
Chapter 2
Accelerating Lloyd’s Algorithm for k-Means
Clustering

Greg Hamerly and Jonathan Drake

Abstract The k-means clustering algorithm, a staple of data mining and unsuper-
vised learning, is popular because it is simple to implement, fast, easily parallelized,
and offers intuitive results. Lloyd’s algorithm is the standard batch, hill-climbing
approach for minimizing the k-means optimization criterion. It spends a vast
majority of its time computing distances between each of the k cluster centers and
the n data points. It turns out that much of this work is unnecessary, because points
usually stay in the same clusters after the first few iterations. In the last decade
researchers have developed a number of optimizations to speed up Lloyd’s algorithm
for both low- and high-dimensional data.

In this chapter we survey some of these optimizations and present new ones.
In particular we focus on those which avoid distance calculations by the triangle
inequality. By caching known distances and updating them efficiently with the
triangle inequality, these algorithms can provably avoid many unnecessary distance
calculations. All the optimizations examined produce the same results as Lloyd’s
algorithm given the same input and initialization, so are suitable as drop-in
replacements. These new algorithms can run many times faster and compute far
fewer distances than the standard unoptimized implementation. In our experiments,
it is common to see speedups of over 30–50x compared to Lloyd’s algorithm.
We examine the trade-offs for using these methods with respect to the number of
examples n, dimensions d , clusters k, and structure of the data.

Keywords k-Means • Triangle inequality • Caching • Accelerate • Lloyd’s
algorithm • Clustering • Unsupervised learning

G. Hamerly (�)
Baylor University, 105 Baylor Ave., Waco, TX 76798, USA
e-mail: hamerly@cs.baylor.edu

J. Drake
Hewlett-Packard Company, 14231 Tandem Blvd, Austin, TX 78728, USA
e-mail: jonathan.drake@hp.com

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__2

41

mailto:hamerly@cs.baylor.edu
mailto:jonathan.drake@hp.com


42 G. Hamerly and J. Drake

2.1 Introduction

The k-means clustering algorithm is a very popular tool for data analysis and
learning. At its heart is an easily-understood optimization problem: given a set of
data points (in some vector space), try to position k other points (called ‘centers’)
at locations that minimize the (squared) distance between each point and its closest
center. While it is popular and easy to implement, the naive implementation for
solving the problem is inefficient, wasting a lot of processing time on unnecessary
and redundant computations.

This chapter discusses simple geometric methods, based on the triangle inequal-
ity and keeping cached bounds on computed distances, to reduce wasted computa-
tion and build much more efficient algorithms that give exactly the same output.
We point out that all the accelerated algorithms we investigate in this chapter
give exactly the same answer as Lloyd’s standard batch algorithm, given the same
initialization. In our experiments, it is common to see speedups of over 30–50x
compared to Lloyd’s algorithm.

2.1.1 Popularity of the k-Means Algorithm

The k-means algorithm is very widely used. In [40], it is chosen as one of the
top ten data mining algorithms. It is implemented in many commercial and open-
source statistical data analysis software packages, including MATLAB, SAS, Stata,
SPSS, R, and Weka to name a few. A simple search for ‘k means clustering’ on
Google Scholar yields over 2.1 million results, which is greater than the number
of results for ‘neural network’, ‘support vector machine’, ‘nearest neighbor’, or
‘logistic regression’.

Many applications benefit from using k-means. Just a few are:

• clustering the pixels of an image for image color quantization [7, 19],
• post-processing to decide the memberships in spectral clustering [29],
• selecting the codewords for vector quantization, enabling lossy compression of

audio or image data [23],
• image segmentation [14, 19],
• unsupervised feature learning in single-layer neural networks [9],
• identifying self-similar behaviors in dynamic program execution for structured

sampling of the behaviors [36],
• finding a good initialization for a more costly learning method [6], and
• finding good locations for basis functions in a radial basis function network [39].

Such a widely-used algorithm deserves to be well-studied and efficiently imple-
mented.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 43

2.1.2 The Standard k-Means Algorithm does
a Lot of Unnecessary Work

The k-means algorithm is popular due to its clarity, simplicity, and intuitive
optimization function. As a result, it has been implemented, albeit inefficiently,
many times over. We investigated the source code of the k-means implementations
for the software packages ELKI, graphlab, Mahout, MATLAB, MLPACK, Octave,
OpenCV, R, SciPy, Weka, and Yael, and found that none of them use the triangle
inequality bound acceleration techniques that we discuss in this chapter, though
they would benefit from doing so. Of those, the ones which provide scalable
implementations primarily depend on some form of parallel processing, which are
compatible with the acceleration methods presented here.

The standard methods for solving the k-means optimization problem are Lloyd’s
algorithm [24] (a batch algorithm, also known as Lloyd-Forgy [13]), as well as
MacQueen’s algorithm [26]. Each algorithm spends the vast majority of its time
computing distances between the clustered points and the current cluster centers.
However, much of the time, these distance calculations are unnecessary, wasted
computation. In this study we focus on improving Lloyd’s algorithm, which is
widely used.

The basic reason why the standard batch methods for optimizing k-means are
inefficient is because in each iteration they must identify the closest center for each
clustered point. To do this, the methods naively compute all nk distances between
each of the n clustered points and each of the k centers. After each iteration, the
centers move and these distances may all change, requiring recomputation. But
typically the centers don’t move much, especially after the first few iterations. Most
of the time the closest center in the previous iteration remains the closest center.
Thus, keeping track of the closest center for each clustered point is made much
more efficient with some caching. When the closest center doesn’t change, ideally
we shouldn’t need to compute the distance between that point and any cluster center.
And even when the closest center for a point changes, it might be possible to avoid
computing the distance from that point to all centers, instead looking only at a few
centers that are guaranteed to be closer to that point than all other centers.

2.1.3 Previous Work on k-Means Acceleration

There is a healthy line of research on accelerating learning algorithms, which goes
hand in hand with accelerating data retrieval algorithms such as k-nearest neighbor
search. The primary methods of acceleration are: algorithmic improvements, paral-
lelization (including threading, multiprocessing, and distributed computation), and
approximation. In this chapter, we focus on algorithmic improvements which give
exact answers.



44 G. Hamerly and J. Drake

2.1.3.1 Algorithmic Improvements

Pelleg and Moore [31] incorporated the popular k-d tree data in the task of
accelerating the k-means method (note that the k in k-d tree is a naming clash
with the k in k-means). Kanungo et al. [19] developed a similar algorithm. Both
algorithms use the k-d tree to structure the data to be clustered. By restructuring the
search for each point’s closest center, many distance calculations can be avoided.
While these approaches are excellent in low dimension, k-d trees perform poorly in
dimensions much greater than 8.

Moore [28] developed the anchors hierarchy, a new type of spatial data structure
based on metric trees. Applying the triangle inequality, this structure organizes
the data by enclosing it in hierarchically organized anchors with associated radii.
The anchors hierarchy allows the k-means algorithm to avoid many provably
unnecessary distance calculations, even in high dimension. We discuss this structure
more in Sect. 2.3.2.

Elkan [12] started a line of research which pairs the triangle inequality directly
with cached distance bounds to avoid unnecessary point-center distance calculations.
Avoiding complicated hierarchical data structures and preprocessing, his algorithm
simply caches O.nk/ distance bounds to prune distance calculations. It uses
the triangle inequality to efficiently updates the bounds each time centers move.
Hamerly [15] reduced this overhead to O.n/ bounds, which makes it much faster
in practice for low and medium-dimension datasets. Drake [11] bridged the gap
between these two approaches by using an adaptive number of distance bounds,
O.nb/ where b < k and can be learned online.

Other minor algorithmic improvements have also helped accelerate the standard
k-means algorithm. Because k-means repeatedly seeks the minimum distance
between a point and all k centers, using partial distortion search (PDS, also
called partial distance search) [5] and some loop unrolling permits some distance
calculations to be cut short without looking at all dimensions. Mean-distance-
ordered partial search (MPS) [33] draws a connection between the squared distances
and the squared difference of vector sums to help eliminate candidate k-means
centers. Pan et al. [30] eliminates unlikely centers using the first and second
moments of a vector and portions of the vector.

DHSS (dynamic hyperplanes shrinking search) [37] eliminates unlikely can-
didate centers by transforming the input space (e.g. using principal components
analysis) and then using the new canonical dimensions to bound the closest centers
to a point. It is unclear if this method will work well in higher-dimension spaces.

Several researchers, beginning with Kaukoranta et al., identified that some
clusters found by Lloyd’s algorithm are ‘static’ over some iterations. In other
words, no points join or leave the cluster from one iteration to the next. These
static clusters are easily identified, as their centers do not move. Clusters which
do change are called active. This information can be used to reduce the number
of candidate centers for some points [20–22]. It’s worth noting that the triangle
inequality methods which are the focus of this chapter implicitly exploit the same
information and enjoy similar benefits.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 45

2.1.3.2 Parallelization

Several machine learning packages have been constructed with the intent of improv-
ing the scalability and speed of the learning algorithms, making them applicable to
large real-world problems. Packages like graphlab [25], Yael [41], and Mahout [2]
provide scalable implementations of many machine learning algorithms, including
k-means. They use different approaches: Yael focuses on low-level multithreaded
optimized implementations, Mahout provides machine learning on a map-reduce
infrastructure, and graphlab focuses on graph-structured algorithms and multi-core
processing.

