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TYPES OF PROBLEMS IN MACHINE LEARNING

Some buzzwords frequently mentioned:

1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Completion under mising features

5. Learning to rank
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Statistical relational learning
Active learning

Structured prediction
Reinforcement learning

Online learning

And more.

These are not mutually exclusive.



SUPERVISED LEARNING (CLASSIFICATION)

Given: Goal: predict heart disease

Dreq: sample from people w/o heart disease

Dplue: sample from people w/ heart disease
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Systolic blood pressure



SUPERVISED LEARNING

Dy = sample from pg(x)

Dy = sample from p;(z)

po(w)

p1()




SEMI-SUPERVISED LEARNING

Dy = sample from pg(x)
Dy = sample from p;(z)

D = sample from p(z)

po(w)

p(z) = a-pi(z) + (1 —a) - po(x)

a € (0,1), here a = 0.25



POSITIVE-UNLABELED LEARNING

Dy = sample from p;(z)

D = sample from p(z)

po(w)

o7~

p(z) = a-pi(z) + (1 —a) - po(x)

a € (0,1), here a = 0.25



NoOISY POSITIVE-UNLABELED LEARNING

Dy = sample from pg(x)
D, = sample from pl(/.z'/)
D = sample from p(x)

L = sample from g(x)
po()

o7 s

p(z) = a-pi(z) + (1 —a) - po(x) N q(z) = B-p1(x) + (1 = B) - po(x)

r B € (a,1], here § =0.90
a € (0,1), here a = 0.25



UNSUPERVISED LEARNING

D = sample from p(z)

p(z) = a-pi(z) + (1 —a) - po(x)

a € (0,1), here a = 0.25



SUPERVISED LEARNING

Given: D = {(wl,yl), (wz,y2)7 ceey (wnayn)}

x; € X is the i-th input example (data point, instance, object, pattern)

y; € Y is the i-th target value
X = input space, often R?
Y = output space

Objective: learn a good mapping f: X — Y

o often learn an intermediate mapping s : X — R

When X = R%, we have & = (21, 22,...,2q).
Each dimension of x is called a feature or attribute.

Each z; is called a feature or attribute value.



VECTOR SPACE REPRESENTATION

We often have the following setup:
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X = n x d data (design) matrix

Yi

y = n x 1 target (response) vector



CLASSIFICATION

Y is discrete

Consider a problem of predicting a disease state of an individual.

| | wt [kg] | ht [m] | T [°C] | sbp [mmHg] | dbp [mmHg] | y |
T 91 1.85 36.6 121 75 —1
To 75 1.80 37.4 128 85 +1
T3 o4 1.56 36.6 110 62 —1

X = descriptors of each individual
Y = the disease state for each individual



TYPES OF CLASSIFICATION

Binary: ) = {spam, not spam}
Multi-class: ) = {A, B, AB, O}
Multi-label: consider categories {sports, medicine, travel, politics}

Structured-output:

Biological process Biological process

Apoptosis

Cell differentiation



REGRESSION

Y is continuous

Consider a problem of predicting the price of a house.

Y= [0? 00)
| | size [sqft] | age [yr] | dist [mi] | inc [$] | dens [ppl/mi®] | y |
T 1250 5) 2.85 56,650 12.5 2.35
T2 3200 9 8.21 245,800 3.1 3.95
T3 825 12 0.34 61,050 112.5 5.10

X = descriptors of each house
Y = the price a house is sold at in $100k



OPTIMAL CLASSIFICATION
Suppose p(x,y) is known, ¢: Y x Y — [0,00) is some cost function (matrix).

E[C] = / Z C(:g, y)p(il?, y)da: Expected cost
X
Yy

Note: § = f(x)

- /X p(x) S (@, yp(yle)dz

A classifier that minimizes this is

fBR(a:) = arg min {Z C(g}, y)p(y\w)} Bayes risk classifier

gey y



OPTIMAL CLASSIFICATION

Minimizing the probability of a classifier’s error P(f(x) # y)

0 wheny=y
C(Q, y) = Cost to minimize error

1 wheny # 9

A classifier that minimizes the probability of error:

fvap(x) = arg H;,ax {p(y!w)} . MAP classifier
ye

Minimizing error is the same as accurately learning posterior distributions p(y|x)




MODELING

Well, it comes down to learning p(y|x). Assume discrete ).

Learn p(y|x) — discriminative model (often assumes data comes from p(x)).
Learn p(x|y) and p(y) — generative model.

One does not need to explicitly learn in either of these ways.



MODELING

p(x,y) joint p(y) prior
v=l K ‘J‘: M
y=0 | §_|¥a’|:| .
p(z) p(z|Y = 0) class-conditional
HH Hﬂ H HHH
T

X
p(Y = 1|:l]') posterior

Picture modified from Bishop’s textbook.



DECISION MAKING

class densities

p(zlY =0)

p(zlY =1)

0.2

0.4

0.6 0.8

p(Y =0lz)

p(Y = 1|z)

Picture modified from Bishop’s textbook.



DECISION MAKING

Costs are 0 for correct and 1 for incorrect classification.
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Picture modified from Bishop’s textbook.



