c〉, combined with the
cached 〈x, x〉 and 〈c, c〉. Further, if we desire the min-
imum distance from x to any other c, the term 〈x, x〉
is constant, and can be ignored until the closest c has
been identified.

Rather than clustering directly in high dimension, many
practitioners will cluster a low-dimensional projection of
the original high-dimensional data. Random linear pro-
jection [5, 10] is a popular and simple technique. Clas-
sical principal components analysis (PCA) is also pop-
ular, though more expensive. Recent work has shown
strong connections between PCA dimension reduction
and k-means clustering [7]. A consequence of this result
is that high-dimensional data can be effectively reduced
in dimension before clustering is applied. This suggests
that accelerated low-dimensional clustering algorithms
will continue to be useful in the face of high-dimensional
data, since dimension reduction prior to cluster analysis
is both theoretically and practically beneficial.

2.3 Elkan’s algorithm Elkan [8] presented a highly
effective k-means algorithm which eliminates a large
number of distance calculations between points and cen-
ters. It does this without indexing the data. Instead,
it uses efficiently-updated bounds on center-point dis-
tances to determine when exact distance calculations
can be avoided. Specifically, for n points and k cluster
centers it keeps the following extra information:

• n upper bounds on the distance between each point
and its assigned center

• kn lower bounds on each point-center distance

• O(k2) inter-center distances

• n cluster assignments from the previous iteration

The algorithm proceeds much like Lloyd’s algorithm,
but before computing the distance between a point and
any center, it first determines whether it is possible (via
the upper/lower bounds and the inter-center distances)
that any other center could be closer than the currently
assigned center. If it’s not possible, then the distance
calculation is not performed.

There are several cases that must be checked to deter-
mine whether each distance calculation can be avoided.
One case involves a point x, its assigned center c, and
another center c′. If the upper bound on the distance
between x and c is less than the lower bound on the
distance between x and c′, then c′ cannot be the closest
center to x. Another case is if the same upper bound
is less than half the distance from c to c′, then again c′

cannot be the closest center to x (due to the triangle
inequality). For more details on all the cases and the
general algorithm, see [8].

Elkan’s algorithm updates the upper and lower bounds
each time the centers move. When the bounds update
they are no longer tight, but are likely to remain useful
for eliminating point-center distance calculations. The
upper bound for a point x increases by the distance
moved by its assigned center, and the lower bound
between a point x and a center c decreases by the
distance moved by c. Using this method, the bounds
are loose but remain correct.

2.4 Other acceleration techniques Other strate-
gies for accelerating k-means include subsampling large
datasets [9, 3], as well as finding initializations that will
place centers near their final positions. Peña et al. [16]
examined how four initialization techniques affect the
quality of the clustering.

Hochbaum and Shmoys [11] proposed their furthest-first
algorithm as an approximate solution to the k-center
problem. It has been popular to use this algorithm as
an initialization technique for k-means. This method
chooses a randomly-selected point as the first center,
and then repeatedly selects, as the next center, the point
that is furthest from any current center. This method
has the downside of tending to choose outliers as part
of the initial centers.

Similar in spirit to furthest-first initialization, the
k-means++ initialization algorithm [1] adds random-
ness to the process and tends to avoid the outlier prob-
lem of furthest-first. Choosing the first center randomly,

each subsequent center is chosen with a probability that
is proportional to its squared distance to its closest ex-
isting center. This is currently the method of choice for
initializing k-means, and it offers statistical guarantees
on the quality of clusterings initialized this way.

3 A new algorithm

Our proposed algorithm is a modification and simplifi-
cation of Elkan’s k-means algorithm. As such, it uses
efficiently updated distance bounds and the triangle in-
equality to avoid point-center distance calculations. Be-
yond just avoiding individual distance computations,
our algorithm is quite effective at regularly eliminat-
ing the innermost loop in Lloyd’s algorithm. That is,
it often is able to skip the loop which iterates over the
k centers. This is possible by maintaining two distance
bounds per data point for its two closest centers. One
is an upper bound on the distance to the closest center,
and one is a lower bound on the distance to the second-
closest center. Unlike Elkan’s algorithm, our algorithm
does not maintain lower bounds between all point-center
combinations, so our lower bound is different.

Our algorithm, as shown in the experiments, outper-
forms the current best k-means algorithms on data of
low and moderate dimension. Elkan’s algorithm per-
forms best on high-dimensional data. Thus, the two
algorithms are complementary, and one could choose
between them based on the conditions of the data.

