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PROBLEM FORMULATION

Given: a set of vectors {z;};_,, where x; € R?, sampled from px (z)

Objective: find a linear mapping 7' : R — R, where [ < d, such that the

reconstruction of projections back to R? is optimal in the
mean-squared-error sense.

d l d
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x~px(x), EX]=0 z

R

A minor additional constraint: data is centered.



LINEAR MAPPING

A function T : RY — R! is a linear mapping if for Vx,y € R% and Ve € R

T(x+y)=T(x)+T(y)
and

T(cx) = cT'(x)
Claim: every linear map T can be represented by an | x d matrix T as T(x) = Tx

Example: rotation by 90° in 2D space.

o -1 x = (2,4) T(x)
=[]




PROBLEM FORMULATION

Matrix view: x € R T ¢ R*?, The goal is to find T, z.

Tz =x

It will turn out later that T is in fact T7
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Minimize: E[||X — XHQ]



IDEA

Haykin. Neural networks. 1999.



PRELIMINARIES: PROOF FOR COSINE

2 . 2
llel[* = ([[bl| — [lal| cos @)™ + (|al| sin )

a=Db+c

= |Ibl|* = 2[[all - [[b]| cos & + [[a]|* cos® & + [[a]|* sin” &
= |lal[* + [[b[|* — 2[lal| - ||b]| cos o

(0%

[|la]|sin «

le|[* =c"e

[lal[cosa

_ a’b
—(a—-b)" (a—b) coslar) =
=a’a—2a"b+b’b

= |lal|* — 2a"b + [[b]?

Combine the two:

la]|* — 2a”b + [[b||* = [[a]|* + ||b]|* - 2[|a]| - ||b]| cos



PROJECTION TO ONE DIMENSION

Let us project a vector X to a unit vector v. Note: vIv =1 or ||v|| = 1.
cos(a) = 757 = x7y = z=xTv
1RSI SRR

dx1
Let us project a random vector X ~ p(x) to some unit vector v.

7=XTv=vTX

E[Z] = vTE[X] =0

dxd

1
E[Z?] =EVT XX V] =vIE XX lv =vTZv = V[Z]=v'Zv



PROJECTION TO ONE DIMENSION

For a set of vectors, let us find a unit vector v so that the projection has

maximum variance V[Z] = vI Zv.

Objective: Given X, find v to maximize variance of the projection.

T

max vl Xv s.t. viv=1

L(v,\) =vIZv+ A1 -vTv) = Yv=JAv The eigenvalue problem



PROJECTION TO d DIMENSIONS

Consider now projecting to d orthogonal vectors:

3V =VA + matrix version

where V = [v] vy ... vy], with VIV =1 + because V is orthogonal

A= diag{)\l,)\g, .. .,)\d}, with )\1 Z )\2 ce Z >\d

Let us re-write: VIV = A

ISy — Ai fori= < variance of projection Z;
i =V = L
0 fori#y



TRANSFORMATION

T T

Let us express the i-th projection as z; = vy x = x" v;

Thus,

d
z=(21,22,...,24) = (Vix,vix,...,vix) =VTx =37 a;vI

1= (2

Let us reconstruct x now. Remember, V-1 = V7T,

d
x=Vz=>__, 2V,



DIMENSIONALITY REDUCTION

Let us now keep the first [ components of z.

d d
l T X =1z
d VT X =7 %
Matrix view: .
V is V reduced to | columns
nxd nxl Vax; reminds us of Vs dimensions
1 1 1
Z — XV = Z = XV,

= XT7T



RECONSTRUCTION

Let us reconstruct x now:

d l
d Vv Z =X N d T7 Z =X
Matrix view:
nxd
1
X=2zv' — X = Z‘“/.cjlﬂxl

=Z7ZT



RECONSTRUCTION ERROR

Let us reconstruct x now:

The error vector e = X — X is now

because

We now have
EX —X]=0-Y_|E[Z]v,=0

v d d
E[l| X — X||2] = Z¢:z+1 VZTEVz' = Zi:l+1 A < proved later



PRINCIPAL COMPONENT ANALYSIS AS REPRESENTATION LEARNING

Input Representation Reconstruction
T O O fl
T2 O O @2
T3 O O 21 O T3

22
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za O O 4

X z =Tx x =TTy



RELATIONSHIP WITH SINGULAR VALUE DECOMPOSITION (SVD)

nxd

v T U = orthogonal, n x n
Every matrix X has a SVD: X =USV~". S = diagonal, n x d
V7 = orthogonal, d x d

