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NEED FOR (DEEP) EVALUATION IN MACHINE LEARNING
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EVALUATION IN MACHINE LEARNING

Machine learning:

o field with strong theory, rooted in probability, statistics, computer science
o algorithms and framorks must work on data from the real world
o algorithms and models must be evaluated on data from the real world

o need mechanisms to find the best model or algorithm out of many options

Empirical evaluation: Related important concepts:
o core part of machine learning o reliability
o gives confidence to deploy o interpretability

o our focus on accuracy estimation o fairness



BAsIC IDEA FOR THE PROTOCOL (ALL DATA LABELED)

e}

randomly split data into training set and test set (i.i.d.)

o

train a model on the training set; predict on the test set and check accuracy

Total data

Training set Test set

5% 25%

e}

works when we train a single model and have a lot of data

what if we have to pick between a few models?

o

Training set

Train’ Tune Test

50% 25% 25%

Tune set = Development set



How DOES THE PROCESS WORK?

o train many models on Train’ (e.g., vary parameters)

o pick the best parameters using Tune based on some criterion <+ model selection

o train a model with selected parameters on Train = Train’ 4+ Tune

o compute accuracy on Test < estimated performance
o train the final model on all data (+ model selection) < final model

o deploy the final model with the hope it works as well as we think

) Total data .
Train’ Tune Test
50% 25% 25%

Test set can be used only once, at the very end.



CROSS-VALIDATION

o data less abundant relative to the complexity of model space

o partition data into N groups (uniformly randomly)

N=5 Total data

Repeat N times
o (step ¢) Test = partition ¢; Training = the rest
o (step ¢) Compute accuracy of step 4

Average N accuracy measures at the end

i=4 Total data

Test




N-FoLD CROSS-VALIDATION

1 /7% = model trained on partitions {1,2,..., N} \ {i}
2 . .
3 perf~* = performance of f~* on test partition ¢

N

Two questions:
o Is it a problem that each f~% is different? No.

o How should we choose N7

Choice of N:
point A: high bias, low variance

o

(@)

point B: low bias, high variance

O

often N = 10, giving 10-fold cross-validation

@)

when N = n, it is called leave-one-out estimation

error rate

perf = final performance, averaged over N different perf=—*’s

Learning curve

. n
data set size

v



NESTED CROSS-VALIDATION

o old: Train = Train’ + Tune — best model

o new: N-fold cross-validation on Train — best model

Total data
1=209 | Train | Test
1 2 3 4 5
Crosfs—validation on Train to pick model
j=4 | | | I |
1 2 3 4 5
Run time:
o each parameter combination is trained N2 times; Vi, j € {1,2,..., N}

o best models are trained N times combined



THE ROLES OF THE TRAINING DATA

Estimate accuracy:

o nested cross-validation on the entire data set

o this accuracy is reported for the model trained at the very end

Choose parameters:

o cross-validation on the entire data set

o the accuracy of this model may not match the estimated accuracy

Train final model:

o retrain the best performing model on the entire data

o this model is never really evaluated (unless new data accumulates)

) Total data
Train’ Tune Test
50% 25% 25%




OTHER EVALUATION SCENARIOS

Random sampling:

o randomly sample w/o replacement a fraction of the data set
o train on training set, test on test set

o repeat many times

Bootstrapping:

o sample w/ replacement n examples from the data set
o train on training set, test on examples not selected during sampling

o repeat many times

Out-of-bag evaluation:

o applies to ensembles of models (committee machines)

o performs boostrap-like estimation using multiple trained models



CLASSIFICATION

Given: Test data: D = {(z;,y;)};—,, * € X and y € Y, drawn i.i.d. from p(z,y)
Trained model: f(z) € Y

Error rate and accuracy: Confidence intervals:

error = P(f(X) £Y) With 95% probability it holds that:

accuracy = 1 — error !
er =eg £1.96 - M
n
Assumption: D sampled i.i.d. from p(z,y)
standard error
er =P(f(X)#Y) < true error Details later...

es =230 I(f(z;) #y;) < estimated (sample) error



BINARY CLASSIFICATION: METRICS

Given: Test data: D = {(z;,y;)},—,, # € X and y € Y = {0, 1}, drawn i.i.d. from p(z,y)

Trained model: f(x) € Y

True positive rate, sensitivity, recall:
False positive rate:

True negative rate, specificity:

False negative rate:

Precision, positive predictive value:
False discovery rate:

Negative predictive value:



BINARY CLASSIFICATION: DERIVED METRICS

Given: Test data: D = {(z;,y;)},—,, # € X and y € Y = {0, 1}, drawn i.i.d. from p(z,y)
Trained model: f(z) € Y

sensitivity + specificity
2

Balanced accuracy:

Matthews correlation:  Corr[f(X),Y]

F-measure: 1 B (8% + 1) - precision - recall 52— 1a

R —a) L 2. isi
a precision + <1 Oé) recall 5 precision + recall

2 - precision - recall
F = p“ Whena:%,ﬂzl
precision 4 recall




ESTIMATION

Confusion matrix:

Predicted class

Z | | positive | negative | tp = true positives tn = true negatives
g positive tp m fp = false positives fn = false negatives
= -

= negative fp tn tp+tn+fp+fn = n

Estimated quantities:

_ tp __ tp+tn _ tp-tn—fp-fn

tpr = accuracy = —— mcc =

p tp+fn y n \/(tp—|—fp)(tp+fn)(tn+fp)(tn+fn)
= _fp _ fp+fn

fpr = ot error = ~--

fdr = P

fp+tp



ESTIMATION

Confusion matrix:

Predicted class

Z | | positive | negative | tp = true positives tn = true negatives
g positive tp m fp = false positives fn = false negatives
= -

= negative fp tn tp+tn+fp+fn = n

Estimated quantities:

_ tp __ tp+tn _ tp-tn—fp-fn

tpr = accuracy = —— mcc =

p tp+fn y n \/(tp—|—fp)(tp+fn)(tn+fp)(tn+fn)
= _fp _ fp+fn

fpr = ot €ITor = ——~

fdr = P

fp+tp



TwoO-DIMENSIONAL PLOTS

o a predictor is typically given as a score function s(z) € R

o a binarized prediction f(z) is usually obtained by thresholding s(x) as

Receiver Operating Chacteristic (ROC) Curve:

o consider a series of thresholds 7 and predictors f,(x), 7 € T
o each f;(z) gives a true positive and a false positive rate
o ROC curve is a plot of tpr_ as a function of fpr_

o the red predictor is better then the blue; see Figure

true positive rate

ideal point
\l/— id

v

false positive rate



TwoO-DIMENSIONAL PLOTS

o a predictor is typically given as a score function s(z) € R

o a binarized prediction f(z) is usually obtained by thresholding s(x) as

Precision-Recall Curve:

o consider a series of thresholds 7 and predictors f,(z), 7 € T
o each f;(x) gives a precision and a recall
o pr-rc curve is a plot of pr_ as a function of rc,

o the red predictor is better then the blue; see Figure

precision

ideal point \

o}

recall



AREA UNDER THE ROC CURVE (AUC)

o we have a data set with n = 15 points and predictions s(z) € [0, 1]

o there are n; = 7 positive and ng = 8 negative examples

Prediction

True class

0.953

0.920

0.799

0.788

0.750

0.679

0.612

0.583

0.477

0.378

0.367

0.248

0.214

0.157

0.112

[en] Ren) Newl Neol] B Neol Neol Neo) g Bl Bl Reod N o o

7 =1.001
7 =0.794
7 =0.769
7 =0.598
T =0.373
7 =10.306

7 = 0.000

true positive rate

o 4

Il
=

false positive rate

v



AREA UNDER THE ROC CURVE (AUC)

o we have a data set with n = 15 points and predictions s(z) € [0, 1]

o there are n; = 7 positive and ng = 8 negative examples

Prediction

True class

0.953

0.920

0.799

0.788

0.750

0.679

0.612

0.583

0.477

0.378

0.367

0.248

0.214

0.157

0.112

[en] Ren) Newl Neol] B Neol Neol Neo) g Bl Bl Reod N o o

7 =1.001
7 =0.794
7 =0.769
7 =0.598
T =0.373
7 =10.306

7 = 0.000

true positive rate

AUC = 23 =0.875

o 4

Il
=

false positive rate

v



AUC IS A RANKING MEASURE

o two models that provide the same ranking of examples in a data set have identical AUCs