To introduce our algorithm, there are several definitions
we must first review. We assume a distance metric
d(·, ·) defined on point-center and center-center pairs.
Structures that relate to cluster centers are:

• c(j) – cluster center j (where 1 ≤ j ≤ k),

• c′(j) – vector sum of all points in cluster j,

• q(j) – number of points assigned to cluster j,

• p(j) – distance that c(j) last moved, and

• s(j) – distance from c(j) to its closest other center.

Structures that relate to data points are:

• x(i) – data point i (where 1 ≤ i ≤ n),

• a(i) – index of the center to which x(i) is assigned,

• u(i) – upper bound on the distance between x(i)
and its assigned center c(a(i)), and

• l(i) – lower bound on the distance between x(i) and
its second closest center – that is, the closest center
to x(i) that is not c(a(i)).

Note that u(i) and l(i) are bounds on point-center
distances, and that these bounds are not always tight.
However, our algorithm guarantees the following:

• u(i) ≥ ||x(i)− c(a(i))||

• l(i) ≤ minj 6=a(i) ||x(i)− c(j)||.

Also note that the lower bound we use is not the same as
Elkan’s, since we have only one per point, and it is not
tied to any particular center. That is, we don’t explicitly
keep track of which center is the second closest to each
point. Now we turn to some details of the algorithm.

3.1 Algorithm description The code listing in Al-
gorithm 1 gives a detailed description of the proposed
algorithm. The subroutines listed in Algorithms 2
through 5 provide support to the main algorithm. After
initializing the upper and lower bounds and the assign-
ments, the algorithm iterates until the centers converge.

Each iteration first updates the values in s. Then the
loop beginning at line 5 iterates over every data point
x(i), and line 7 determines if the bounds permit skipping
the innermost loop over all centers. If not, the algorithm
recomputes u(i) in case the bound was too loose, and
tests the condition again on line 9. If both tests fail,
then it calls the innermost loop over all centers (Point-

All-Ctrs, Algorithm 3) which updates u(i), l(i), and
a(i) in an O(kd) loop.

While the pseudocode given here is a fairly complete
description, for brevity we have left out several of the
small optimizations which are possible. These include
avoiding square-roots on distance computations when
the goal is identifying closest neighbors and avoiding
repeated distance computations. Now we explore some
of the other algorithmic details, such as efficiently
updating the bounds and keeping track of the center
locations.

3.2 Using bounds to avoid distance computa-

tions Each data point x(i) has one upper bound u(i),
which is identical to the upper bound used by Elkan. It
bounds the distance between x(i) and its closest center.
Rather than keeping k lower bounds for each data point,
our algorithm keeps only one per data point, which is
l(i). It represents a lower bound on the distance between
the data point and its second-closest cluster center. As

Algorithm 1 K-means(dataset x, initial centers c)

1: Initialize(c, x, q, c′, u, l, a)
2: while not converged do
3: for j = 1 to |c| do {update s}
4: s(j)← minj′ 6=j d(c(j′), c(j))
5: for i = 1 to |x| do

6: m← max(s(a(i))/2, l(i))
7: if u(i) > m then {first bound test}
8: u(i)← d(x(i), c(a(i))) {tighten upper bound}
9: if u(i) > m then {second bound test}

10: a′ ← a(i)
11: Point-All-Ctrs(x(i), c, a(i), u(i), l(i))
12: if a′ 6= a(i) then

13: update q(a′), q(a(i)), c′(a′), c′(a(i))
14: Move-Centers(c′, q, c, p)
15: Update-Bounds(p, a, u, l)

Algorithm 2 Initialize(c, x, q, c′, u, l, a)

1: for j = 1 to |c| do

2: q(j)← 0
3: c′(j)← ~0
4: for i = 1 to |x| do

5: Point-All-Ctrs(x(i), c, a(i), u(i), l(i))
6: q(a(i))← q(a(i)) + 1
7: c′(a(i))← c′(a(i)) + x(i)

Algorithm 3 Point-All-Ctrs(x(i), c, a(i), u(i), l(i))

1: a(i)← argminj d(x(i), c(j))
2: u(i)← d(x(i), c(a(i)))
3: l(i)← minj 6=a(i) d(x(i), c(j))

Algorithm 4 Move-Centers(c′, q, c, p)

1: for j = 1 to |c| do

2: c∗ ← c(j)
3: c(j)← c′(j)/q(j)
4: p(j)← d(c∗, c(j))

Algorithm 5 Update-Bounds(p, a, u, l)

1: r ← argmaxj p(j)
2: r′ ← argmaxj 6=r p(j)
3: for i = 1 to |u| do

4: u(i)← u(i) + p(a(i))
5: if r = a(i) then

6: l(i)← l(i)− p(r′)
7: else

8: l(i)← l(i)− p(r)

long as u(i) ≤ l(i), the center assignment for x(i) cannot
change.

