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MAIN IDEA

Given: D = {(z;,y;)}._,, where z; € X and y; € ).
Here, ¥ =R, Y = {-1,+1}.

Goal: Train a linear classifier. x?
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Non-linear concept Linear concept

Desiderata: Avoid explicitly finding ¢ : R — R2. Allow for X to extend beyond R¢,
Sparse solution.



EQUATION OF THE PLANE

A plane is defined using:
1. a point xq lying in the plane

2. a vector w normal to the plane

Let x be on the plane defined by w and xq:

wl(x—x%0)=0

wlix —wlxy=0

wlix 4+ wy=0




DISTANCE FROM POINT TO THE PLANE

X = outside the plane

W
X=X +r——7pr
W




EXAMPLE

@ To2 N 372:2561—}—1 or 2$1—$2+1:0
R x,w € R?
71
w wlix 4+ wy=0
@ where w = (2, —1) and wp = 1.
1
T_WTX-Fwo x = (0,0) — =z
o Iwll _ _ 2
X—(—l,]_) :>T’——%

The vector w defines what side of the plane is positive.



EXAMPLE

v

1

To — 25[71 +1
What if w = (—2,1)?
x,w € R?

wlx +wy=0
where w = (—2,1) and wy = —1.



EXAMPLE

T2 A xg =211+ 1 What if w = (4, —2)
and wg = 27

(7]

dry — 229+ 2 =0

B

[}

w wlx 4wy is “bigger”!!!

Distances are unchanged when w and wg are multiplied by a constant!



PROBLEM FORMULATION

Given: D = {(x;,9:)};_,, where x; € R? and y; € {—1,+1}. Data is linearly separable.

Objective: Find separating hyperplane such that the minimum distance

from any data point to the hyperplane is maximized.

Margin
s

o wlix+wy <0

wo + wix; + woxe =0

wix +wo >0 (X2, Y2) -

*Margin can also be defined as double of the minimum distance to the separating hyperplane
g T g 1y



MAXIMIZING MARGIN

Margin
wix;twg >0 =y =+1
° wlix; +wy <0 —y; = —1

v (Wlx; +wy) >0

1€{1,2,...,n}
n wo + w121 + waxy =0
(%2, 92)
T
o o ' ) W' X; +w
Idea: find (w,wg) to maximize minimum unsigned distance d; = Y ( || zll 0)
W

1
w*, W) = arg max { ——min (y; (W x; + wg
° [lwl|

W,Wwo




REFORMULATING THE PROBLEM

1
(w*,wg) = arg max {Wmln (ys(Ww'x; + wo) }
W, wo w v

Scale w and wg such that min {yi(WTxi + wo)} =1
Y

w—k-w
wo%k-’wO

(W",wg) = arg min {||w|[}
w

Subject to:
yi(wlx; +wo) >1 Vie{l,2,...,n}




FINAL PROBLEM FORMULATION

Margin J
O Support vectors, S

Wo + w1z + woxe =0

* * . 1 T
(w*,wj) = arg min W W <— Convex function!
w

Subject to:

n (WTXi + 'wO) >1 Vie {1’ 27 . ,77,} <«— Linear constraints!



How cAN WE SOLVE IT?

1
(w*,w;) = arg min {§WTW}

w

Subject to:
yi(wlx; +wo) >1 Vie{l,2,...,n}

Solution: use Lagrangians!

L(w,wp, ) = %WTW — Z o (yZ (WTXi + wo) — 1)

=1



SOLVING IT

n
0
— L(w,wp,a) =0 = wj = g QY T
6wj B
=1
n
After d derivatives... — W = § ;Y X5
=1

a n



DUAL PROBLEM

n n n
Ldual _ 1 T T
(W, wp, ) = qW W OGYiW™ X — ;Y Wo + Q;
i=1 i=1 i=1

For the “duality” theorem see Fletcher. Practical methods of optimization. 1987.



DUAL PROBLEM

n n n
Ldual _ 1 T T
(W, wp, ) = qW W OGYiW™ X — ;Y Wo + Q;
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= % Y aogiyxix = (D asyix) X+ Y
i=1 j=1 i=1

i=1 j=1

For the “duality” theorem see Fletcher. Practical methods of optimization. 1987.



