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NEED FOR (DEEP) EVALUATION IN MACHINE LEARNING



EVALUATION IN MACHINE LEARNING



BASIC IDEA FOR THE PROTOCOL (ALL DATA LABELED)



HOW DOES THE PROCESS WORK?



CROSS-VALIDATION



N-FOLD CROSS-VALIDATION

...



NESTED CROSS-VALIDATION



THE ROLES OF THE TRAINING DATA



OTHER EVALUATION SCENARIOS



CLASSIFICATION



BINARY CLASSIFICATION: METRICS



BINARY CLASSIFICATION: DERIVED METRICS



ESTIMATION



ESTIMATION



TWO-DIMENSIONAL PLOTS



TWO-DIMENSIONAL PLOTS



AREA UNDER THE ROC CURVE (AUC)



AREA UNDER THE ROC CURVE (AUC)



AUC IS A RANKING MEASURE



INTERPRETATION OF AUC



ROC CURVE VS. PR-RC CURVE



TRIVIAL AND RANDOM CLASSIFIERS



ACCURACY OF TRIVIAL AND RANDOM CLASSIFIERS



IMBALANCED DATA: IMPACT ON 2D MEASURES



IMBALANCED DATA: IMPACT ON 2D MEASURES



IMBALANCED DATA: IMPACT ON 2D MEASURES



IMBALANCED DATA: IMPACT ON 2D MEASURES



IMBALANCED DATA: IMPACT ON 1D MEASURES



NOISY CLASS LABELS: MODEL



NOISY CLASS LABELS: MODEL



NOISY DATA: IMPACT ON 2D MEASURES



NOISY DATA: IMPACT ON 1D MEASURES



NOISY DATA: IMPACT ON 1D MEASURES



MULTI-CLASS CLASSIFICATION



EVALUATION OF STRUCTURED-OUTPUT PREDICTION

Apoptosis

Biological process

Cell differentiation

Biological process

Precision: Recall:



PREDICTING IMPACT OF DISEASE VARIANTS



PREDICTING IMPACT OF DISEASE VARIANTS



STATISTICAL APPROACH



STATISTICAL APPROACH



COMPARING TWO MODELS

d̂

σ
d̂



BOOTSTRAPPING



IDEA BEHIND BOOTSTRAPPING AND WHY IT WORKS (WHEN IT DOES)

◦ consider n realizations x1, x2, . . . , xn drawn from p(x)

◦ we don’t know p(x) but we have its empirical version p̂(x)

◦ we will sample m points x∗

1, x
∗

2, . . . , x
∗

m
from p̂(x)

Bickel & Freedman. Ann. Stat. 1981.

with mass 1

n
on every xi

Sample mean: µn =
1

n

∑n

i=1
xi

Sample variance: sn = 1

n2

∑n

i=1
(xi − µn)2

Sample mean µn is an estimate of µ, but µ∗

m
is an estimate of µn

Theorem:

Qn =
√
n(µn − µ)/sn −→ N (0, 1)

Q∗

m
=

√
m(µ∗

m
− µn) −→ N (0,σ2)

← central limit theorem

to estimate µn

each draw b ∈ {1, 2, ..., B} of m points has mean µ∗

m
(b)

Population mean: µ = E[X]

Population variance: σ2 = V[X]

s
∗

m
−→ σ



BOOTSTRAPPING



COMPARING LEARNING ALGORITHMS



CONCLUDING REMARKS