2.1.3.3 Alternative Heuristic Methods

Lloyd’s algorithm is a gradient descent heuristic algorithm for minimizing k-means
distortion criterion. While it is popular and is the focus of this chapter, there are
alternative methods which also aim to reduce the k-means distortion using different
heuristics.

Agarwal et al. [1] use subsamples of the whole dataset, called core-sets, and
optimize a solution based on the sample. This algorithm can be much faster in
practice in low-dimensional data, but can be slow and find poor solutions in higher
dimensions.

Hartigan and Wong [17] suggested an algorithm for optimizing the k-means
distortion which considers the clustered points one by one. Each time a point
changes membership, the algorithm updates the affected center locations.

Sculley [35] developed a method that is a hybrid of stochastic gradient descent
(as proposed by Bottou and Bengio [6]) and batch k-means. It operates on small
samples rather than individual examples. The resulting algorithm is less susceptible
to noise caused by individual examples, yet still quite fast.

Each of these alternative algorithms can be quite fast, much faster than Lloyd’s
batch algorithm. The tradeoff is that they tend to produce different results. We view
these as suitable alternatives to Lloyd’s algorithm, but focus on accelerating Lloyd’s
algorithm due to its popularity. Some of these algorithms, especially those which
repeatedly make nearest-center queries for the same points, may be compatible with
the acceleration methods we discuss here.

2.2 Cluster Distortion and Lloyd’s Algorithm

When clustering with k-means, we are trying to minimize the distortion, or sum
of squared errors, between the points and their assigned centers. We can improve
the distortion in two ways: by changing the points’ cluster assignments and moving
the cluster centers. Specifically, given a fixed set of points X , we are attempting to
minimize the distortion function



46 G. Hamerly and J. Drake

Table 2.1 Terms that are used frequently in this chapter

Name and type Description

d 2 N Dimension of points to cluster and cluster centers.

n 2 N Number of points to cluster.

k 2 N Number of cluster centers.

X � R
n�d Set of points to cluster, indexed as x.i/ for 1 � i � n.

C � R
n�d Set of centers, indexed as c.j / for 1 � j � k.

n.j / 2 R The number of points that are currently assigned to cluster j .

N D fi 2 Nj1 � i � ng Indexes of the points in X .

K D fj 2 Nj1 � j � kg Indexes of the points in C .

a W N ! K Index of assigned (closest) center for each point.

u W N ! R Upper bound on the distance between each point and its
assigned center.

` W N �K ! R Lower bound on the distance between each point and each
center.

s W K ! R Half the distance between a center and its current closest other
center.

J.X;C / D
X

i2N
kx.i/ � c.a.i//k2 (2.1)

by choosing the best set of clusters C (Table 2.1).
Lloyd’s batch algorithm for minimizing the distortion has three basic steps,

which are stated here and in slightly more detail in Algorithm 1.

1. Initialize the centers.
2. Until the algorithm converges:

a. Assign each point to its currently closest cluster center.
b. Move each center to the mean of its currently-assigned centers.

Step 1 occurs only once, while steps 2(a) and 2(b) alternate until the algorithm
converges. Convergence is guaranteed due to the fact that steps 2(a) and 2(b) both
reduce J.X;C /, and there is a finite number of ways to partition the n points among
k clusters [6].

Much has been written on initializing the centers for k-means [8]. Researchers
have used the first several examples [6], chosen k points fromX at random [16], and
used the furthest-first method [18]. The most effective current method, theoretically
and in practice, is the k-means++ initialization [3], which randomly selects a good
initialization with high probability, using something akin to furthest-first. In all our
experiments, we use k-means++ for initialization.

The remainder of this paper is primarily concerned with optimizing step 2(a) of
the algorithm (finding the closest center for each point). The naive implementation
of Lloyd’s algorithm spends the majority of its time here, and much of the
computation done here is unnecessary; the information needed for this step can be
derived using some caching and geometry.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 47

Algorithm 1 Lloyd’s k-means algorithm—the standard algorithm for minimizing
J.X;C /. Like other algorithms presented in this chapter, this algorithm’s pseu-
docode is presented simply, without details on efficiency optimizations used in real
implementations

procedure LLOYD(X;C )
while not converged do

for all i 2 N do {Find the closest center to each x.i/.}
a.i/ 1

for all j 2 K do
if kx.i/� c.j /k < kx.i/� c.a.i//k then
a.i/ j

for all j 2 K do {Move the centers}
move c.j / to the mean of fx.i/ja.i/ D j g

Step 2(b) can be optimized easily by caching sufficient statistics for each cluster:
the vector sum of the points assigned to the cluster, and the number of points
assigned to the cluster. Keeping these is inexpensive and avoids a sum over all
points for each iteration. Each time a point changes cluster membership, the relevant
sufficient statistics are updated. After the first few iterations, most points remain
in the same cluster for many iterations. Thus these sufficient statistics updates
become much cheaper than a sum over all points. All the algorithms we implement
for this study use this technique. Thus, it is not explicitly included in algorithmic
pseudocode, for clarity.

2.2.1 Analysis of Lloyd’s Algorithm

The running time of Lloyd’s algorithm for k-means is O.wnkd/ for w iterations,
k centers, and n points in d dimensions. For a fixed dataset and k, the number
of iterations w will vary depending on the initialization. In fact, w may be
superlinear with respect to n, even exponential in the worst case [38]. However,
when considering less extreme cases, Lloyd’s algorithm has polynomial smoothed
complexity [4]. That is, w is polynomial in n and 1=	 (where 	 is the amount of
perturbation allowed on a weakened adversary’s challenge dataset).

When viewed as a gradient descent algorithm, Bottou and Bengio [6] showed
that (from a given initialization) the distortion converges in Lloyd’s batch algorithm
at superlinear speed. This is because the variations of the second derivative of the
cost function are bounded. Thus, the algorithm is minimizing the distortion in a way
that is equivalent to Newton’s method.

In this chapter we look at ways to accelerate Lloyd’s algorithm. Given that
Lloyd’s algorithm is so widely used, the goal is to accelerate the exact algorithm
(without any approximation), so that the resulting accelerated algorithm can be used



48 G. Hamerly and J. Drake

anywhere Lloyd’s algorithm is used. The accelerations we look at primarily work
by avoiding many of the nk interactions between n clustered points and k cluster
centers.

2.2.2 MacQueen’s Algorithm

MacQueen [26] described a method similar to Lloyd’s algorithm, but which updates
the location of each affected cluster center whenever a point changes cluster
membership. While Lloyd’s algorithm moves the centers once per pass over the
entire dataset, MacQueen’s algorithm will move the centers (by smaller amounts)
far more often. Thus, Lloyd’s algorithm could be considered a ‘batch’ algorithm
whereas MacQueen’s is more ‘online’. As Lloyd’s algorithm is more popular in
practice, and easier to accelerate since the centers move less frequently, we focus
primarily on it in this chapter.

2.3 Tree Structured Approaches

Tree structures are effective methods for indexing spatial data in retrieval and
learning algorithms. Two approaches in particular, k-d trees and the anchors
hierarchy, have shown success in accelerating the k-means algorithm. We review
these methods here.

2.3.1 Blacklisting and Filtering Centers with k-d Trees

Pelleg and Moore [31] and Kanungo et al. [19] proposed similar methods for
accelerating k-means by constructing and using a k-d tree.1 A k-d tree is a binary
tree that recursively partitions the space of the data it’s constructed on using
separating hyperplanes (typically axis-aligned). In this discussion, it is applied to the
data to be clustered. After construction, the tree’s structure plus sufficient statistics
kept at each tree node can be used to eliminate point-center calculations. Pelleg
and Moore call this approach ‘blacklisting’ the centers, while Kanungo et al. call it
‘filtering’ the centers.

Pelleg and Moore’s blacklisting algorithm proceeds as shown in Algorithm 2.
Initially it constructs a k-d tree on the data that is to be clustered. For each iteration

1Note that the k in k-d trees and the k in k-means are two different (clashing) variable names.
In k-means, the k refers to the number of centers/clusters sought; in k-d trees k refers to the
dimension of the data the structure is built on.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 49

Algorithm 2 Pelleg and Moore’s Blacklisting k-means algorithm
procedure BLACKLISTING(X;C )

construct k-d tree T on X
while not converged do

Update(T .root, C )
move centers to the mean of their assigned points

procedure UPDATE(h; C )
if h is a leaf then

for each data point x in h do
find the closest center to x and update that center’s counters

else
compute the distance between h and each center in C
remove from C any dominated centers
if only one center c0 remains in C then

update the counters for c0 using the data in h
else

call Update(h.left, C )
call Update(h.right, C )

of k-means, the algorithm performs a traversal of the tree, searching for regions of
the tree that are ‘owned’ by a single center.

The traversal starts with all k centers at the root of the k-d tree. Then it recursively
descends the tree, and at each node attempts to prove that there is one center
that ‘dominates’ (is closer to) one or more of the other centers, with respect to
the hyperrectangle enclosing the k-d tree node. If so, it eliminates the dominated
center(s). If only the dominating center remains, then the recursion stops and all
points below that node in the k-d tree are assigned to that center. If multiple centers
remain, it recursively continues its search on both child nodes. If it reaches a leaf, it
performs a search of the data at the leaf to assign them to the remaining centers.

By using sufficient statistics kept at each internal node of the tree, identifying
a dominating center early in the recursion (close to the root) allows the algorithm
to skip not only many distance calculations but also many vector additions. For k-
means, the sufficient statistics for a node are the number of points at that node or
below, and the vector sum of those points.

