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Big ideas

e Deep neural networks (DNNs) are neural networks with “many” hidden layers

e Convolutional Neural Networks (CNNs) are a kind of neural network with a
topology that exploits structure in the input data to make learning easier/faster

e CNNs use the convolution operation

e CNNs are popular and ubiquitous



Feed-Forward Neural Network

Universal approximator

Input Hidden layer Output



Why Convolutional Neural Networks?
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Why Convolutional Neural Networks? Efficiency
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3072 weights per fully connected

32x32x3 neuron

3072 input pixels
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Why Convolutional Neural Networks? Efficiency

200 x 200 x 3

120,000 input pixels
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Cannot scale to realistic input sizes:

e More parameters — overfitting, unless you
have A LOT of data

e More parameters — computationally
difficult or intractable

120,000 weights per
fully connected neuron



Why Convolutional Neural Networks? Structure

Weights depend on location
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Why Convolutional Neural Networks? Structure
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Why Convolutional Neural Networks?

e Efficiency: Fully connected neural networks require too many parameters
for large inputs

® Structure: FC NNs make no assumptions on the structure of the inputs.
© Any underlying structure must be learned by the parameters
o Parameters are independent and (possibly) redundant
o  We are not exploiting what we know about the problem

Inductive bias



Convolution

e Convolution is an operation on two functions which returns a function
f*glx,y) ZZf + i,y + 4)g(i, 5)

® Itis a measure of the |nteract|on between the two input functions over eg
time or space. The result of “filtering” one function with the other
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Convolution

e Convolution is an operation on two functions which returns a function
® Itis a measure of the interaction between the two input functions over eg

fxg(z,y) f(z,y)

time or space

frg(x,y) =
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frglz,y) = ZZf(fv+i,y+j)g(i,j)



Image kernels

original
Also known as “convolution matrix”
or “convolution filter”

Gaussian blur

Edge detection Sharpen
T
16

12 1

-1 -1 -1
—1. 8§ -1
-1 -1 -1

0 -1 0
=1 &5 -1




Convolution

fxglx,y) ZZf + i,y +75)g(i,7) QFeaturemap
Kernel (filter) fz,y) = . . . . . -
He W= W=
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Image source: Dumoulin “A guide to convolution arithmetic for deep learning”




Convolution: Practical Considerations
Padding: Strides:

- Avoid Shrinking inpUtS _ Downsample |nput
- Use edge information

No padding

No strides



Learning
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Learn the kernels instead of designing them

Image source:invasivecode.com



Sparse Interactions

m inputs and n outputs: m X n parameters
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: Goodfellow

Source




Sparse Interactions

Input size: 320 by 280 1 1
Kernel size: 2 by 1
Output size: 319 by 280 Kernel

Source: Goodfellow




Sparse Interactions

Input size: 320 by 280 Two multiplications, one addition for each pixel
Kernel size: 2 by 1
Output size: 319 by 280
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319 * (2+1) * 280 = 267,960
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Sparse Interactions

As a matrix multiplication

Input size

320 by 280

* 280

320

2 by 1

Kernel size

. 319 by 280

Output size

319™ 280

€.

vectorzt




Sparse Interactions

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

-1 Output

Kernel

Convolution Dense matrix Sparse matrix

319*280*320*280  2*319*280

Stored floats

~ 8¢9 178,640

Float muls or 319*280*3 = oo Samle :S
e 267,960 e convolution

(267,960)

Source: Goodfellow



Sparse Interactions

convolution .
OfcRORCNONNN

matrix ,
D Matrix of
multiplication
parameters

Source: Goodfellow




Sparse Interactions
Local receptive fields

g, depends only on h,, h3, and h4

But h, depends on x , x,, and X,

Sparse model, but layers allow
information to propagate “out”

Source: Goodfellow



Pooling

Summarizes a region

Reduce representation size Max Pool

>

Reduces needed parameters Filter - (2 x 2)

Stride - (2, 2)

kér?e:i Er;‘%

Average Pool
>

Filter - (2 x 2)