Recall that s(j) represents the distance between center j
and its closest other center. If u(i) ≤ s(a(i))/2, then the
triangle inequality guarantees that center a(i) is closer
to x(i) than any other center.

The primary acceleration in this algorithm comes from
exploiting one of these two cases: either u(i) ≤ l(i), or
u(i) ≤ s(a(i))/2. Taken together, these are equivalent
to u(i) ≤ max(l(i), s(a(i))/2). If this condition is true
then the algorithm can avoid the innermost loop which
computes distances between x(i) and all the k cluster
centers. However, if it is false, then the algorithm
must compute distances between x(i) and all centers
to determine the correct assignment. Algorithm 3
performs this innermost loop, and at the same time
calculates the tight values of u(i) and l(i).

Elkan’s algorithm employs only the comparison with s
to avoid the innermost loop over all centers. It does
not have a lower-bound test for this purpose. Instead,
it loops over all centers and use a lower bound for
each center to determine whether it was necessary to
calculate the distance between x(i) and that center.
Thus, our algorithm has more potential opportunities
to avoid the innermost loop entirely, while Elkan’s
algorithm has more potential opportunities to avoid
distance calculations. Indeed, experiments show that
our algorithm is much more effective at avoiding the
innermost loop.

3.2.1 Updating bounds Each time the centers
move, the upper and lower bounds of each point need to
change to reflect these moves. The subroutine Move-

Centers keeps track of how far each center moves in
the structure p.

After this, Update-Bounds can update the bounds u
and l using p. It first identifies the two furthest-moving
centers, according to p. Then each u(i) increases by
the distance moved by center a(i) (that is, p(a(i))),
and each l(i) decreases by the distance moved by the
furthest-moving center p(r). One small optimization is
if a(i) = r (the furthest-moving center), then it is safe
to decrease l(i) by the distance moved by the second-
furthest-moving center p(r′).

3.2.2 Moving centers A standard way to update
center locations is to sum up the points assigned to each
center as the assignments are discovered, and compute
the average at the end of each k-means iteration. Our

Table 1: This table gives the overhead (in time and
memory) for each examined algorithm. Each entry rep-
resents the asymptotic overhead spent by that algorithm
beyond Lloyd’s algorithm. The initialization time (col-
umn 2) is extra time needed to allocate memory and
create data structures. Time/iteration is the extra time
spent during each k-means iteration, and memory ac-
counts for all extra memory used.

init. time time/iteration memory
k-d tree nd + n log(n) - nd
elkan ndk + dk2 dk2 nk + k2

hamerly ndk dk2 n

algorithm uses an alternative method which we call
‘delta updates’ that permits the algorithm to avoid
adding vectors when assignments don’t change. Just
after calling Point-All-Ctrs, if the assignment has
changed the algorithm adjusts the cluster sums (c′) and
counts (q) for the two affected centers. It subtracts
x(i)’s influence from its old assigned center, and adds
its influence to the new assigned center. If there are
few assignment changes, this method has the potential
to reduce computation. If there are many assignment
changes, then this method will likely be more costly.
Thus, this optimization is likely to be most useful when
k is small (relative to n), or during the final stages of
k-means when few data points tend to change cluster
assignments.

3.2.3 Time and memory analysis The time per k-
means iteration for our algorithm is O(ndk+dk2), where
the ndk term comes from Lloyd’s algorithm, and the dk2

term comes from updating s. The time for Initialize

is O(ndk). The memory overhead comes from keeping
u, l, a, s, and p, giving 3n + 2k extra scalar values.
This overhead is asymptotically insignificant compared
with Lloyd’s algorithm, which uses O(nd+kd) memory.
Thus, our algorithm should be useful in most situations
where it is appropriate to use Lloyd’s algorithm, with
only slightly higher memory requirements. Indeed,
our algorithm uses the least memory of the three
accelerated versions examined here, as demonstrated in
the experimental results (see Table 4).

Table 1 describes the asymptotic time and memory
overheads of each of the three accelerated algorithms
considered in this paper. Using a k-d tree nearly doubles
the amount of memory needed over Lloyd’s algorithm,
in order to keep summary statistics at each node, and
to store the tree structure. Elkan’s algorithm requires

an additional (n + 1)k scalar values for the bounds, as
well as k2 scalar values for the inter-center distances.
These extra memory requirements become prohibitive
for large datasets and large k. One nice feature of
Elkan’s algorithm is that it is not necessary to store
all the (n + 1)k bounds in memory at once; we can
simply stream them in while making passes over the
dataset. While this would allow us to run the algorithm
on very large data sets, it will not make the algorithm
faster than storing data in core memory. Our algorithm
shares this feature. However, since it has a much smaller
memory footprint (especially for large k), it can cluster
much larger data sets in memory.