While k-d trees can work very well in practice, the following limitations make
their use less desirable, especially in high dimension:

• They are efficient only in low dimension—the running time has an exponential
dependence on the dimension of the data [27]. If the number of points in the
structure are significantly (exponentially) larger than the dimension of the data,
k-d trees tend to be efficient relative to linear lookups, but for even moderate
dimensions in practical applications they become too slow. Empirically they
become too slow (compared to simple linear search) somewhere between 8 and
10 dimensions [28].

• They require extra memory for the tree structure and sufficient statistics. The
extra memory required is on the order of the original dataset.



50 G. Hamerly and J. Drake

• When clustering, we must construct the k-d tree in advance, which means that
we cannot start clustering until this is done.

• A k-d tree is not designed for efficient updates (such as adding new points
or removing old points). If many updates are to be done, the tree should be
reconstructed.

2.3.2 Anchors Hierarchy

Moore proposed the anchors hierarchy as a tree-like geometric structure for spatial
datasets [28]. The tree is built ‘middle-out’ by choosing

p
n initial points known

as anchors, and then merging them (to form the top of the tree) and subdividing
them (to form the leaves). Each anchor maintains a list of the points for which
it is the closest anchor, sorted by their distances from the anchor. Using the
triangle inequality, adding additional anchors can be done efficiently. Moore showed
that the anchors hierarchy is effective at eliminating many distance computations
in k-means. However, Elkan showed it is less effective at eliminating distance
computations than his method for even moderate values of k than his method [12].

While tree-structured acceleration methods of the k-means algorithm are inter-
esting and often useful, they are often slower and less effective in practice than the
methods we turn to now. One reason pointed out by Elkan is that tree-structured
methods must build a static structure before clustering begins, without knowledge
of the number of clusters. Because the number of clusters is not fixed, and their
positions change during clustering, static trees are less able to reduce the number of
k-means distance calculations.

2.4 Triangle Inequality Approaches

The triangle inequality is a simple but very powerful tool from geometry. If a; b; c 2
R
d , then the triangle inequality states that

ka � ck � ka � bk C kb � ck (2.2)

for Euclidean vector norm kak D paT a. Intuitively, this means that the length of
line segment .a; c/ is at most the sum of the lengths of line segments .a; b/ and
.b; c/. In other words, the shortest path between two points a and c is a straight line;
taking a path that goes through an intermediate point b cannot reduce the distance.

The triangle inequality is applicable in the k-means algorithm in multiple ways.
Generally, we desire to use it to prove that some center must be closer to a point than
all other centers. Ideally, we wish to do this with as little computation as possible.
For a point x and two centers c and c0, here are some of the different ways the
triangle inequality can be used in k-means:



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 51

Table 2.2 This table shows different acceleration methods that use distance bounds, sorting, and
the triangle inequality in various k-means algorithms

Accelerations used

Algorithm 1 2 3 4 5 6

Lloyd

Compare-means [32] X

Sort-means [32] X X

Elkan [12] X X X k

Hamerly [15] X X 1

Drake [11] X X b < k

Annular (this chapter) X X 1 X

Heap (this chapter) X X 0

1. Distance from a center to its
closest other center

2. Distance from a center to all other
centers

3. Upper bound on point-center
distances

4. Lower bound on point-center
distances

5. For each center, sort all centers by
distance from it

6. Sort all centers by their vector
norm

The column numbers correspond to the list on the right, which lists contexts where the triangle
inequality can help k-means avoid point-center distance calculations. Please see the algorithm
descriptions for more details. Column 4 lists the number of lower bounds used per point

1. To prove that c0 is closer to x than c, given only distances kc0 � xk and kc0 � ck.
2. To prove that c0 is closer to x than c, given only norms kxk and kck and distance
kx � c0k.

3. To maintain an upper bound on kx � ck when c is moving.
4. To maintain a lower bound on kx � ck when c is moving.

Table 2.2 shows the ways the triangle inequality is used in many of the algorithms
described in this chapter.

2.4.1 Using the Triangle Inequality for Center-Center
and Center-Point Distances

Phillips [32] demonstrated two ways to use the triangle inequality to accelerate k-
means. Both of them use the triangle inequality to prove that centers that are far
from a point’s assigned center are also far from the point, and therefore can be
excluded from distance computations with that point. He called his two algorithms
compare-means and sort-means.

Compare-means uses the triangle inequality to prove that if center c0 is close to
point x, and some other center c is far away from another center c0, then c0 must be
closer than c to x. Given the already-computed distances kx� c0k and kc� c0k, and
applying the triangle inequality we can show:

kc � c0k � kx � ck C kx � c0k By the triangle inequality.

kc � c0k � kx � c0k � kx � ck



52 G. Hamerly and J. Drake

Thus if we also know that 2kx � c0k � kc � c0k (which is trivial to calculate given
the distances are already known), we can show

2kx � c0k � kx � c0k � kx � ck
kx � c0k � kx � ck

which proves that c is not closer than c0 to x, without measuring the distance kx �
ck. Phillips’ compare-means algorithm uses this inequality in the innermost loop
of k-means to prove that some point-center distances need not be computed. The
algorithm computes and caches the center-center distances each time the centers
move (once per iteration).

Sort-means computes a k � k matrix of center-center distances each time the
centers move, and then sorts each row of matrix by distance. This gives each center
a ranking of the other centers by distance. Whenever the algorithm wants to find
the closest center for some point x, it searches the centers in the order of increasing
distance from its currently-assigned center c. Then, if it can ever prove that the
distance kc�c0k to some other center c0 is greater than twice the distance kx�ck, it
can stop searching. Thus sort-means uses the same inequality as compare-means, but
it searches the centers in a different order. Because of the search order it may avoid
examining some far-away centers. Of course, sort-means has the extra overhead of
sorting the center-center distance matrix each time the centers move.

2.4.2 Maintaining Distance Bounds with the Triangle
Inequality

We can use the triangle inequality to cheaply maintain an upper bound on the
distance between points, after one point has moved. Suppose x; c; c0 2 R

d , where x
is a point to cluster, c is a cluster center and c0 is its new position after an iteration
of k-means. If we know kx�ck (from a previous iteration of k-means) and kc�c0k
(calculated when we move the cluster centers), we can provide an upper bound on
kx � c0k without explicitly calculating its exact value:

kx � c0k � kx � ck C kc � c0k: (2.3)

Intuitively, this upper bound assumes that in the worst case, c moved directly away
from x a distance of kc � c0k, along the vector x � c.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 53

x

c

c

Fig. 2.1 Using the triangle inequality to bound the distance between x and c0, the new location
of the center c. Assume the distance kx � ck has been calculated. It is illustrated by the solid
circle centered on x and going through c. After c moves to c0, we measure kc � c0k (illustrated
by the dashed circle centered on c). The upper and lower bounds on kx � c0k are then given by
kx � ck � kc � c0k � kx � c0k � kx � ck C kc � c0k, which are illustrated by the two dashed
circles centered on x. Thus, c0 must be inside the region bounded by these two dashed circles

Another way to apply the triangle inequality is to form a lower bound on the
distance between two points. Again considering x; c, and c0 as a point to cluster and
the old and new positions of a center, we can form the lower bound on kx � c0k:

kx � ck � kx � c0k C kc � c0k (2.4)

kx � ck � kc � c0k � kx � c0k: (2.5)

Similar to the upper bound, this distance bound provides a lower bound that assumes
the worst case—that c moved directly toward x a distance of kc � c0k, along the
vector x � c.

Further, the upper (lower) bound can be updated correctly and efficiently in
subsequent k-means iterations by adding (subtracting) the distance moved by a
center each time it moves. This allows us to maintain both upper and lower distance
bounds between a point and a moving center without explicitly calculating distances
(Fig. 2.1).



54 G. Hamerly and J. Drake

2.4.3 Elkan’s Algorithm: k Lower Bounds, k2 Center-Center
Distances

Elkan [12] introduced an algorithm which uses the triangle inequality multiple
ways to avoid distance calculations in the k-means algorithm (see Algorithm 3
for pseudocode). For each clustered point x.i/, the algorithm employs one upper
bound and k lower bounds. The upper bound is on the distance between x.i/ and
its closest center c.a.i//; that is, u.i/ � kx.i/ � c.a.i//k. Each lower bound
`.i; j / � kx.i/ � c.j /k bounds the distance between x.i/ and center c.j /.
The upper (lower) bounds may be efficiently updated by adding (subtracting) the
distance moved by each center after each k-means iteration.

Each time the centers move, Elkan’s algorithm calculates and caches the distance
between each pair of centers, as well as half the distance between each center c.j /
and its closest other center as s.j /. When it is true, the test u.i/ � s.a.i// allows
Elkan’s algorithm to avoid the innermost loop for x.i/. This is because no other
center could possibly be closer to x.i/ than its currently-assigned center.

When Elkan’s algorithm reaches the innermost loop, it may want to determine
whether c.j / is closer to x.i/ than the currently assigned center. However, if either
u.i/ � `.i; j / or u.i/ � kc.a.i// � c.j /k=2, then this calculation is unnecessary,
because it is not possible for c.j / to be the closest center. The latter test uses the
cached center-center distances.