DUAL PROBLEM

n n n
Ldual _ 1 T T
(W, wp, ) = qW W OGYiW™ X — ;Y Wo + Q;
i=1 i=1 i=1

= % Y aogiyxix = (D asyix) X+ Y
i=1 j=1 i=1

i=1 j=1
n n n
1 T
= E X5 E E Qi YiYjX; X
i=1 =1 j=1

For the “duality” theorem see Fletcher. Practical methods of optimization. 1987.



DUAL PROBLEM
1 n n n
Ldual(W, wo, ) = §WTW - ; QYW X — ; QY wo + ; Q;

= % Y aogiyxix = (D asyix) X+ Y
i=1 j=1 i=1

i=1 j=1
n n n
1 T
= E X5 E E Qi YiYjX; X
i=1 =1 j:l
= E o; — = § § Q05 Y3Y 5 (X’MXJ)
1—1 7j=1

Subject to:
a; >0 Vie{1,2,...,n}

mn
Z o;y; = 0
i—1

For the “duality” theorem see Fletcher. Practical methods of optimization. 1987.



SOLVING THE DUAL PROBLEM

Use quadratic programming to solve for a

n
— W = E oYX
1=1

— f(x) = wlx 4+ wqg



SOLVING THE DUAL PROBLEM

Use quadratic programming to solve for a

n
— W = E oYX
1=1

— f(x) = wlx + wg

n

. T

= g QY X; X+ wo
i=1



SOLVING THE DUAL PROBLEM

Use quadratic programming to solve for a

n
— W = E oYX
1=1

— f(x) = wlx 4w

n
T
= Z ;Y X5 X+ wo
i=1

= aiyik(x, %) + wo
i=1



ANALYSIS OF THE SOLUTION

Karush-Kuhn-Tucker (KKT) conditions:

04720

yi(Wwix; +wp) —1>0 Vie{l,2,...

Qo (yZ (wai + wo) — 1) =0

This means that for Vz, either o; = 0 or y; (WTxi + wo) =1

— «; = 0 for all vectors that are not support vectors

Fx) =) auyik(x, xi) + wo

x;, €S

Pick xs € S where y, =1 — Wwo = 1-— ZX-ES aiyik(xs, Xi)7 where Xs € S
K3



LAGRANGE MULTIPLIERS FOR SUPPORT VECTORS

QO Support vectors, S

wo + w11 + woxe =0




POPULAR KERNELS

Polynomial kernel

k(xi,x;) = (1 4+ xI'x;)P, where p > 1

Radial basis function (RBF) kernel

k(x;,x;) = exp (—#Hxl — x;|[?), where o > 0

Hyperbolic tangent function kernel

k(x;,x;) = tanh (Box] x; + 1), though not all pairs (8o, 81) work



A SUPPORT VECTOR MACHINE

A support vector machine is a neural network.



ExXAMPLE: XOR

Given: D = {(«;, yi)}le for the XOR concept. Goal: train SVM with a quadratic kernel.

xz ey . .
%2 = (_17+1)+ @y = (+1,+1) x; = (T41, Ti2)
k<wi7 w]) — (1 + XzTXj)2
T
2= (-1,-1) +:c3 = (+1,-1)

Haykin. Neural networks. 1999.



ExXAMPLE: XOR

Given: D = {(«;, yi)}le for the XOR concept. Goal: train SVM with a quadratic kernel.

xz . = . .
T2 = (_1’+1)+ Ty = (+1,+1) L (le, sz)
k<wi7 w]) = (1 + XzTXj)2
T1
2 =(-1,-1) +:c3 =(+1,-1)

k(xi, @) = (1 + 2131 + 2422 42)°

Haykin. Neural networks. 1999.