Model 1 Model 2
Ekample | Prediction | True class Examijjle | Prediction | True class
6 0.953 1 6 1.000 1
9 0.920 1 9 0.999 1
5 0.799 1 5 0.998 1
13 0.788 0 13 0.909 0
14 0.750 1 14 0.895 1
12 0.679 1 12 0.888 1
7 0.612 1 7 0.845 1
10 0.583 0 10 0.844 0
8 0.477 0 8 0.830 0
11 0.378 0 11 0.828 0
2 0.367 1 2 0.818 1
4 0.248 0 4 0.817 0
1 0.214 0 1 0.816 0
3 0.157 0 3 0.814 0
15 0.112 0 15 0.800 0




INTERPRETATION OF AUC

AUC = probability that a randomly chosen positive example has a higher score than a
randomly chosen negative example

1 false positive (fy = 1; B is 4 positive)

A Proof.* ABCD area = - . 2o—1
ni no
1 — f = number of false positives at present point
t
Q AUC = n11n0 Z?:H(no - fi)
<
: )
% B ) T = positive example; 2~ = negative example; s(x) = prediction on x
9 D
A n B
2 S(at,am) = 1 s(zt) > s(z)
= ’ 0 otherwise
> Ly est ity R0 S(af ey
. . P(s(at) > s(a7)) & ZRZESE0n) S s (g f)

false positive rate
because » 77, S(xf,ay) =no—fi

* = no two data points have the same prediction score



ROC CURVE VS. PrR-Rc CURVE

Given: Two models and a data set

Claim 1: If ROC curve 1 dominates ROC curve 2, then the corresponding

pr-rc curve 1 dominates pr-rc curve 2.

Claim 2: Algorithms that optimize for area under the ROC curve

do not necessarily optimize for the area

ideal point ideal point
v 1 R

—_
—

o
under the pr-rc curve.

true positive rate
precision

Davis & Goadrich, ICML 2006. 0

false positive rate recall



TRIVIAL AND RANDOM CLASSIFIERS

Let p(y) be the distribution of class priors; y € V.

Trivial classifier: predicts the most prevalent class from the training set.

g = argmax {p(y)} < maximum a priori (instead of “a posteriori”)
yeY

Random classifier: Draw a random number from options in ) according to p(y).

Example: below is a confusion matrix for some classifier.

What is the accuracy of trivial and random-classifier?
P(corr) = P(corr|+)P(+) + P(corr|—)P(—)

Predicted class

é | | positive | negative | p(Y = 0) = 1006 Trivial: max(yg55: 1900) = 090
[S) .

o | positive 90 10

= : _ 1y _ 100 . (100 \2 900 \2 __

& | pegative | 90 810 p(Y =1) =2 Random: (7555)" + (7)) = 0.82




ACCURACY OF TRIVIAL AND RANDOM CLASSIFIERS

Trivial classifier:

accuracy = max
y = max {p(y)}

Random classifier:

accuracy = ) oy p(y)? 1 — gini index (used for classification trees)

o these two are identical when p(y) is uniform

o estimates are found by estimating class priors p(y)

Relationship to decision tree splitting criteria:

o minimum error: error of a trivial classifier

o gini index: error of a random classifier



IMBALANCED DATA: IMPACT ON 2D MEASURES

o class-conditional distributions are unit-variance Gaussians with Ay = 4; predictor based on a threshold.

o imbalanced labeled data vs. balanced labeled data

ROC curve PR-RC curve

1 1
DQF 08
A/l =4 08 08
z|Y = 0) o7 07
06 06
05 q 05
P(Y _ 1) _ i 04 04
03 03
02 02

o Area = 0.9977 o Area = 0.9937

o o1 02 03 04 D‘5 06 07 0.8 09 1 o 01 02 03 04 05 06 07 08 09 1
_ predict: 0 predict: 1 x
- = 1 1
T USF 09 ‘—w

$|Y = 0 x|Y o 1 08 08
07 07
0.6 06
05 05
P(Y — 1) — % 04 q 04
03 03
02 02

o Area = 0.9977 o1 Area = 0.9977

0 01 02 03 04 05 06 07 08 09 1 © 01 02 03 04 05 06 07 08 09 1



IMBALANCED DATA: IMPACT ON 2D MEASURES

o class-conditional distributions are unit-variance Gaussians with Ay = 2; predictor based on a threshold.