CLASSIFICATION WITH REJECTION

p(Y = 0lz) p(Y = 1|z)

0.0 ! A

——
reject region

S

Picture modified from Bishop’s textbook.



OPTIMAL REGRESSION

Suppose p(x,y) is known, ¢: Y x Y — [0,00) is some cost function.

]E[C / / m y)dydw Expected cost

Take c(f(x),y) = (f(x) —y)?. We can now derive

f* () = /y yp(yle)dy

=E [Y | ZL‘] Optimal regression



OPTIMAL REGRESSION

E[Y|x] = optimal regression model

(o)
p(ylzo)

v

Lo X

Picture modified from Bishop’s textbook.



OPTIMAL REGRESSION FOR L, LoSss

When c(f(x),y) = (f(x) — y)?, the error decomposes to

/ / p(x,y)dydx

:/X(f(a:) E[Y|z])?p da:—i—// Y|®] — y)*p(e, y)dyde

Reducible error Irreducible error

See lecture notes for complete derivation.



BIAS-VARIANCE TRADEOFF

Consider the reducible error (RE) term

/X (f(z) — B[Y|2])?p(x)dx

Consider further

1. the predictor depends on D; i.e., f(x) — f(x|D)
2. D is a realization of random variable D; i.e., f(x|D) is too

3. we can look at the expectation of f(x|D); i.e., E[f(x|D)]



BIAS-VARIANCE TRADEOFF

The expected Reducible Error (RE), wrt random variable D

Expected RE = E Ux(f(mm) — E[Y|w])2p(m)dw]

- /X (Elf (/D)) - E[Y|2))? pla)dz + / E [(f(x|D) — E[f(z|D)))?] p(a)da

X

J/ J/
~~ -~

biag? variance

Bias: how much the expected output deviates from the optimal

Variance: how much the output deviates from its expected value

Derivation in Bishop’s textbook (Chapter 3).



NAIVE BAYES MODEL

Given: a set of observations D = {(x;,y;)}.—,, i € X,y; € Y

Objective: learn the posterior p(y|x, D)

Naive Bayes Model:

U

p(mh L2y eny ZE‘d|y) = Hp(ley)
j=1

Assume X = R,

Assume discrete V.

< naive Bayes assumption



NAIVE BAYES CLASSIFICATION

Assume: discrete &, discrete )

generalized Bernoulli distribution

V1 xi,j:ler
yi=ke)y

ALk =

P TE L T T PP PP PP PP

#times Y =k ng

est #Ftimes Y =k ng

A =

data set size n

o oo«
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NAIVE BAYES CLASSIFICATION

Assume: discrete &, discrete )

generalized Bernoulli distribution

d

p(xla T2, "'7$d’y) = Hp(ley)
j=1

est Myl k + 14

ik =
PER T e+ 0|
o est Mk +/
S RY]

P T T P P PTTTTIr FRPre

¢ = user-specified constant

¢ =1 gives Laplace smoothing

|X;| = the number of possible values

of feature j

o oo«

|+—w—l©



NAIVE BAYES CLASSIFICATION

Assume: continuous &, discrete )

W

Gaussian distribution

l‘i’jER
yi €Y

pje = E[X;|Y = K]
U?,k = V[X;|Y = K]
P(Y = k’) = O

.I‘Lj
X2,
I3.j
.I‘47j
5,5
Le,j
L7 4

[ —cococoo]|«

How many parameters?




NAIVE BAYES REGRESSION

X y
Assume: continuous X, continuous Y 1 1
Gaussian distribution 2. Y2
x3,j Y3
L4,j Y4
Vi zij €R 5,5 Ys
L6, Ye
weR L7,5 Y7
d
p(xla L2y euny Z'd|y) = H p(aﬁj |y)
j=1
p(z;ly) = p(:v(j,)y) where p(z;,y) is 2D Gaussian
by

What if features are discrete?



EXAMPLE: NAIVE BAYES CLASSIFIER W/ REDUNDANT FEATURES

Let A, B, and C be binary features, such that B = C. Let Y = {—,+}
Let P(—) = P(+) = 3. Let P(A) = P(B) = P(C) = 1.

2
P(+]A) = P(A|+) Optimal N.B. decision surface vs. real N.B. decision surface
P(+]B) = P(B|+) ! ‘ ‘ ‘ ‘
Optimal decision s
8 P(BI+) = paarri-raamre
P(+|A, B,C) > P(~|A, B,C)
6r
Naive Bayes optimal decision (C' is ignored) 2
4t P(B|+) =1— P(Al+) A
P(A|+)P(B[+) > P(A|-)P(B|-)
2r
Naive Bayes decision
0 . . . .
P(A+)P(BI+)? > P(A]-)P(B|-)? o e e W

P(Al+)



OPTIMAL BAYES MODEL

Given: a set of observations D = {(z;,y;)},_,, i € X,y; €Y

Objective: learn the posterior p(y|z, D)

Optimal Bayes Model:

p(ylz, D) = > plylz, D, f)p(f|z, D) Finite JF
fer
= > plyle, Np(fID)
ferF

Example: Let f1, fo and f3 be binary classifiers. Let p(f;|D) = {0.4,0.3,0.3} and P(Y = 1|f;) = {1,0,0}.

What is the MAP prediction? What is the optimal Bayes prediction?