2.4.4 Hamerly’s Algorithm: 1 Lower Bound

Hamerly [15] altered Elkan’s algorithm by reducing the number of bounds used (see
Algorithm 4). Hamerly’s algorithm uses the same upper bound u.i/ for each point
x.i/—for the distance between that point and its closest center c.a.i//. But instead
of k lower bounds, it uses only one lower bound per point, `.i/. This lower bound
does not bound the distance from x.i/ to any particular cluster center. Instead, it
represents the minimum distance that any center—except for the closest—can be to
that point.

Consider the case where u.i/ � `.i/. If this is true, it is not possible for any center
to be closer to x.i/ than its assigned center. Thus, determining the assignment for
x.i/ does not require knowing any exact distances, and the algorithm can skip the
innermost loop that computes the distances between x.i/ and the k centers.

However, if `.i/ < u.i/ then it might be that the closest center for x.i/
has changed. In this case, Hamerly’s algorithm first tightens the upper bound
by computing the exact distance u.i/  kx.i/ � c.a.i//k. If this reduces u.i/
significantly, then possibly u.i/ � `.i/ and the algorithm can skip the innermost
loop. If not, then it must compute the distances between x.i/ and all k cluster
centers. Keeping track of the closest and second-closest allows the algorithm to



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 55

Algorithm 3 Elkan’s algorithm—using k lower bounds per point and k2 center-
center distances

procedure ELKAN(X;C )
a.i/ 1; u.i/ 1;8i 2 N {Initialize invalid bounds, all in one cluster.}
`.i; j / 0;8i 2 N; j 2 K
while not converged do

5: compute kc.j /� c.j 0/k;8j; j 0 2 K
compute s.j / minj 0

6Dj kc.j /� c.j 0/k=2;8j 2 K
for all i 2 N do

if u.i/ � s.a.i// then continue with next i
r  True

10: for all j 2 K do
z max.`.i; j /; kc.a.i//� c.j /k=2/
if j D a.i/ or u.i/ � z then continue with next j
if r then

u.i/ kx.i/� c.a.i//k
15: r  False

if u.i/ � z then continue with next j
`.i; j / kx.i/� c.j /k
if `.i; j / < u.i/ then a.i/ j

for all j 2 K do {Move the centers and track their movement}
20: move c.j / to its new location

let ı.j / be the distance moved by c.j /
for all i 2 N do {Update the upper and lower distance bounds}

u.i/ u.i/C ı.a.i//
for all j 2 K do

25: `.i; j / `.i; j /� ı.j /

find the correct assignment, compute a tight `.i/ (for the second-closest center),
and possibly tighten u.i/ (if the assignment happens to change).

Since u.i/ is the same as in Elkan’s algorithm, it is updated the same way
whenever the centers move. As the lower bound `.i/ is different, it is updated
differently. When the centers move, the algorithm also tracks the maximum distance
ı moved by any center. Then by the triangle inequality, the lower bound for each
point can be updated as `.i/  `.i/ � ı. This is correct since `.i/ represents the
closest distance between any (non-assigned) center and x.i/, and no center could
have moved closer toward x.i/ than the distance ı. In fact, a small optimization is
possible. For those points assigned to the furthest-moving center, their lower bounds
may be reduced by the distance moved by the second-furthest-moving center.

Why does Hamerly’s algorithm not track the identity of the second-closest
center? Knowing its identity would allow the algorithm to more efficiently tighten
`.i/ (avoiding the innermost loop over all k centers). The reason is that the second-
closest center’s identity can change as the centers move, and without looking at
all centers it can’t be proved that the second-closest center remains the same over
multiple iterations.

Hamerly’s algorithm has several efficiency tradeoffs compared with Elkan’s
algorithm. With fewer lower bounds, Hamerly’s algorithm uses less memory.



56 G. Hamerly and J. Drake

Algorithm 4 Hamerly’s algorithm—using 1 lower bound per point
procedure HAMERLY(X;C )
a.i/ 1; u.i/ 1; `.i/ 0;8i 2 N {Initialize invalid bounds, all in one cluster.}
while not converged do

compute s.j / minj 0

6Dj kc.j /� c.j 0/k=2;8j 2 K
5: for all i 2 N do

z max.`.i/; s.a.i///
if u.i/ � z then continue with next i
u.i/ kx.i/� c.a.i//k {Tighten the upper bound}
if u.i/ � z then continue with next i

10: Find c.j / and c.j 0/, the two closest centers to x.i/, as well as the distances to each.
if j 6D a.i/ then
a.i/ j

u.i/ kx.i/� c.a.i//k
`.i/ kx.i/� c.j 0/k

15: for all j 2 K do {Move the centers and track their movement}
move c.j / to its new location
let ı.j / be the distance moved by c.j /

ı0  maxj2K ı.j /

for all i 2 N do {Update the upper and lower distance bounds}
20: u.i/ u.i/C ı.a.i//

`.i/ `.i/� ı0

It spends less time checking bounds (in the innermost loop) and updating bounds
(when centers move). Having the single lower bound allows it to avoid entering
the innermost loop more often than Elkan’s algorithm. On the other hand, Elkan’s
algorithm computes fewer distances than Hamerly’s, since Elkan’s has more bounds
to prune the required distance calculations. Also, Hamerly’s algorithm works better
in low dimension than in high dimension. Its single lower bound reduces by the
maximum distance moved by any center, and in high dimension all centers tend to
move a lot due to the curse of dimensionality.

2.4.5 Drake’s Algorithm: 1 < b < k Lower Bounds

Elkan’s and Hamerly’s algorithms keep, respectively, k bounds and one lower bound
per clustered point. Drake and Hamerly [11] bridged the gap between these two
extreme values by using 1 < b < k lower bounds on the b closest centers to each
point. The value of b can be selected in advance or adaptively learned while the
algorithm runs. Drake’s algorithm uses one upper bound per clustered point. Thus,
Drake’s algorithm uses .b C 1/n total distance bounds.

For a given point, the first b�1 lower bounds represent the minimal distance from
the point to its b � 1 closest centers, excluding the currently assigned center. The



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 57

last (bth) lower bound is treated specially, and we will discuss it later. Since k-means
is only concerned with the closest center, we can avoid distance calculations to far-
away centers if we can use the bounds to prove that the closest is one of the b closest
(the current assigned center plus the b � 1 next closest centers).

There are two minor complications that arise from keeping b bounds per point:

• For each of the b lower bound we must keep the identity of the associated
center. In Hamerly’s algorithm, the identity of the lower-bound center is not kept.
Elkan’s algorithm keeps the lower bounds in the same order as center indexes,
implicitly giving the bound-center association. Keeping a center label for each
bound increases the algorithm’s memory footprint.

• In order to make the algorithm efficient, the lower bounds should be kept in sorted
order by distance from the point. Sorting incurs overhead each time the centers
move.

Nevertheless, Drake and Hamerly show that this algorithm works well in practice
and can be faster than both Elkan and Hamerly’s algorithms under certain condi-
tions.

The first b � 1 lower bounds for a point represent the lower bounds to the
associated points that are ranked 2 through b in increasing distance from the point.
The last lower bound (number b, furthest from the center) represents something a
bit different. Instead of being associated with one particular center, it represents the
lower bound on all the furthest k�b centers. This is much like Hamerly’s one lower
bound, but only for the outermost centers.

When searching for the closest center to a given point, we only need to search
the centers whose corresponding lower bounds are less than the upper bound for
that point. Moving from the center with the smallest lower bound outward, we can
hopefully stop searching after just a few comparisons. For each lower-upper bound
comparison that fails, we tighten the lower (and upper) bounds as necessary. If we
reach the last bound and still have not proven that any of the b tracked centers are
the closest, then we must search all remaining k � b centers.

At the end of each k-means iteration, we must adjust the lower bounds. Each is
reduced by the amount its associated center moved. The outermost bound should
be reduced by the maximum amount moved by any of the k � b outermost centers.
However, in practice it is far more efficient, though not as tight, to reduce the last
bound by the largest distance moved by any center, not just the furthest k�b centers.
When doing this, some bound might ‘collapse’ on (i.e. become smaller than) a lower
bound for a supposedly closer center. When this happens, we reduce each bound for
closer centers so they are at most the value that is collapsing.

The number of lower bounds b used by Drake’s algorithm represents a tradeoff.
Increasing b incurs more computational overhead to update the bound values and
sort each point’s closest centers by their bound, but it is also more likely that one
of the bounds will prevent searching over all k centers. Drake’s algorithm uses a
simple way to determine a ‘good’ value for b adaptively. Starting with a large value
for b, it may choose to reduce b each iteration based on which bounds are being



58 G. Hamerly and J. Drake

Algorithm 5 Drake’s algorithm—using b lower bounds per point
procedure DRAKE(X;C; b)
a.i/ 1; u.i/ 1;8i 2 N {Initialize invalid bounds, all in one cluster.}
`.i; j / 0;8i 2 N; j 2 f1; : : : ; bg
while not converged do

5: m b

for all i 2 N do
j  arg max1�j 0

�b u.i/ � `.i; j 0/

if j < b then {The bounds pruned the outer centers.}
compute distances and reorder the j centers closest to x.i/

10: else if j D b or `.i; b/ < u.i/ then {Bounds were ineffective.}
compute distances from x.i/ to all centers and sort the b closest

m max.m; j /
b max.k=8;m/ {Reduce b if possible}
for all j 2 K do {Move the centers and track their movement}

15: move c.j / to its new location
let ı.j / be the distance moved by c.j /

ı0  maxj2K ı.j /

for all i 2 N do {Update the upper and lower distance bounds}
u.i/ u.i/C ı.a.i//

20: `.i; b/ `.i; b/� ı0

for j D b � 1 down to 1 do
let c.z/ be the center that is the j th closest to x.i/
`.i; j / min.`.i; j /� ı.z/; `.i; j C 1//

used. If the algorithm is able to stop searching after only b0 < b lower bounds (over
the entire dataset), then it reduces b down to b0. Experimentally, Drake determined
that for k > 8, k=8 is a good floor for b.