3.3 Parallelism and large datasets Our algorithm
parallelizes easily for multi-threaded or multi-core pro-
cessing. Structures related to the dataset (x, u, l, and a)
would be partitioned across the processors. Structures
related to the centers (c, c′, q, p, and s) would be repli-
cated across the processors and synchronized at each
call to Move-Centers. We expect the potential for
large real-time speedups using parallel processing this
way, since the majority of time would be spent in inde-
pendent computation.

Datasets which are too large to fit in a single processor’s
memory could easily be partitioned this way across
multiple processors. For massive datasets which do
not fit in memory, the dataset-related structures could
be streamed from disk. Since the algorithm iterates
over the dataset in order, a fast external storage device
should be able to quickly stream the dataset and bounds
to memory.

3.4 Other discussion One of the benefits of our
algorithm over indexed methods (like k-d trees) is that
it is fast despite the fact that it iterates over the entire
dataset. In some applications like constraint-based
clustering, it is conceivable that one cannot use indexes
easily. For example, it may be that a nearby pair
of points might be constrained to belong to separate
clusters. Situations like this are easier to deal with
when visiting every data point explicitly. Generalizing
somewhat, any adaptation of k-means which cannot
simply group points based on proximity will be easier
to implement with our algorithm than with an index.

4 Experiments

We compare Lloyd’s k-means algorithm with three
accelerated versions: the k-d tree algorithm (also called
the blacklisting or filtering algorithm) [17, 12], Elkan’s

triangle inequality algorithm [8], and the algorithm
proposed in this paper. All were implemented on
a common code base in single-threaded C++. Each
algorithm chooses the same set of initial centers using
k-means++ [1].

Moore [15] and Elkan [8] reported results in terms of
the number of distance computations performed (or
avoided). However, we are interested in real-world
performance. Therefore, we report the time it takes to
cluster and the memory footprint during execution. The
code was compiled with g++ version 4.1.2, and used 64-
bit double-precision primitives. The experiments ran on
Linux 2.6.18 on 8-core Intel Xeon 2.66 GHz computers
with 16 GB of memory, but only a single core was used
for each experiment. For each experiment we measure
CPU time using getrusage() and memory footprint
using the file /proc/[PID]/statm.

4.1 Data sets We perform tests on several datasets,
both synthetic and from other applications. The syn-
thetic datasets are generated from uniform hypercube
distributions of varying dimension. Uniform data pro-
vides perhaps the worst case for most accelerated k-
means algorithms, because there is little structure in
the data. This lack of structure means that most points
are likely to be on the edges of clusters, rather than
close to cluster centers. Distance pruning methods in
k-means work best when points are much closer to their
assigned centers than to other centers, so we expect
pruning methods have the most difficulty with these
datasets.

We also compare the performance of these algorithms
on several datasets which were used in Elkan’s paper.
We did not use the high-dimensional datasets ‘mnist784’
and ‘random,’ because Elkan’s algorithm more effec-
tively reduces the number of distance computations,
which are more expensive in high dimension. How-
ever, our algorithm does dramatically outperform both
Lloyd’s algorithm and the k-d tree algorithm on such
high-dimensional data.

4.2 Timing results For each experiment we mea-
sure total time and time per iteration. Both are user
CPU time measurements. The total time includes three
phases: loading data from disk, initializing any neces-
sary data structures (e.g. a k-d tree), and clustering.
The time per iteration is the time spent in only the last
phase (clustering) divided by the number of iterations.
Since all these algorithms are exact k-means implemen-
tations, they all perform the same number of iterations
for the same dataset and initialization. The time per it-

eration allows us to compare algorithms across different
datasets and numbers of clusters.

Table 2 shows the performance of each algorithm. Our
algorithm is often more than 10 times faster in total
time than Lloyd’s algorithm. It’s fastest out of all
the algorithms in most experiments, including all 8-
dimensional and 32-dimensional experiments. For the
uniform dataset in 8 dimensions with 500 clusters, our
algorithm is at least 8 times faster than any of the other
algorithms. On 2-dimensional datasets, our algorithm
is usually fastest, but k-d trees perform very well here
too. However, k-d tree performance degrades quickly
as the dimension increases. For the three datasets that
have 50 to 56 dimensions (covtype, kddcup, mnist50),
our algorithm performs best when k is small, and is
comparable to Elkan’s algorithm for large k.