In MATLAB: [U, S, V] = svd(X)

Let’s look at XTX
XTX = (USVHT(USVT) = VSTSVT,
Recall, ﬁXTX is the estimated covariance matrix when X is normalized

¥ = 5XTX = L VSTSVT = VAVT,

A = ﬁSTS. <+ eigenvalue matrix



EIGENDECOMPOSITION VS. SINGULAR VALUE DECOMPOSITION

Eigendecomposition: —1-X7X = VAV7”
Singular value decomposition: X = USV7T

In MATLAB: [V, A] = eig(%)
[U, S, V] =svd(X)

Q: Is matrix V exactly the same in both?
A Should be but not necessarily. Vectors in V can have opposite directions.

Depends on the software we use.



COMPUTATIONAL COMPLEXITY

We were solving the following system:
3V =VA

where V = [v] vy ... v4], with VIV =1

A= diag{)\l,/\g, . . .,)\d}, with )\1 Z )\2 N Z >\d

Total complexity: O(d® + nd?)
o computing the covariance matrix (X): O(nd?)
o computing eigenvectors (V) and eigenvalues (A): O(d?)

Singular value decomposition takes O(min {nd?, dn?})

Strang. Introduction to linear algebra. Wellesley-Cambridge Press, 2021.



HANDLING HIGH-DIMENSIONAL DATA

nxd

4
Consider a centered data matrix X, where d > n.

dxd
1

3} cannot fit in memory!

Pick now any eigenvalue A and the corresponding eigenvector v

Sv = \v "I”
L XTXv = \v = L XXT Xv = A Xv
n n N =’ N ="
L XXTXv = AXv ! !

n x 1 nx1

Note: X is still column-normalized



HANDLING HIGH-DIMENSIONAL DATA

n X d

1
LXXTXV =XVA
n N~ N~

VA 7 Note: d > n, so we reduce V to del.

Eigenvalues of ﬁXTX are the same as eigenvalues of ﬁXXT

There are at most n nonzero eigenvalues, for both ﬁXTX and ﬁXXT

nxXn

Solution:

\
—LXXTW = WA .
n— Note: we can reduce W to W,, ;.
LXTXX'W =X"WA
—— =
V/ V/
The norm of each column of W is 1, but not for XTW. + we centered X not X7

V < normalize(V’) so that column norms are 1.



HANDLING HIGH-DIMENSIONAL DATA

n xd nxmn
1 1
Normalizing V’ has a closed-form formula: V = X7 W.diag {\/WTXXTW}
T
LXXTXV =XVA
n N =’ N

Z Z
Algorithm:

Solve —L-XXTW = WA to find A and W

Keep | columns of W to obtain W,

Vaxi = XTW,,y; - diag {\/ngzXXTanl}
7 = XV i
Additional considerations:

What if X is sparse with huge d and we cannot center it?

What if some columns of X are constant?



APPLICATION: EIGENFACES

Given: a set of n images X,, x4, where each row is a flattened matrix.

- Find: transformation matrix T« 4.

+— a sample from Yale Faces B set, with n = 5000+ images of 28 subjects

+ each row is a sample of 5 images for the same subject

M = s ) =, )

+ each image is processed to a 48 x 42 matrix, so d = 48 - 42 = 2016

https://www.face-rec.org

Mean image:

(s

First 20 eigenvectors, shown as scaled matrices:
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Sirovich & Kirby. Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A, 1987. Turk & Pentland. Eigenfaces for recognition. J Cogn Neurosci, 1991.



RECONSTRUCTION ERROR
Yale Faces B data set

Original Reconstructed

l= 1 2 4 8 16 32 64 128256

02 Dl 2 e g el 20 2 S
02 e e ] 8 0 1 8
02 Dl 20 D € e 0 b B8
Ol ferfesestesfesfesfes
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Note: reconstruction error is measured on the “training” set
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How MANY COMPONENTS TO KEEP?

Yale Faces B data set

It is often better to specify the percent of ratained variance, and not .