2.4.6 Annular Algorithm: Sorting the Centers by Norm

Hamerly’s algorithm employing one lower bound is effective at avoiding many
distance computations in low dimensional spaces. But whenever the lower and upper
bounds for a point cross (i.e. `.i/ < u.i/), the algorithm must compute the distance
between the point and all k centers. This search determines the two closest centers
and tightens the upper and lower bounds. Similarly, when the last lower bound in
Drake’s algorithm fails to prune the search, it must search over all centers (it has
already searched over b centers, and it must continue searching over the remaining
k � b centers represented by the last lower bound).

In this subsection we describe an efficient method that can prune such searches
between a point x and all k centers. By sorting the centers by their vector norms,
we can eliminate from consideration many centers whose norms are too large or too
small to be closest to x. We can do this with only the knowledge of the norm of x,



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 59

the norms of all k centers, and (an upper bound on) the distance between x and a
(hopefully closeby) center.

Consider ordering the k cluster centers by their vector norms, k � k. This order
may change at most once per iteration of k-means, and is inexpensive to compute
and maintain. This ordering affords a novel way to structure the search for a point’s
closest center and potentially avoid examining all centers.

For a point x having norm kxk, we can use the norm-ordering of the centers and
the triangle inequality to prune the search over all centers. Assume that we know
the exact distance kx � c0k between x and a reasonably close center c0 (such as
its currently assigned center). Then consider a center c that is actually closer to x.
Starting with two different statements from the triangle inequality, we have

kck � kx � ck C kxk;
kxk � kx � ck C kck: (2.6)

Then we can combine these to get

kck � kxk � kx � ck;
kxk � kck � kx � ckI (2.7)

ˇ̌ kxk � kck ˇ̌ � kx � ck combining the two results in (2.7). (2.8)

Because c is closer than c0 to x, we can deduce

ˇ̌ kxk � kck ˇ̌ � kx � ck � kx � c0k: (2.9)

Thus, any center c that is closer to x than c0 must satisfy Inequality (2.9). From
a different perspective, consider that c is actually farther from x than c0. Then c
must violate this inequality—i.e.

ˇ̌ kxk � kck ˇ̌ > kx � c0k. In this case, c can be
eliminated from consideration because c0 must be closer to x. Note that while the
above discussion relied on knowing an exact distance between x and some close
center c0, the same derivation can be done with an upper bound on this distance.

We can use this knowledge to prune the search for the closest center. Given (an
upper bound on) a distance kx�c0k between x and some center c0 (e.g. the currently
assigned center), we can eliminate centers c where

ˇ̌ kxk � kck ˇ̌ > kx � c0k:

And since we have ordered the centers by their norm, we only need to compute the
distances between x and those centers c whose norm falls in the range

kx � c0k � kxk � kck � kx � c0k C kxk



60 G. Hamerly and J. Drake

Fig. 2.2 The annular region
(white ring centered at origin)
bounds where the closest
center for x might be. Centers
c.j / are numbered by their
distance from the origin.
Point x has c.4/ as its
previously-closest center, so
the width of the annulus is
2kx � c.4/k (dashed circle
centered at x)

annulus

x

x− c(4)

c(1)

c(2)

c(3) c(4)

c(5)c(6)

These bounds form an annular region centered on the origin in which potentially
closer centers to x may lie. We can use binary search on the centers ordered by
their norms to locate the smallest-norm center that fits this inequality, and then
compute the distance between x and each center within the annulus. Figure 2.2
gives a graphical representation of this search space.

We have implemented this annular search in conjunction with Hamerly’s algo-
rithm, with one additional change. Each time Hamerly’s algorithm searches over all
centers, it needs to discover not just the closest center, but also the second-closest
center (to tighten the lower bound). Thus, when constructing the annulus for x, we
use twice the distance between x and its second-closest center as the annulus width.
But since Hamerly’s algorithm does not explicitly track the second-closest center,
the augmented annular search algorithm attempts to do so. As mentioned above,
though, the second-closest center can change. However, the annular search does not
need to know which is the actual second-closest center—it only needs the index of
a center which is likely to be close to x to form the search annulus, and is farther
from x than the assigned center. Thus when it does find the actual second-closest
center, it caches its identity for constructing the annulus later.

2.4.7 Kernelized k-Means with Distance Bounds

As with many distance-based algorithms, k-means can be ‘kernelized’ by applying
the kernel trick [10, 34]. Starting from the definition of squared Euclidean distance
which can be written using inner products,

kx � yk2 D hx; xi � 2hx; yi C hy; yi;



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 61

we can kernelize the distance by replacing each inner product with a call to a kernel
function K.x; y/ D h�.x/; �.y/i which represents the inner product of x and y
after they have been transformed to a new space, within the range of �. Here �
typically represents a function that yields a higher-dimensional vector. Thus,

k�.x/ � �.y/k2 D h�.x/; �.x/i � 2h�.x/; �.y/i C h�.y/; �.y/i
D K.x; x/ � 2K.x; y/CK.y; y/

and if K is easy to compute (without explicitly using �), then using a kernel is a
relatively efficient way to perform k-means implicitly in the space of �.

We can apply the triangle inequality algorithms to kernelized k-means. How-
ever, we must be careful to avoid inefficiencies that come from kernelizing the
algorithm. In particular, since the centers live implicitly in the high-dimensional
range of �, and we don’t represent high-dimensional feature vectors explicitly, any
time we want to use a center, we instead use the kernel applied to all of the points
that are in its cluster. That is, in kernel k-means we define center c.j / by its member
points:

c.j / D 1

n.j /

X

i ja.i/Dj
�.x.i//

so that when we want to know kx � c.j /k2, we compute

k�.x/ � c.j /k2 D K.x; x/ � 2h�.x/; c.j /i C hc.j /; c.j /i

D K.x; x/ � 2
*
�.x/;

1

n.j /

X

i ja.i/Dj
�.x.i//

+

C
*
1

n.j /

X

i ja.i/Dj
�.x.i//;

1

n.j /

X

i ja.i/Dj
�.x.i//

+

D K.x; x/ � 2

n.j /

X

i ja.i/Dj
K.x; x.i//

C 1

n.j /2

X

i ja.i/Dj

X

i 0ja.i 0/Dj
K.x.i/; x.i 0//

Note that, naively, this single distance computation, which is the core of k-means,
has a runtime of O.n.j /2/ (ignoring the cost of computing the kernel). Under the
reasonable assumption that clusters are roughly equal size, this is O.n2=k2/. Thus
naive point-center distance computations are quite costly in kernelized k-means,
especially when compared with the runtime of the non-kernelized version of
k-means. However, simply caching the inner product hc.j /; c.j /i for each cluster



62 G. Hamerly and J. Drake

center at the beginning of each k-means iteration allows us to bring the cost
down to a much better, though still very costly, O.n.j // (or O.n=k/ under the
assumption that all clusters are equal size). Either way, in kernelized k-means
it is even more appealing to accelerate the algorithm by a method which avoids
distance calculations altogether. We can directly apply any of the triangle inequality
algorithms to kernelized k-means.

When applying an acceleration method such as Elkan’s algorithm to kernelized
k-means, we must additionally compute the center movement at each iteration. This
is no more costly than computing the inner product for each center with itself, which
is already performed each iteration as discussed previously.

2.5 Heap-Ordered k-Means: Inverting the Innermost Loops

Next we turn to a way of restructuring Hamerly’s algorithm. We motivate the next
algorithm in three ways:

1. it’s desirable to reduce the memory use of the accelerated algorithm—in other
words the number of bounds kept per point;

2. since k < n, the memory-efficient way of searching all point-center distances is
to have a nested loop over all n on the outside and all k on the inside, but we may
wish to invert this loop structure so that the outer loop is over k; and

3. thus far, the algorithms that are accelerated by the triangle inequality examine all
n points every iteration, but we would like an algorithm which only investigates
those points whose triangle inequality bounds have been violated.

For all these reasons, we consider an algorithm that orders all the points by their
likelihood of needing cluster reassignment—in other words, those for which `.i/ �
u.i/ is smallest (perhaps even negative).

2.5.1 Reducing the Number of Bounds Kept

This new algorithm, Heap-ordered k-means, replaces each pair of bounds kept for
each point .u.i/; `.i// by Hamerly’s algorithm with a single value representing their
difference, `u.i/ D `.i/ � u.i/. The reasoning is that the bounds avoid distance
calculations whenever

u.i/ � `.i/
0 � `.i/ � u.i/

0 � `u.i/:



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 63

Thus, we can reduce by half the number of distance bounds used by Hamerly’s algo-
rithm simply by replacing the upper and lower bounds by their difference. Whenever
`u.i/ < 0, the distance bound for x.i/ has been violated and we need to tighten its
bound (possibly reassigning the point to another cluster in the process).

Each update to `u.i/ is done as follows. If in Hamerly’s algorithm we would
increment u.i/ by a and decrement `.i/ by b, then `u.i/ is decremented by
b C a. Thus, updates to this single bound are simple.