On per-iteration time, over all experiments, our algo-
rithm is an average of 6.1 times faster than Lloyd’s al-
gorithm, 2.8 times faster than the k-d tree algorithm,
and 2.4 times faster than Elkan’s algorithm. Two exper-
iments where our algorithm performed particularly well
were for the uniform random dataset with 8 dimensions
and k = 100 or k = 500.

4.3 Avoiding the innermost loop One of the ways
that both our algorithm and Elkan’s avoid computation
is by skipping the innermost loop over the k centers.
Elkan’s algorithm skips this loop if the test u(i) ≤
s(a(i))/2 is true. Our algorithm skips this loop if
that condition is true, or if u(i) ≤ l(i). Further, our
algorithm checks these conditions twice when necessary,
after lowering u(i) to be a tight bound. Thus, our
algorithm has potentially more opportunities to avoid
the innermost loop.

The innermost loops of these two algorithms are differ-
ent. Our algorithm simply computes the point-center
distance for each center (except the assigned center,
since that distance was just calculated when updating
u(i)). Elkan’s algorithm performs further checks against
lower bounds for each center to determine if each point-
center distance computation is necessary.

We evaluate the frequency that each algorithm is able
to skip the innermost loop. The results are in Table 3.
Our algorithm is clearly much more effective at avoiding
the innermost loop. It’s interesting that even though
our algorithm is considerably slower in high dimension
than Elkan’s algorithm (due to the many more distance
computations), we are still very effective at skipping the
innermost loop for 128-dimensional data.

Table 2: This table shows the time (user CPU seconds) each algorithm uses on several datasets. We report total
time first, followed by per-iteration time in parentheses. The per-iteration time includes only the time when
the algorithm is running, and excludes time to load data and initialize any data structures (e.g. constructing
a k-d tree). The first three datasets are synthetically generated; the remaining four are those used by Elkan.
Bold indicates the lowest time among the algorithms. Our algorithm competitive with or much faster than other
algorithms for 2 to 32 dimensions. It also performs competitively on up to 50 dimensions.

Total user CPU Seconds (User CPU seconds per iteration)
Dataset k = 3 k = 20 k = 100 k = 500

uniform random iterations 44 227 298 710
n = 1250000 lloyd 4.0 (0.058) 61.4 (0.264) 320.2 (1.070) 3486.9 (4.909)
d = 2 kd-tree 3.5 (0.006) 11.8 (0.035) 34.6 (0.102) 338.8 (0.471)

elkan 7.2 (0.133) 75.2 (0.325) 353.1 (1.180) 2771.8 (3.902)
hamerly 2.7 (0.031) 14.6 (0.058) 28.2 (0.090) 204.2 (0.286)

uniform random iterations 121 353 312 1405
n = 1250000 lloyd 21.8 (0.134) 178.9 (0.491) 660.7 (2.100) 13854.4 (9.857)
d = 8 kd-tree 117.5 (0.886) 622.6 (1.740) 2390.8 (7.633) 46731.5 (33.254)

elkan 14.1 (0.071) 130.6 (0.354) 591.8 (1.879) 11827.9 (8.414)
hamerly 10.9 (0.045) 40.4 (0.099) 169.8 (0.527) 1395.6 (0.989)

uniform random iterations 137 4120 2096 2408
n = 1250000 lloyd 66.4 (0.323) 5479.5 (1.325) 12543.8 (5.974) 68967.3 (28.632)
d = 32 kd-tree 208.4 (1.324) 29719.6 (7.207) 74181.3 (35.380) 425513.0 (176.697)

elkan 48.1 (0.189) 1370.1 (0.327) 2624.9 (1.242) 14245.9 (5.907)
hamerly 46.9 (0.180) 446.4 (0.103) 1238.9 (0.581) 9886.9 (4.097)

birch iterations 52 179 110 99
n = 100000 lloyd 0.53 (0.004) 4.60 (0.024) 11.80 (0.104) 48.87 (0.490)
d = 2 kd-tree 0.41 (<0.001) 0.96 (0.003) 2.67 (0.021) 17.68 (0.173)

elkan 0.58 (0.005) 4.35 (0.023) 11.80 (0.104) 54.28 (0.545)
hamerly 0.44 (0.002) 0.90 (0.003) 1.86 (0.014) 7.81 (0.075)

covtype iterations 19 204 320 111
n = 150000 lloyd 3.52 (0.048) 48.02 (0.222) 322.25 (0.999) 564.05 (5.058)
d = 54 kd-tree 6.65 (0.205) 266.65 (1.293) 2014.03 (6.285) 3303.27 (29.734)

elkan 3.07 (0.022) 11.58 (0.044) 70.45 (0.212) 152.15 (1.347)
hamerly 2.95 (0.019) 7.40 (0.024) 42.83 (0.126) 169.53 (1.505)