o imbalanced labeled data vs. balanced labeled data

ROC curve PR-RC curve

p(.’]?‘Y = 0) p(.’]?‘Y = 1) 07 07
P(Y — 1) — i 04 04
P( 0 0

o Area = 0.9214 o Area = 0.8225

. o o1 02 03 04 05 08 07 08 o8 1 o o1 02 03 04 05 o8 o7 0a 09 1
p(z|Y =0) p(z|Y =1) N "
p(@) Lo "
PY=1)=3
o Area = 0.9214 o Area = 0.9218




IMBALANCED DATA: IMPACT ON 2D MEASURES

o class-conditional distributions are unit-variance Gaussians with Ay = 1; predictor based on a threshold.

o imbalanced labeled data vs. balanced labeled data

ROC curve PR-RC curve
p(z]Y =0) p(z]Y =1) o1 o1
P(Y — 1) — i 04 04
x) 02 02
o Area = 0.7603 o Area = 0.5269
; 0 01 02 03 04 05 08 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
plalY = 0) plalY = 1) § —
(x) 05
PY =1)=3 N
o Area = 0.7603 o Area = 0.7530

0 N N L . . L . N . . L " . . N
0 01 02 03 04 05 08 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1



IMBALANCED DATA: IMPACT ON 2D MEASURES

o class-conditional distributions are unit-variance Gaussians with Ay = 1; predictor based on a threshold.

o imbalanced labeled data vs. balanced labeled data

p(alY = 0)

p(al¥ =0)

ROC curve PR-RC curve
p(zlY =1) ol
ROC curve s
o gives a sense of separability of classes 0z

o limited in that it disregards class priors

PR-RC curve

09
o often gives more actionable information \

o can be way off if class priors poorly estimated

Area = 0.5269

3 04 05 06 07 08 09 1

8 |

o Area = 0.7603 | T

0 R N L . " L . N | .
0 01 02 03 04 05 08 07 08 09 1 0o o1

02 03 04 05 08 07 08 09 1

Area = 0.7530



IMBALANCED DATA: IMPACT ON 1D MEASURES

o consider Ay = 2, symmetric around 0, and P(Y = 1) = 1
Accuracy Balanced accuracy
1 T T T T T T T 1 T T T T T
09 acCmax = 0.87 at 0.55 1 o9t baccpmax = 0.84 at 0
p(z]Y =0) p(zlY =1) o0sf 1 sl
071 B 071
06 B 06
05F B 05F
04 4 o04f
p(z) l 1 ol
02f A 02f
0.1}F B 0.1}F
0 -8 -6 -4 -2 0 2 4 6 8 -8 6 4 2 0 2 4
T T
ROC curve
! F-measure Matthews correlation coefficient
0.9 1 T T T T T T T 1 T T T T T T T
08 0ot Fnax = 0.74 at 0.28 4 o0sfF meccmax = 0.30 at 0
07 08| A 08|
07F A 07F
06
;_< 06 4 osf
Q o5
+~ 05F B 05F
04
04 1 04f
03 03| 4 o03f
02 02f 4 02f
01 01F 1 o01fF
[ 01 02 03 04 05 06 07 08 09 1 0-8 -i‘i -:l -I2 l; 2‘ 4 Eli 8 0-8 -i‘i -:l -I2 l; 2‘ :1



NoIsy CLASS LABELS: MODEL

Before we look at impact on performance estimation, let’s look at model

o Y = true but unknown class label

o Z = noisy class label

o p(z) = unchanged by class label noise
o p(x|z) # p(xly) and p(z) # p(y)
Expressing p(z), p(z|z), p(x[2)

pz(1) =py(1) - (1= 8)+py(0) -«

p(Z =1lz) =p(Y = 1|z)- (1 = §) + p(Y = Olz) -

T

flipping labels independent of x

sample from p(x,y)

flip label w.p. «

flip label w.p. 8

(, 2)

(z,2)




NoIsy CLASS LABELS: MODEL

Class-conditional distributions:

sample from p(x,y)

Example: a = 0.05, 8 = 0.15, PY(l) = i flip label w.p. « flip label w.p. 8
pz(1) = 1(1-B) +ja =1
of =a, =4 (,2) (z,2)

This was a coincidence, because of choices for «, 3, py (1)



NoISY DATA: IMPACT ON 2D MEASURES

o class-conditional distributions are unit-variance Gaussians with Ay = 4; predictor based on a threshold.