2.5.2 Cost of Combining Distance Bounds

There is a cost of replacing two bounds with one. In the innermost loop of Hamerly’s
algorithm, the bounds fail whenever u.i/ > `.i/ and it may have to examine all
k point-center distances involving x. However, before that happens it tightens the
upper bound as u.i/ D kx.i/ � c.a.i//k. If tightening u.i/ causes the bounds to
become ordered again .u.i/ � `.i//, then it has avoided k � 1 distance calculations.
However, when the new bound `u.i/ < 0, we cannot tighten it by looking at just
the two centers defining the bound (the first- and second-closest centers), because
we do not know the identity of the second-closest center. So when `u.i/ < 0, we
must examine all k point-center distances for x to determine whether a.i/ is still
its closest center. We might reduce the search over all k by using an annular search
approach (see Sect. 2.4.6).

2.5.3 Inverting the Loops Over n and k

Usually, the innermost loops in Lloyd’s algorithm loop over all n points, and for
each point over all k cluster centers to find its closest. We could invert these two
loops, searching over each cluster and within that each point. But naively doing so
requires maintaining an extra distance for each of the n points indicating its distance
to the closest of the centers examined so far.

Whichever way we structure the nesting of the these two loops, the naive
strategy examines all n points, and typically all nk point-center pairs. It would be
an advantage to examine only those points which could possibly change cluster
membership, avoiding completely those points whose assignments are provably
‘safe’ (via distance bounds). It turns out that we can achieve this goal by using a
single (combined) lower-upper distance bound, a heap for each cluster, and making
the outer loop be over the k clusters.

2.5.4 Heap-Structured Bounds

For each cluster we construct a min-heap of the points assigned to that cluster,
ordered by an estimate of their distance from the cluster center. For now assume



64 G. Hamerly and J. Drake

Algorithm 6 Heap-ordered algorithm—inefficient version
procedure HEAPKMEANS-INEFFICIENT(X;C )

construct k min-heaps: h.j / for each j 2 K
insert .�1; x.i// into h.1/ for each i 2 N {put all in the first cluster, with violated bounds}
while not converged do

5: for all j 2 K do
while h.j / is not empty and .`u.i/; i/ at the top of h.j / has `u.i/ < 0 do

remove .`u.i/; x.i// from h.j /

find c.j 0/ and c.j 00/, the two closest centers for x.i/
compute `u.i/ D kx.i/� c.j 00/k � kx.i/� c.j 0/k {tighten the bound}

10: put .`u.i/; i/ into h.j 0/

move each center to the mean of its assigned points
update `u.i/ for each i 2 N , restructuring each heap as necessary

each heap entry for x.i/ is a pair .lu.i/; i/. (This is not exactly the case, shortly we
will adjust this definition.) But this suffices to show that the point at the top of the
heap is the one whose bound is closest to failing, or has already failed (if `u.i/ < 0).

This basic approach leads to Algorithm 6 for examining only those points whose
bounds have failed. While this is a reasonable algorithm, it is hampered by the fact
that it must visit every point to update each `u.i/, restructuring the heap as it goes.
This violates a primary goal we have for this algorithm: to avoid the O.n/ factor of
considering every point in each iteration of k-means.

We can improve this algorithm by removing the per-iteration update for `u.i/.
This is possible by changing the key for the heap from `u.i/ to be a related, but
static value, and keeping the updates for `u.i/ external to the heap. First we will
need some new notation.

Let `u.i; t/ be the value of `u.i/ at k-means iteration t . Instead of updating `u.i/
at each iteration, we keep track of the cumulative updates for `u.i/, which turn out
to be the same for all points assigned to the same center. Suppose x.i/ is assigned
to center c.j /. Let c.j /t be its location at k-means iteration t . At iteration t , we
compute the current value

`u.i; t/ `u.i; t � 1/ � kc.j /t � c.j /t�1k �m.t/; where (2.10)

m.t/ max
j 02K
kc.j 0/t � c.j 0/t�1k (2.11)

is the distance moved by the furthest-moving center for that iteration. Then for each
center c.j / we maintain the following structure

z.j; t/ D m.t/C
tX

pD1
kc.j /p � c.j /p�1k; (2.12)

where c.j /0 is the center’s initial position. Then z.j; t/ is the distance center c.j /
has traveled since the beginning of the algorithm plus the furthest distance any center



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 65

has traveled, up through iteration t . This can be computed efficiently each iteration,
taking O.kd/ time for all centers.

Assume that at iteration t , point x.i/ becomes newly assigned to center c.j /, and
has second-closest center c.j 0/. Then we can compute the (tight) value of `u.i; t/ D
kx.i/ � c.j 0/tk � kx.i/ � c.j /tk. Into heap h.j / we place the pair

.`u.i; t/C z.j; t/; i/: (2.13)

In other words, we order the heap by `u.i; t/ offset by the current value of
z.j; t/. Consider now the value of `u.i; t 0/ at some later iteration (i.e. t 0 > t ):

`u.i; t 0/ D `u.i; t/�kc.j /tC1 � c.j /tk�m.t C 1/� : : :�kc.j /t 0�c.j /t 0�1k�m.t 0/

D `u.i; t/ �
t 0X

pDtC1
kc.j /p � c.j /p�1k Cm.p/

D `u.i; t/C
tX

pD1
kc.j /p�c.j /p�1kCm.p/�

t 0X

pD1
kc.j /p�c.j /p�1kCm.p/

D `u.i; t/C z.j; t/ � z.j; t 0/ (2.14)

In Algorithm 6 at iteration t 0 > t we would check if the top of the heap has
`u.i; t 0/ < 0. Starting with this and using Eq. (2.14) and the new heap structure,
we find the equivalent test

`u.i; t 0/ < 0

`u.i; t/C z.j; t/ � z.j; t 0/ < 0

`u.i; t/C z.j; t/ < z.j; t 0/; (2.15)

which is exactly what we used as the distance key on the heap (i.e. `u.i; t/C z.j; t/)
and have been updating in the intervening iterations (i.e. z.j; t 0/).

Thus, we can keep a heap structure that does not require updating as `u.i/
changes, instead accumulating updates for each center external to the heap structure,
and achieve equivalent tests for `u.i/ < 0. Note that we do not need to keep
the history of z.j; t/ for all iterations; we only ever need the value for the current
iteration. This leads us to the more efficient Algorithm 7.

2.5.5 Analysis of Heap-Structured k-Means

To analyze Algorithm 7, we assume a simple binary-heap implementation that takes
O.log.n// time to insert and remove, and introduce two new terms. The number



66 G. Hamerly and J. Drake

Algorithm 7 Heap-ordered algorithm—using 1 bound per point, and one per cluster
procedure HEAPKMEANS(X;C )

construct min-heap h.j / for each j 2 K
let z.j / 0 for each j 2 K
insert .�1; i/ into h.1/ for each i 2 N {put all in the first cluster, with violated bounds}
while not converged do

for all j 2 K do
while h.j / is not empty and .y; i/ at the top of h.j / has y < z.j / do

remove .y; i/ from h.j /

compute the distance from x.i/ to each center
let c.j 0/ and c.j 00/ be its closest and second-closest centers
insert .kx.i/� c.j 00/k � kx.i/� c.j 0/k C z.j 0/; i/ into h.j 0/

for all j 2 K do
move c.j / to the average of its assigned points
calculate ı.j / as the distance c.j / moved

compute ı0 D maxj2K ı.j /

for all j 2 K do
update z.j / z.j /C ı.j /C ı0

of iterations performed by k-means is w, and the number of bound violations per
iteration is v. In other words, v is the number of points that must be removed from
any heap in one iteration of k-means. Then the running time is

O.nC wv.log.n/C kd//: (2.16)

The most important thing to notice about this analysis is the lack of a wn term, which
does occur in other algorithms based on the triangle inequality. While there is a term
wv, and v depends on n, in general v < n and highly clustered data will have v	 n.

2.6 Parallelization

There are multiple ways to parallelize the k-means algorithm. While the purpose of
our study is to improve the core k-means algorithm, we also want to show that such
improvements are suitable for parallelization. In particular, we consider the simplest
case of parallelizing the algorithm over a shared-memory, multicore machine.

In a shared-memory context with p processors, the most straightforward way
to parallelize the batch k-means algorithm is to partition the n data points to be
clustered into p subsets each of size n=p. The cluster centers are replicated across
(or shared by) all processors.

During each iteration, each processor assigns each point in its partition to the
center nearest that point. After the assignment step, each processor computes for
its partition the (partial) sufficient statistics required to compute the new center
locations. In particular, for each center each processor must compute the vector sum
of the points assigned to that center, as well as the number of points assigned to it.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 67

Using these partial results from all processors at the end of the iteration, the new
cluster centers can be computed and shared with all processors. Thus the algorithm
is embarrassingly parallel within each iteration, but requires synchronization of all
processors between iterations. Note that any k-means optimization algorithm which
is not batch but stochastic in nature will not be able to directly apply this type of
parallelization and maintain identical output.

A few details are worth noting. For heap-based k-means presented in this
chapter, the algorithm can be parallelized this way by constructing k heaps for each
processor (resulting in pk total heaps). For Drake’s algorithm which may reduce the
number of lower bounds used as the algorithm proceeds, each thread can adaptively
reduce the number of bounds that it uses without affecting other threads, allowing
the potential for optimization within smaller regions of the dataset.

We have implemented multithreaded versions of the algorithms we use in
experiments, and perform experiments to see how well they scale with an increasing
number of available processors. Please see Sect. 2.7 for the experimental results.