kddcup iterations 39 55 169 142
n = 95412 lloyd 4.74 (0.032) 12.35 (0.159) 116.63 (0.669) 464.22 (3.244)
d = 56 kd-tree 9.68 (0.156) 58.55 (0.996) 839.31 (4.945) 3349.47 (23.562)

elkan 4.13 (0.012) 6.24 (0.049) 32.27 (0.169) 132.39 (0.907)
hamerly 3.95 (0.011) 5.87 (0.042) 28.39 (0.147) 197.26 (1.364)

mnist50 iterations 37 249 190 81
n = 60000 lloyd 2.92 (0.018) 23.18 (0.084) 75.82 (0.387) 162.09 (1.974)
d = 50 kd-tree 4.90 (0.069) 100.09 (0.393) 371.57 (1.943) 794.51 (9.780)

elkan 2.42 (0.005) 7.02 (0.019) 21.58 (0.101) 55.61 (0.660)
hamerly 2.41 (0.004) 4.54 (0.009) 21.95 (0.104) 77.34 (0.928)

Table 3: These results show the fraction of times that
each algorithm was able to skip the innermost loop
on data of different dimensions (values closer to 1 are
better). These results are averaged over runs using k =
3, 20, 100, and 500 (one run for each k). The randX
datasets are uniform random hypercube data with X
dimensions.

dataset rand2 rand8 rand32 rand128
elkan 0.56 0.01 0.00 0.00
hamerly 0.97 0.88 0.91 0.83

dataset birch covtype kddcup mnist50
elkan 0.52 0.34 0.18 0.22
hamerly 0.94 0.89 0.82 0.82

For Elkan’s algorithm, the performance difference is
striking between the random hypercube datasets (top
rows of Table 3) and the application datasets (bottom
rows). We believe this is due to the natural clustered
nature of the application datasets, and the lack of
structure in the random datasets. In clustered data, it
is likely that points will be much closer to their assigned
centers than to other centers. Our algorithm performs
well regardless of the clustered nature of the data.

One could add our new lower bound to Elkan’s algo-
rithm. This would allow Elkan’s algorithm to avoid the
innermost loop more frequently. However, this approach
does not solve the efficiency problem entirely, since af-
ter each k-means iteration Elkan’s algorithm must loop
over and update all nk lower bounds, which is effectively
repeating the same innermost loop that it (may have)
just avoided. Further, it adds the overhead of keeping
this extra bound.

4.4 Memory use A big advantage of our algorithm
is its small memory footprint, especially compared
with other accelerated algorithms. Table 4 shows
the memory footprints of the compared algorithms for
various datasets and k. Our algorithm consistently has
the lowest memory use of the accelerated algorithms,
and is usually close to the memory used by Lloyd’s
algorithm.

If memory resources are constrained, then our algorithm
is clearly the one to choose for k-means clustering.
Using very little additional memory, our algorithm is
much faster than Lloyd’s algorithm. Compared with
Elkan’s algorithm, which has memory requirements that
scale as O(k2), our algorithm will have much lower
memory footprint for large numbers of clusters. The
k-d tree implementation uses a little less than twice the

Table 4: Memory use of each algorithm on various
datasets. Note that our algorithm (‘hamerly’) consis-
tently uses the least amount of memory among the three
accelerated algorithms, and is usually very close to the
memory used by Lloyd’s algorithm.

Megabytes
Dataset Algorithm k=3 k=20 k=100 k=500

uniform lloyd 7.5 7.5 7.5 7.5
random kd-tree 32.1 32.1 32.1 32.1
n=1.25M elkan 19.8 60.3 251.0 1205.2
d=2 hamerly 14.7 14.7 14.7 14.7

uniform lloyd 21.9 21.9 21.9 21.9
random kd-tree 54.8 54.8 54.8 54.8
n=1.25M elkan 34.1 74.6 265.3 1219.5
d=8 hamerly 29.0 29.0 29.0 29.0

uniform lloyd 79.1 79.1 79.1 79.1
random kd-tree 145.2 145.2 145.2 145.3
n=1.25M elkan 91.3 131.8 322.6 1276.8
d=32 hamerly 86.2 86.2 86.2 86.3

birch lloyd 1.4 1.1 1.1 1.3
n=100K kd-tree 2.9 2.9 2.8 2.7
d=2 elkan 2.1 5.2 20.6 97.3

hamerly 1.5 1.7 1.6 1.5

covtype lloyd 16.2 16.2 16.1 16.4
n=150K kd-tree 27.2 27.2 27.2 27.3
d=54 elkan 17.4 22.5 45.3 160.4