o clean labeled data vs. noisy labeled data

A/lfi
z|Y = 0)

Y = class label

plZ=0) . . PElZ=1)

Noise levels:
o =0.05
B =0.15

7 = class label of the noisy data r

ROC curve PR-RC curve
True 05 True
Area = 0.9977 o Area = 0.9937

= Bpy (1) +apy (0)

o o1

02 03 04 05 06 07 08 09

1

°

o1

02 03 04 05 06 07 08 09 1

Estimated

Area = 0.8981 |

Estimated

Area = 0.7812

o 01

02 03 04 05 06 07 08 09

1

3 04 05 06 07 08 09 1



NoIsYy DATA: IMPACT ON 1D MEASURES

o class-conditional Gaussians, Ay =4, py (1) =

no noise

(true perf.)

noise

(measured perf.)

081

06

04r

021

0

1
=1

Accuracy

acCmax = 0.98 at 0.27

5 4 ) o 5 " p

T

acCmax = 0.91 at 0.34

-8

€ -4 2 0 2 4 s
r

a =005 8=0.15

F-measure

Fax = 0.96 at 0.26

Frax = 0.82 at 0.22




NoIsYy DATA: IMPACT ON 1D MEASURES

o class-conditional Gaussians, Ay =4, py (1) = i, a=20.05 8=0.15

Balanced accuracy Matthews correlation coefficient

1 : : : | | : 1 : : :
MCCmax = 0.41 at 0
08 1 08

06

no noise
04t

: Accuracy and F-measure
(true perf.)

. o underestimated or overestimated
aCCmax

> - o optimal threshold affected by noise " :

Balanced accuracy and Matthews correlation

o underestimated

081

o optimal threshold not affected by noise

06

noise
041 1 041

(measured perf.)

02 1 02
baccmax = 0.88 at 0

0

-8 6 -4 2 o 2 4 6 8 -8 6 -4 -2 0 2 4 6
T T



MULTI-CLASS CLASSIFICATION

Multidimensional output:
o (f(X),Y) = pair of m-dimensional predictions and outputs

oVje{l,2,..,m} and 7 € R there is a confusion matrix C; ,

Predicted class

n
w ] ] 1 . . .
< | | positive | negative | Binary classification:
ositive t fn
g DOSILL b accuracy = w
& negative fp tn
Macro averaging: Micro averaging:
1 m 1 m m
accuracyy = — E accuracy ; accuracy,, = — g tp; + E tn;
mi4 mno\ = j=1



EVALUATION OF STRUCTURED-OUTPUT PREDICTION

Consistent sub-graph prediction:

Biological process Biological process

Predicted label True label

Cell differentiation

Precision: Recall:

#true positives 2 #true positives 2
= = - Tre = = —
#positive predictions 5 #positive terms 3

pr



PREDICTING IMPACT OF DISEASE VARIANTS

Problem: develop/evaluate a pathogenicity predictor of human loss-of-function (LOF) protein variants

Background: Proteins are important molecules that do things in our bodies

)

4'«\.*' p

Hemoglobin — (\);\‘
’\ /‘)
v ’«

’o&&r

D374Y in PCSK9 H57R in F9

LOF variants: disrupt chunks of proteins

Average healthy human has 50+

Amino side wild Carboxyl side wild

Wildtype [ 11 |
variant

Mutant [ 11 |

Pagel et al., Bioinformatics, 2017. Carboxyl side mutant



PREDICTING IMPACT OF DISEASE VARIANTS

Data:
Table 1. Number of variants (proteins) present in each data set
Disease Neutral Total
Frameshift 18116 (1545) 90135 (13427) 108251 (13713)
Stop gain 14318 (1681) 7960 (4990) 22278 (6137)
Toral 32434 (1995) 98095 (13605)
Issues:

o there are 20,000 genes in the human genome

o these genes are related (gene families)

o some genes do not have known disease mutations

o genes have different lengths and numbers of variants 03¢ —— Per-cluster (0.835)
" = = =Per-cluster, bi-class (0.732)
0.2 | —— Per-gene (0.846)
d - - -Per-gene, bi-class (0.745)
0.1 — Per-variant (0.979)
How should we evaluate the performance? Gl e b 0410
0 01 02 03 04 05 06 07 0.8 09 1
1 - Specificity

Pagel et al., Bioinformatics, 2017.