Retained variance [%)]

100 T T T T T T T T T
T
95%, 49 components 7
« 71%, 2 components
60 -
40t N E
< 37%, 1 component (Z:lzl1 5 = 0.37)
20 -
0 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60
Dimensions kept
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99%, 181 components

99.9%, 556 components



APPLICATION: LATENT SEMANTIC ANALYSIS FOR DOCUMENT RETRIEVAL

n = number of documents
d = dictionary size

Given: an n X d text document matrix X

Find: latent semantic spaces for document retrieval and term similarity.

Semantic space = space where “terms and documents that are closely associated are placed
near one another” (Deerwester et al., 1990).

access _ document  retrieval _information  theory  database  indexing  computer || REL MATCH

Doc 1 X X X X X R
Doc 2 x* X x* M
R = relevant
Doc 3 X x* x* R M M = matched
Query: "IDF in computer-based information look-up"
X =USVT ~ UnXlSlledel Term similarities: X7 X ~ VSTSVT
X' =vVSTUT ~ V4, ST, UL, Document similarities: XX” ~ USSTUT

Deerwester et al. Indexing by latent semantic analysis. J Am Soc Inf Sci, 1990.



APPLICATION: GENOMIC DATA VISUALIZATION

X, xd = sparse matrix

n = 3192 subjects
d = 500568 genomic loci
| = 2 principal directions
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Novembre et al. Genes mirror geography within Europe. Nature, 2008.



KERNEL PCA

nxXn

!
Consider high-dimensional data. We had T = ﬁXXT, where I';; = ﬁx?xj.

A mapping ¢ : X — F allows us to use any domain for inputs; i.e., z € X.

Ki; = (P(xi)T(p(ajj) + K is positive semi-definite

Problem: 3" x; =0, but + > ¢(x;) is arbitrary.

K+«K-1,K-K1, +1,K1, <+ proved later

1, = an n X n matrix where each element is %

Scholkopf et al. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998.



HANDLING TEST DATA WITH KERNEL PCA

Given: training set {z;},_, and test set {¢;},~;

i.e., an n X n training kernel matrix K and m x n test matrix K>,

Kij = p(x:)T(z;)

K5t = () To(x;)

Centering:

m Xn nxn
{ 1
Ktest — Ktest _ ]';zK _ Ktestln + 1;7,K1n

1/, = an m X n matrix where each element is =

1,, — an n X n matrix where each element is %

Scholkopf et al. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998.



DIFFERENCES BETWEEN KERNEL PCA AND PCA

Kernel PCA vs. PCA

o KPCA offers many choices of similarity functions
¢ K must be symmetric positive semi-definite

o input space for KPCA need not be R¢
o KPCA can directly operate on seqeunces, strings, graphs
o classification accuracy often improved over PCA, given [
o KPCA allows [ > d, PCA does not
o loss of interpretability with KPCA
¢ cannot easily visualize eigenvectors for images
¢ requires separate optimization
o computing time a problem for KPCA when n is large

o additional numerical problems with KPCA
¢ centering may cause that K;; # K;; which gives complex A

Scholkopf et al. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998.



APPENDIX: PROOF #1

Proof for the squared norm of the error vector:

E[|(X — X)[]’] = E[(X — X)"(X — X)]
—E[XTX] - 2E[XTX] + E[X X]

We investigate one of these terms

l l
EX X]=E[> 2z~ -3 Zv)] = Z 72Ty = Z 72
. pa

because v; v; = 0 when i # j and v} v; = 1 when i = j. This makes a double sum above a single sum.



APPENDIX: PROOF #1

We similarly have

E[XTX] = sz ZZ v = [izﬁ]

l
EX7TX] = sz ZZVJ =E[) _Z})

Finally, we have

E[(X — X)T ZA—ZZA Z)\—Z)\

1=l+1

Q.E.D.



APPENDIX: PROOF #2

Proof for the kernel normalized in the feature space:

Kij+ (o) — 2570 (@) (e(z) — L3070 () + centering in feature space
= (@) play) — 5 il ()T e(xn) — 5 00y elan) o) + 5z 2oy i elan) T o(ar)

= Kij - % ZZ:1 Kkj - % 27:1 K + # ZZ=1 2?21 Ky

J J

Matrix form:
K+K-1,K-K1, +1,K1,,

1,, = an n X n matrix where each element is %

Q.ED.