hamerly 17.0 17.0 16.8 17.2

kddcup lloyd 10.9 10.8 11.1 11.2
n=95412 kd-tree 18.8 18.9 19.1 19.0
d=56 elkan 11.9 15.1 29.6 103.1

hamerly 11.6 11.6 11.3 11.7

mnist50 lloyd 6.3 6.6 6.4 6.8
n=60K kd-tree 10.5 10.4 10.6 10.7
d=50 elkan 7.0 9.1 18.4 64.8

hamerly 6.9 6.9 6.9 6.8

memory our algorithm uses. A shared-memory parallel
computer should be able to run many copies of our
algorithm simultaneously on different large datasets,
while the same may not be true for algorithms with
significantly larger memory requirements.

4.5 Lesion study We want to discover which parts
of our algorithm provide the greatest speedup, so we
perform a lesion study where we remove different parts
of the algorithm in order to find out how they affect the
running time. We consider the following modifications:

• No-S: Removing the structure s, which represents
the distance between each center and its closest
other center. In this version, the algorithm uses
only upper and lower bounds for each point to
prune distance calculations. Note that this also

removes the O(k2) term from the per-iteration
runtime.

• No-Lower: Removing the lower bound for each
data point. Here, the algorithm compares each up-
per bound only with s to prune distance calcula-
tions.

• No-Upper: Removing u, and removing the first
bound comparison at line 7 in Algorithm 1.

• No-Delta: Removing the incremental updates
of center locations, instead recalculating center
locations from scratch at each iteration.

The clearest evidence from the lesion study is that the
lower bound is essential to a fast runtime. Remov-
ing the lower bound dramatically slows our algorithm,
while removing the other parts did not. The remain-
ing modified algorithms all performed reasonably well,
sometimes better than our original algorithm, but on
the large majority of experiments the original algorithm
performed best. Each modification changed the algo-
rithm to perform better in certain situations:

• No-S performed better with high dimensional
data, for two reasons. First, it did not perform
O(k2) center-center distance computations each it-
eration, and distance computations are expensive
in high dimension. Second, in high dimension s is
less effective at avoiding the innermost loop, due to
the curse of dimensionality.

• No-Lower did not perform well, especially in high
dimension. The lower bound on the distance to
each point’s second-closest center is the key to high
performance.

• No-Upper performed better with low dimensional
data. Removing the upper bound requires comput-
ing the exact distance to the assigned cluster for
each data point every time, which is more expen-
sive in high dimension.

• No-Delta performed better with a large number of
clusters. When there are many clusters, we expect
that points will change assignments frequently,
so the delta method will actually incur greater
overhead than simply calculating the centers from
every assignment each iteration.

Clearly, each optimization specializes under different
circumstances, and can be added or removed depending
on application-specific requirements.

5 Conclusion

We present a simple algorithm which is a drop-in re-
placement for the standard k-means algorithm (Lloyd’s
algorithm), but is much faster. In low-dimensional set-
tings (e.g. up to 50 dimensions), our algorithm is as
fast or much faster than current accelerated algorithms,
including methods based on indexing the data.

The new algorithm is derived from Elkan’s accelerated
algorithm, and as such it uses several efficiently-updated
bounds to avoid unnecessary distance computations.
However, it uses only one novel lower bound per data
point on point-center distances, instead of k lower
bounds per data point. This lower bound is on the
distance between the point and its second-closest center.

There are two primary reasons our algorithm outper-
forms the current best algorithms. First is that it has
very low overhead – it uses far less memory than other
accelerated algorithms, and has far fewer bounds to
maintain compared with Elkan’s algorithm. Second, its
novel lower bound allows frequent eliminations of the in-
nermost loop (usually more than 80% of the time) over
point-center distance calculations.

While our algorithm is always faster than the standard
algorithm, it is much slower than Elkan’s algorithm
in high dimensions. However, we view our algorithm
and Elkan’s as complementary – they each excel in
different domains. A single algorithm built from both
could select the appropriate algorithm depending on the
dimension.

Recent work [7] has shown that there is a strong connec-
tion between low-dimensional data representation (via
principal components analysis) and k-means clustering.
Thus, we still need algorithms that are efficient in low
dimension.

Our future work includes constructing a hybrid algo-
rithm where more than one but far fewer than k lower
bounds are kept per data point. This combines the ben-
efits of our algorithm and Elkan’s – low overhead and
good high-dimensional performance. This method could
select the appropriate number of lower bounds based on
k and the number of dimensions. Further work is nec-
essary to determine the best method of choosing this
number of bounds.