2.7 Experiments and Discussion

In this section we describe the experimental results the algorithms discussed in this
chapter on several real-world and synthetic datasets. Table 2.3 describes the datasets.
Table 2.4 describes the algorithms tested.

Table 2.3 A list of the datasets used in the experiments

Name Description Number of points n Dimension d

Uniform-2/8/32 Synthetic, uniform distribution 1,000,000 2/8/32

Clustered-2/8/32 Synthetic, 50 separated spheri-
cal Gaussian clusters

1,000,000 2/8/32

BIRCH 10 � 10 grid of Gaussian clus-
ters

100,000 2

MNIST-50 Random projection from
mnist784

60,000 50

Covertype Soil cover measurements 581,012 54

KDD Cup 1998 Response rates for fundraising
campaign

95,412 56

MNIST-784 Raster images of handwritten
digits

60,000 784



68 G. Hamerly and J. Drake

Table 2.4 Algorithms tested. Given the same initialization, all algorithms produce the same result

Algorithm Type of acceleration Unique features

Lloyd None Baseline algorithm for batch
k-means.

Compare-means [32] Triangle inequality avoid innermost loop when closest
other center is far away.

Sort-means [32] Triangle inequality,
sorting centers

Search over centers in increasing
distance from closest center.

Elkan [12] Triangle inequality,
distance bounds

1 upper bound, k lower bounds per
point.

Hamerly [15] Triangle inequality,
distance bounds

1 upper bound, 1 lower bound per
point.

Drake (adaptive version)
[11]

Triangle inequality,
distance bounds,
sorting bounds

1 upper bound, b lower bounds per
point; b is chosen adaptively.

Annular (this chapter) Triangle inequality,
distance bounds,
sorting centers

Like Hamerly, but with
norm-ordered centers.

Heap (this chapter) Triangle inequality,
distance bounds

Uses k heaps of assigned points,
ordered by bounded distance from
center. Upper and lower bounds are
combined into one value.

Kernelized Lloyd None Lloyd’s algorithm with kernels.

Kernelized Elkan (this
chapter)

Triangle inequality,
bounds

Applying Elkan’s algorithm to
kernelized k-means.

2.7.1 Testing Platforms

We ran our tests on two Linux 64-bit Intel platforms. One is a 128-node parallel
machine with 8 processors and 16 GB of RAM per node. We used up to 8
simultaneous threads on this machine. The other is a more recent 12-core computer
with 16 GB of RAM which we used for testing up to 12 simultaneous threads. We
implemented all of the algorithms tested in C++ and Pthreads. For algorithms that
used similar structures, we tried to use common code wherever possible to minimize
differences due to implementation.

2.7.2 Speedup Relative to the Naive Algorithm

Figures 2.3 and 2.4 show the speedup of the accelerated algorithms relative to the
naive algorithm. Speedup is defined as the time for the naive algorithm divided by
the time for the accelerated algorithm. For each dataset, we run it with multiple k
values. Speedups of up to 50x are observed, with the largest accelerations being for



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 69

low-dimensional, naturally-clustered data. This is an important case for user-facing
applications.

The results show a general improvement in speedup for most accelerated
algorithms as the number of clusters increases. This makes sense because as the
number of total possible distance calculations rises with k, so does the number
of ‘far away’ centers that can be pruned using the acceleration techniques in this
chapter. The speedup curves are not monotonic because the number of iterations
varies (depending on k and the initialization), and when k-means performs very few
iterations, all the algorithms take roughly the same amount of time. One reason is
because the accelerations using distance bounds provide the most benefit when the
centers are moving very little.

We observe generally that not all of the accelerated algorithms always outperform
the naive algorithm. For example, Elkan’s algorithm shows very little if any
improvement when the dimension is 2. On the other end of the dimension spectrum,
sort-means and compare-means perform about the same as the naive algorithm when
the data is unstructured (uniform random) and of dimension 8 or 32.

In the highest dimension dataset, MNIST-784, Elkan’s algorithm is the clear
winner. It benefits in this high-dimension space by being the best at avoiding
distance calculations, where distance calculations are very expensive. Drake’s
algorithm is second-best, since it uses fewer bounds than Elkan’s and is unable
to avoid as many distance calculations. Generally, as dimension increases the
algorithm gains more benefit from caching additional (lower) distance bounds.

2.7.3 Parallelism

We implemented and tested multithreaded versions of each algorithm we investigate.
Here we look at how well each is able to use additional computation resources,
in terms of speedup and efficiency. While we try to parallelize all parts of each
algorithm, the different steps of each algorithm require different amounts of thread
synchronization in each iteration, and some parts are not easily parallelized (e.g.
a single sort that occurs each iteration whose input depends on data from all
threads, and whose output must be shared to all threads, as happens in the Annular
algorithm).

Figure 2.5 shows the speedup of each algorithm with respect to the number of
threads. Each algorithm’s speedup is computed relative to using only one thread
with that algorithm. We measure wall-clock time for using one thread and for using
t threads, and divide the former by the latter to obtain the speedup. All versions of an
algorithm (e.g. single-threaded versus multithreaded), given the same initialization,
produce the same sequence of k-means iterations and final clustering.

Figure 2.6 shows the efficiency of each algorithm with respect to the number
of threads. We define efficiency as speedup divided by the number of threads. So
a perfect efficiency would be a line fixed at 1.0, and a program which cannot use
multiple threads would have an efficiency curve of 1=t where t is the number of
threads.



70 G. Hamerly and J. Drake

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Fig. 2.3 Speedup relative to the naive algorithm for synthetic datasets (clustered and uniform).
Speedup is defined as time(naive)/time(accelerated)

It is clear that not all algorithms use the additional available computation equally
well. The algorithm that benefits the most from additional threads is the non-
accelerated (naive) Lloyd’s algorithm, which obtains nearly linear speedups. This is
likely for two reasons: it has the least synchronization between threads, and its per-
thread behavior is the most predictable (each thread will do approximately equal
work). Accelerated algorithms require more synchronization since there is more
information kept and shared between threads. For per-thread behavior, it’s possible



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 71

Algorithmic Speedup
BIRCH

Algorithmic Speedup
Covertype

Algorithmic Speedup
MNIST-50

Algorithmic Speedup
1998 KDD Cup

Algorithmic Speedup
MNIST-784

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)
Sp

ee
du

p 
(v

er
su

s 
na

iv
e)

Sp
ee

du
p 

(v
er

su
s 

na
iv

e)
Sp

ee
du

p 
(v

er
su

s 
na

iv
e)

Fig. 2.4 Speedup relative to the naive algorithm for other datasets. Speedup is defined as
time(naive)/time(accelerated)

that one thread will have more work to do than another due to, e.g., distance bounds
being more effective for the data assigned to the thread.

2.7.4 Number of Distance Calculations

The number of distance calculations performed by k-means for several datasets
is shown in Figs. 2.7 and 2.8 (for clustered and uniform synthetic datasets).
While the datasets for the two figures are comparable in terms of the number



72 G. Hamerly and J. Drake

Sp
ee

du
p 

(v
er

su
s 

on
e 

th
re

ad
)

Sp
ee

du
p 

(v
er

su
s 

on
e 

th
re

ad
)

number of threadsnumber of threads

Fig. 2.5 Speedup for each algorithm as a function of the number of threads. Speedup for t threads
is defined as time(single-thread)/time(t threads)

ef
fic

ie
nc

y 
(s

pe
ed

up
 /

 n
um

be
r o

f t
hr

ea
ds

)

number of threads number of threads

ef
fic

ie
nc

y 
(s

pe
ed

up
 /

 n
um

be
r o

f t
hr

ea
ds

)

Fig. 2.6 Parallel efficiency for each algorithm as a function of the number of threads. Efficiency
for t threads is defined the speedup(t threads)/t . Perfect efficiency is 1.0, and higher is better

of points, dimensions, and cluster centers used, they differ in structure (clustered
versus uniform). For clustered data, all accelerated algorithms appear to compute
dramatically fewer distances than the naive algorithm. However, there is a stark
difference in the uniform datasets. Those accelerated algorithms that use some kind
of distance bounds (Elkan, Hamerly, Annular, Drake, and Heap) all do much better
than those algorithms which do not (Compare-means and Sort-means), when the
dimension is 8 or higher. Thus, the distance bounds seem to be a key part of reducing
distance computations in k-means.