ExXAMPLE: XOR

k(x;, wj) = (1, \/5%'1, \/5561'2,33221, \/§$i1$z’2>$?2)T(1, \/5563'1, \/§Ij27$?1> \/5333'156]'2,%2‘2)
o) o))

Kernel matrix K for the data set D, where K;; = k(x;, ;) T2

e.g., Kll = k(wl,xl) = (]. + (—1) : (—1) + (—1) : (—1))2 =9

T11 11 T12 Z12
iy = k(@) = (14 (<1) - (=1) + (=1) - 1)* = 1 -
11 o1 T12  T22
9 1 1 1
1 9 1 1
K= 1 1 9 1
1 1 1 9



EXAMPLE: SOLVING THE DUAL PROBLEM (MANUALLY)

1
L('lU, a) =)+ + a3+ oy — 5(90[% — 10y — Q13 + 10y
—Q1 Qg + 904% + o — aoy
—a103 + agag + 9a§ — 30y

2
+aioy — a0y — iz + 9044)

OL(w,o) _

b, =0
9a1—a2—a3+a4:1
—a1+ 9 + a3 —ayg =1
—a;+az+9a3 —ag =1
a1 —ag —az+9a4 =1

All examples are support vectors!



EXAMPLE: SOLUTION TO THE DUAL PROBLEM

4
w = Z o yiep(;)
i=1

%(—w(wﬂ + o(@2) + p(z3) — (1))

1
= 5(0,0,0,0, —44/2,0)

1
- 07070)07__70
( 7 )

wo =1— Zmies Oéiyik(ms,wi) =0

for any x5 € S where ys = +1



EXAMPLE: VISUALIZING PREDICTION SCORES

New prediction:

f(w) = Z O‘sysk(wsaw) + wo

x; €S

S = support vectors <




(HARD MARGIN) SUPPORT VECTOR MACHINES

QO Support vectors, S

wo + w11 + woxe =0




NON-SEPARABLE CASE (SOFT MARGIN)

Introduce “slack” variables & > 0, one for each data point x;.

Margin J
© We have:

y(wlix +wo) +€>1




NON-SEPARABLE CASE

& = 0: x; is on or inside the correct halfspace.

& = |lys — wlix; — wol: for all other x;. Examples with & > 1 are misclassified.

New constraints:

old new

v (wlx; +wg) > 1 — yi(wlix; +wo) >1-¢&

We now minimize:

* *\ . 1 T -
(w ,wo)—argmln{iw W+C-;§Z~

W, W

C>0

such that y;(Wwl'x; +wo) > 1—§&,& >0



OPTIMIZATION STEPS

1 n n
L(W7w07a7£7u’) = §WTW+CZ€Z_Za2(yZ(WTXZ+wO 1+£Z ZMZ&Z

=1 =1

where o; > 0, p; > 0 are Langrange multipliers

KKT conditions are now:

a; >0, pu; 20,8 >0

yi(Whx; +wo) —1+& >0
ai(y;(whx; +wo) —1+&) =0
pi&i =0



DUAL PROBLEM

1 n n
d 1
Lev W , Wo, O ZO@ 3 Z Z aiozjyiyjk’(xi,xj) Same as before
=1 5=1
Subject to:

a; >0, u; >0 More constraints

0<q; <C Vie{l,2,...,n}

2?21 oy = 0

Note: a; >0 —  support vector

a; <C  —  pu;>0,6 =0 points on the margin
=C — & <1 (inside margin) or & > 1 (misclassified)



A DIFFERENT VIEW ON MINIMIZATION

Objective function to minimize:

%WTW +C- 30 &

’ ° swiw+C -3 (1 —ys(w! x4+ wp))t
+ \ © ° he
N @ E>1 &
Q
(X1, 1) @) 5>f

rt = max(0, )

@£<\1

wo + w11 + woxs =0



A DIFFERENT VIEW ON MINIMIZATION

Support vector machine:

S Sl —yi(wlx; + wo))t+)\||w||2 A= % Hinge loss
&i
35
Logistic regression, regularized: °
25¢
. 1
Yi € {_1’ +]‘} for Vi = 5i = 1+6_yi(w0+wai) 2t
1571
Negative log-likelihood becomes: 1t

log(1+e™t)

Z?:l log (1 + e_yi(wo-i-wai)) + )\||W||2

*Logistic regression loss is visualized when multiplied by @



QUADRATIC PROGRAMMING (QP)

1
x* = arg min {§XTGX + XTC}

X

Subject to:
alx=b
T
a;x > b;

Always solvable or shown to be infeasible in finite computation

If G is positive semi-definite we have a convex QP

If G is not positive semi-definite we have a multiple minima and stationary points
If G is positive definite, the optimal solution is also unique

QP falls under the group of problems called linear constraint programming (QP, LP)