Each iteration of our algorithm requires computing
O(k2) inter-center distances. We have made attempts
at reducing this computational cost using the triangle
inequality, but without much practical benefit. It
remains to be seen if approximations to the inter-
center distances could provide additional benefit. Our

lesion study shows that eliminating these inter-center
distances completely can have practical benefit in high-
dimensional settings.

Acceleration methods based on k-d trees are usually
much slower than our algorithm, especially above 2
dimensions. However, in very low dimensions, there
is potential for further acceleration by combining tree
structures with distance bounds. For example, we
might keep distance bounds between each tree node and
center.

The proposed algorithm should work well with massive
datasets that are too large to fit in memory. Since the
algorithm can stream in the data points and bounds,
this provides a good access pattern for disks. Further, it
would only need to load the points for which the bounds
indicate distance calculations are required. Thus, we
expect our algorithm will show additional speedup
compared with the standard algorithm on massive disk-
based datasets.

Our work provides a very fast k-means algorithm, but it
is also the basis for a faster universal k-means algorithm.
Such an algorithm will select various optimizations
like tree indexing, delta-updates, keeping inter-center
distances, and the number of lower bounds depending
on the dimension, number of clusters, dataset size, and
memory constraints.

References

[1] David Arthur and Sergei Vassilvitskii. k-means++:
the advantages of careful seeding. In Nikhil Bansal,
Kirk Pruhs, and Clifford Stein, editors, SODA, pages
1027–1035. SIAM, 2007.

[2] Shai Ben-David, Dávid Pál, and Hans Ulrich Simon.
Stability of k-means clustering. Lecture Notes in

Computer Science, 4539:20–34, 2007.
[3] Paul S. Bradley and Usama M. Fayyad. Refining initial

points for k-means clustering. In Jude W. Shavlik,
editor, ICML, pages 91–99. Morgan Kaufmann, 1998.

[4] D. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham.
Fast search algorithms for vector quantization and pat-
tern matching. In Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech, and Signal

Processing, pages 372–375, 1984.
[5] Sanjoy Dasgupta. Experiments with random projec-

tion. In Craig Boutilier and Moisés Goldszmidt, edi-
tors, UAI, pages 143–151. Morgan Kaufmann, 2000.

[6] Inderjit S. Dhillon, Yuqiang Guan, and J. Kogan. It-
erative clustering of high dimensional text data aug-
mented by local search. In ICDM, pages 131–138, 2002.

[7] Chris H. Q. Ding and Xiaofeng He. k-means clustering

via principal component analysis. In ICML, pages 225–
232, 2004.

[8] Charles Elkan. Using the triangle inequality to acceler-
ate k-means. In Tom Fawcett and Nina Mishra, editors,
ICML, pages 147–153. AAAI Press, 2003.

[9] Fredrik Farnstrom, James Lewis, and Charles
Elkan. Scalability for clustering algorithms revisited.
SIGKDD Explorations, 2(1):51–57, 2000.

[10] Greg Hamerly, Erez Perelman, Jeremy Lau, Brad
Calder, and Timothy Sherwood. Using machine learn-
ing to guide architecture simulation. Journal of Ma-

chine Learning Research, 7:343–378, 2006.
[11] Dorit S. Hochbaum and David B. Shmoys. A best pos-

sible heuristic for the k-center problem. Mathematics

of Operations Research, 10(2):180–184, May 1985.
[12] Tapas Kanungo, David M. Mount, Nathan S. Ne-

tanyahu, Christine D. Piatko, Ruth Silverman, and An-
gela Y. Wu. An efficient k-means clustering algorithm:
Analysis and implementation. IEEE Trans. Pattern

Anal. Mach. Intell., 24(7):881–892, 2002.
[13] S. Lloyd. Least squares quantization in PCM. IEEE

Transactions on Information Theory, 28(2):129–137,
1982.

[14] J. McNames. Rotated partial distance search for faster
vector quantization encoding. IEEE Signal Processing

Letters, 7(9), 2000.
[15] Andrew Moore. The anchors hierarchy: Using the

triangle inequality to survive high-dimensional data.
[16] J. M. Peña, J. A. Lozano, and P. Larrañaga. An

empirical comparison of four initialization methods for
the k-means algorithm.

[17] Dan Pelleg and Andrew W. Moore. Accelerating
exact k-means algorithms with geometric reasoning. In
KDD, pages 277–281, 1999.

[18] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu,
Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and
Dan Steinberg. Top 10 algorithms in data mining.
Knowl. Inf. Syst., 14(1):1–37, 2008.

[19] Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
Birch: A new data clustering algorithm and its applica-
tions. Data Min. Knowl. Discov., 1(2):141–182, 1997.