As point-center distance calculations are especially expensive in kernelized k-
means algorithms, we tested the effectiveness of Elkan’s algorithm on this algorithm.
Table 2.5 shows the number of distances calculated by both naive kernel k-means
and Elkan’s version on a small dataset. It is clear that Elkan’s algorithm saves a
dramatic number of distance calculations even in kernel spaces.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 73

d = 2 d = 32

k= 2

k= 8

k= 32

k= 128

Fig. 2.7 Number of distance calculations performed for synthetic clustered data in 2 and 32
dimensions, over k D 2, 8, 32, and 128



74 G. Hamerly and J. Drake

d = 2 d = 32

k= 2

k= 8

k= 32

k= 128

Fig. 2.8 Number of distance calculations performed for synthetic uniform data in 2, 8, and 32
dimensions, over k D 2, 8, 32, and 128



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 75

Table 2.5 The number of distances computed by unaccelerated
kernel k-means and Elkan’s kernel k-means

Number of distance calculations

k Iterations Naive kernel k-means Elkan kernel k-means

2 24 96; 467 26; 766

8 39 624; 750 155; 130

32 43 2; 752; 810 708; 491

128 14 3; 584; 506 628; 437

We used a small synthetic dataset: a uniform random distribution,
with 2,000 points and 8 dimensions. We use a Gaussian kernel with
bandwidth � D 10;000. The number of iterations ranged from
14 to 43

Fig. 2.9 The amount of memory used (in megabytes) for the BIRCH, over k D 2, 8, 32, and 128

2.7.5 Memory Use

Figures 2.9 and 2.10 show the amount of memory used by k-means for the small
BIRCH dataset (n D100,000 and d D 2) and a large synthetic uniform dataset
(n D1,000,000 and d D 32). As opposed to the amount of time used, the amount of
memory used is a function of just the number of points, dimension, and number of
clusters. It’s clear that when k is small, the algorithms all use about the same amount



76 G. Hamerly and J. Drake

Fig. 2.10 The amount of memory used (in megabytes) for synthetic uniform data in 32 dimen-
sions, over k D 2, 8, 32, and 128

of memory. When k is large, however, the large number of bounds used by Elkan’s
and Drake’s algorithms, begin to set them apart as using a lot more memory. It is
nice that for a small relative increase in memory footprint, many of these algorithms
afford significant speedups.

2.8 Conclusion

This chapter presents a number of alternatives to Lloyd’s very popular and widely
used batch k-means algorithm. All those presented aim to provide exactly the
same answer as Lloyd’s (given the same initialization), but faster. Some algorithms
are from the literature of the last decade (Compare-means, Sort-means; Elkan’s,
Hamerly’s, and Drake’s algorithms), and some are new (Annular, Heap).

The algorithms studied here rely on the geometric triangle inequality to avoid
unnecessary and costly distance calculations. This proves to be simple to implement
and can provide dramatic speedups of up to 40x in our tests. There are multiple ways
to apply the triangle inequality to speed up k-means. Practically, using the triangle
inequality to inexpensively maintain a set of distance bounds between points and
centers is the idea with the greatest benefit.



2 Accelerating Lloyd’s Algorithm for k-Means Clustering 77

References

1. Agarwal PK, Har-Peled S, Varadarajan KR (2005) Geometric approximation via coresets.
Comb Comput Geom 52:1–30

2. Apache Mahout http://mahout.apache.org/. Version 0.8, Accessed 24 Jan 2014
3. Arthur D, Vassilvitskii S (2007) kmeans++: the advantages of careful seeding. In: ACM-SIAM

symposium on discrete algorithms, pp 1027–1035
4. Arthur D, Manthey B, Röglin H (2011) Smoothed analysis of the k-means method. J ACM

58(5):19
5. Bei C-D, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for

vector quantization. IEEE Trans Commun 33(10):1121–1133
6. Bottou L, Bengio Y (1995) Convergence properties of the k-means algorithms. In: Advances

in neural information processing systems, vol 7. MIT Press, Cambridge, 585–592
7. Celebi ME (2011) Improving the performance of k-means for color quantization. Image Vis

Comput 29(4):260–271
8. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization

methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210
9. Coates A, Ng AY, Lee H (2011) An analysis of single-layer networks in unsupervised feature

learning. In: International conference on artificial intelligence and statistics, pp 215–223
10. Dhillon I, Guan Y, Kulis B (2005) A unified view of kernel k-means, spectral clustering and

graph cuts. Technical Report TR-04-25, University of Texas at Austin
11. Drake J, Hamerly G (2012) Accelerated k-means with adaptive distance bounds. In: 5th NIPS

workshop on optimization for machine learning
12. Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the

twentieth international conference on machine learning (ICML), pp 147–153
13. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. In: Biometric society meeting, Riverside
14. Fu K-S, Mui JK (1981) A survey on image segmentation. Pattern Recognit 13(1):3–16
15. Hamerly G (2010) Making k-means even faster. In: SIAM international conference on data

mining
16. Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clusterings.

In: Proceedings of the eleventh international conference on Information and knowledge
management, pp 600–607. ACM, New York

17. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J R Stat Soc
Ser C Appl Stat 28(1):100–108

18. Hochbaum DS, Shmoys DB (1985) A best possible heuristic for the k-center problem. Math
Oper Res 10(2):180–184

19. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient
k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach
Intell 24:881–892

20. Kaukoranta T, Franti P, Nevalainen O (2000) A fast exact gla based on code vector activity
detection. IEEE Trans Image Process 9(8):1337–1342

21. Lai JZC, Liaw Y-C (2008) Improvement of the k-means clustering filtering algorithm. Pattern
Recognit 41(12):3677–3681

22. Lai JZC, Liaw Y-C, Liu J (2008) A fast vq codebook generation algorithm using codeword
displacement. Pattern Recognit 41(1):315–319

23. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans
Commun 28(1):84–95

24. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137
25. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2010) Graphlab: a new

parallel framework for machine learning. In: Conference on uncertainty in artificial intelligence
(UAI)

http://mahout.apache.org/


78 G. Hamerly and J. Drake

26. MacQueen JB (1967) Some methods for classification and analysis of multivariate
observations. In: 5th Berkeley symposium on mathematical statistics and probability, vol 1.
University of California Press, Berkeley, pp 281–297

27. Moore AW (1991) An introductory tutorial on kd-trees. Technical Report 209, Carnegie Mellon
University

28. Moore AW (2000) The anchors hierarchy: using the triangle inequality to survive high
dimensional data. In: twelfth conference on uncertainty in artificial intelligence. AAAI Press,
Stanford, CA, pp 397–405

29. Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: analysis and an algorithm. Adv
Neural Inf Process Syst 2:849–856

30. Pan J-S, Lu Z-M, Sun S-H (2003) An efficient encoding algorithm for vector quantization
based on subvector technique. IEEE Trans Image Process 12(3):265–270

31. Pelleg D, Moore A (1999) Accelerating exact k-means algorithms with geometric reasoning.
In: ACM SIGKDD fifth international conference on knowledge discovery and data mining,
pp 277–281

32. Phillips SJ (2002) Acceleration of k-means and related clustering algorithms. In: Mount D,
Stein C (eds) Algorithm engineering and experiments. Lecture notes in computer science, vol
2409. Springer, Berlin, Heidelberg, pp 61–62

33. Ra S-W, Kim JK (1993) A fast mean-distance-ordered partial codebook search algorithm for
image vector quantization. IEEE Trans Circuits Syst II 40(9):576–579

34. Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput 10(5):1299–1319

35. Sculley D (2010) Web-scale k-means clustering. In: Proceedings of the 19th international
conference on World Wide Web. ACM, New York, pp 1177–1178

36. Sherwood T, Perelman E, Hamerly G, Calder B (2002) Automatically characterizing large
scale program behavior. SIGOPS Oper Syst Rev 36(5):45–57

37. Tai S-C, Lai CC, Lin Y-C (1996) Two fast nearest neighbor searching algorithms for image
vector quantization. IEEE Trans Commun 44(12):1623–1628

38. Vattani A (2011) k-means requires exponentially many iterations even in the plane. Discrete
Comput Geom 45(4):596–616

39. Wettschereck D, Dietterich T (1991) Improving the performance of radial basis function
networks by learning center locations. In Neural Inf Process Syst 4:1133–1140

40. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng AFM, Liu
B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data
mining. Knowl Inf Syst 14(1):1–37

41. Yael https://gforge.inria.fr/projects/yael/. Version v1845, Accessed 24 Jan 2014

https://gforge.inria.fr/projects/yael/


http://www.springer.com/978-3-319-09258-4


	2 Accelerating Lloyd's Algorithm for k-Means Clustering
	2.1 Introduction
	2.1.1 Popularity of the k-Means Algorithm
	2.1.2 The Standard k-Means Algorithm does a Lot of Unnecessary Work
	2.1.3 Previous Work on k-Means Acceleration
	2.1.3.1 Algorithmic Improvements
	2.1.3.2 Parallelization
	2.1.3.3 Alternative Heuristic Methods


	2.2 Cluster Distortion and Lloyd's Algorithm
	2.2.1 Analysis of Lloyd's Algorithm
	2.2.2 MacQueen's Algorithm

	2.3 Tree Structured Approaches
	2.3.1 Blacklisting and Filtering Centers with k-d Trees
	2.3.2 Anchors Hierarchy

	2.4 Triangle Inequality Approaches
	2.4.1 Using the Triangle Inequality for Center-Center and Center-Point Distances
	2.4.2 Maintaining Distance Bounds with the Triangle Inequality
	2.4.3 Elkan's Algorithm: k Lower Bounds, k2 Center-Center Distances
	2.4.4 Hamerly's Algorithm: 1 Lower Bound
	2.4.5 Drake's Algorithm: 1 < b < k Lower Bounds
	2.4.6 Annular Algorithm: Sorting the Centers by Norm
	2.4.7 Kernelized k-Means with Distance Bounds

	2.5 Heap-Ordered k-Means: Inverting the Innermost Loops
	2.5.1 Reducing the Number of Bounds Kept
	2.5.2 Cost of Combining Distance Bounds
	2.5.3 Inverting the Loops Over n and k
	2.5.4 Heap-Structured Bounds
	2.5.5 Analysis of Heap-Structured k-Means

	2.6 Parallelization
	2.7 Experiments and Discussion
	2.7.1 Testing Platforms
	2.7.2 Speedup Relative to the Naive Algorithm
	2.7.3 Parallelism
	2.7.4 Number of Distance Calculations
	2.7.5 Memory Use

	2.8 Conclusion
	References