STATISTICAL APPROACH

Given: Test data: D = {(z;,y;)};—,, * € X and y € Y, drawn i.i.d. from p(z,y)

Trained model: f(z) € Y

er = true error of f(x)
es = sample error of f(x) on D
X = number of errors in a data set of size n

X; = number of errors on the i-th example

es can be thought of as random variable

Eles] =E [% D i Xi} = %]E Doy Xi] = 2L =er

n

Vies) = V[L S0, X] = Sner (1-er) =

eT(lfeT)

n

er(l—er) ~ es(l—eg)

n

n



STATISTICAL APPROACH

Let’s approximate binomial distribution by a Gaussian

When ner (1 —er) > 5 we have X ~ N(ner,ner (1 —er))

If er is known, eg is within er &+ zo. This also means, that

65(1 — 65)
n

er =egtz-

z = 1: 68% confidence interval; z = 1.96: 95% confidence interval



COMPARING TWO MODELS

Given:

o two models, f; and fs, evaluated on two different samples, S; and Ss
o available: eg, and eg,, say eg, < eg,

o not available: ey, and er,

d= er, — er

2 1 2 esl(l—esl) 652(1—652)
g5 = +

A d ni n2
d= €s, — €5,

<+ independent models

P-value: area under the tail

Hypothesis testing (one sided):

Hy: d =0 (the algorithms are equal)

d—d .
Hy: d >0 (f; is better than f3) “oq : N(0,1) - A 4



BOOTSTRAPPING

o we have an estimator 6 of parameter

o a general nonparametric procedure for evaluating dispersion of 6

Given: data set D = {z;},_,, * € X and some estimator 0 = g(D)

Procedure:

Forb=1to B
o draw sample D; = {z}}."; w/ replacement from D
o compute g(Dy)

end

g (D) = % 341 9(D;)

Examples:

g(D) = sample mean

g(D) = AUC when D are

prediction scores

and true classes

6% = 5 Zle(g(l);) — g*(D))? + standard error (SE) estimated as v &2

Efron & Tibshirani. Stat. Sci. 1986.



IDEA BEHIND BOOTSTRAPPING AND WHY IT WORKS (WHEN IT DOES)

o consider n realizations z1, x3, ..., x, drawn from p(x)
o we don’t know p(z) but we have its empirical version p(x) with mass % on every x;
o we will sample m points x7,z35,..., 2z}, from p(z) to estimate p,

each draw b € {1,2,..., B} of m points has mean p, (b)

Sample mean: u, =1 >"  z; Population mean: p = E[X]

Sample variance: s, = =3 > 1" | (z; — pn)? Population variance: 02 = V[X]

Sample mean ., is an estimate of u, but w7, is an estimate of pu,

Qn =vn(pn —p)/sn — N(0,1) + central limit theorem

Theorem:

Q= vVmph, — pn)  —  N(0,0?)

s* — O

m

Bickel & Freedman. Ann. Stat. 1981.



BOOTSTRAPPING

o standard error: true @ is within 0 & SE w.p. 68%

X ~N(0,1)
- <+ normal distribution Example:
o standard error = % n = 100
=i+ 1.96-SE
! 95% c.i.
X ~max {N(0,1),N(0,1)}
T ‘ < skew normal distribution Example:
o asymetric 100 - a confidence intervals determined n =100
by thresholds separating 15% smallest p € (—1.30,2.00)
and 152 largest scores

2 95% c.i.



COMPARING LEARNING ALGORITHMS

Model: f: X = Y
Algorithm: a: (X x V)" — F

[ o]
Dy 1 0 o K datasets
D, | 1]0 o score wins (1s) vs. losses (0s)
: o aj scored k wins
Dk | O 1
Hypothesis testing (one sided):
Hy: a1 and as are equal K .
. — Z( )oﬂl—oz)K_] o=z
Hi: a7 is better than as —

o probability that k& or more wins would be

observed by chance (under Hy)



CONCLUDING REMARKS

Empirical evaluation:

o Core area of machine learning

o Science and art

Addtional issues:

o Reliability: extensive auditing to provide uncertainty guarantees that lead

to actionable evidence

o Interpretability: models must be able to point out the factors that influence

their decisions

o Fairness: models must be fair and must not cause unintended harm to
users upon deployment