Stride - (2, 2)

input image

convolution pooling

layer O



Feature Maps

Low-Level
Feature

Mid-Level
Feature

- High-Level

Feature
i

Trainable
Classifier

Image source:

Input

https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e



Architectures

Ca:f. @
Le N et 1 998 INPUT C1: feature maps i 10)(1504: f. maps 16@5x5

6@28x28
32x32 X S2: f. maps

6@14x14

\
| Full connection Gaussian connections
Subsampling Convolutions  Subsampling Full connection

Convolutions

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE. 86(11): 2278 - 2324

AlexNet 2012

GPU implementation

u s’ e Dropout regularization
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Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton “ImageNet Classification with Deep Convolutional Neural Networks” NeurlPS 2012



Datasets

ImageNet Large Scale Visual Recognition Challenge results

perfect

In the competition’s first year
I— teams had varying success.
Every team got at least 25%
wrong.

In 2012, the team to first use
deep learning was the only
team to get their error rate
below 25%.

The following year
nearly every team got
25% or fewer wrong.

In 2017, 29 of 38
teams got less than
5% wrong.

vehicle

ImageNet

—  watercraft

— sailing vessel

—_—

sailboat

—_—

trimaran



Datasets

More than half of the labels in the people subtree were considered potentially
harmful: 600,000 images were removed from ImageNet.

Towards Fairer Datasets: Filtering and Balancing the Distribution of
the People Subtree in the Imagenet Hierarchy

ACM Conference on Fairness, Accountability and Transparency (FAccT), January 2020

Kaiyu Yang, Klint Qinami, Li Fei-Fei,
Jia Deng, Olga Russakovsky

PROBLEM 1: STAGNANT CONCEPT
VOCABULARY

PROBLEM 2: NON_VISUAL CONCEPTS hins representative of only a few. People have

ing offensive prediction results and lower

sion models are typically developed using

the data and label distributions in these

PROBLEM 3: LACK OF IMAGE DIVERSITY e e,
uter vision methods! We consider three key

factors within the "person" subtree of ImageNet that may lead to problematic behavior in downstream

computer vision technology: (1) the stagnant concept vocabulary of WordNet, (2) the attempt at exhaustive

illustration of all categories with images, and (3) the inequality of representation in the images within
concepts. We seek to illuminate the root causes of these concerns and take the first steps to mitigate them
constructively.



What Neural Network Learn

Gabor filters
VNS =
nugzgs

Figure 3: 96 convolutional kernels of size

11 x 11 x 3 learned by the first convolutional ImageNet training + AlexNet architecture +
layer on the 224 x 224 x 3 input images. The SDG optimization = Gabor filters
tOp 48 kernels were learned on GPU 1 while But if you replace the first layer with the explicit mathematical expression

for Gabor filters, performance decreases— Goldt 2023

=\

Data-dependent features » hand-crafted features

192 128 204¢ 078 \dense : . i
A ; [e B Why? Non-Gaussian fluctuations in the data
g T@ﬁ J.Q |1 N A are particularly important s
oy B85

10°

NNs learn distributions of incrgésing
complexity through training



Making it work

Depth

Regularization

Normalization

Residual connections

Activation function

Invariance: pooling and data augmentation

Optimization



Making it work

ImageNet classification top-5 error rate
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Test error
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It’s not overfitting- it’s optimization

AlexNet, 8 layers ifiﬁ,; .
(ILSVRC 2012) ¥

He, Kaiming, et al.
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GoogleNet, 22 layers e
(ILSVRC 2014) =
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"Deep residual learning for image recognition." 2016



Making it work

Learned Invariance: Data augmentation

Base Image Rotate -90.00 degrees Rotate -76.15 degrees Rotate -62.31 degrees Rotate -48.46 degrees

50 50 50 50
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Rotate 34.61 degrees Rotate 48.46 degrees Rotate 62.31 degrees Rotate 76.15 degrees Rotate 90.00 degrees
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0 100 200

Rotation

Random cropping
Mirroring

Color changes

Noise



Making it work

Optimization
:?*\\ — SGD -
= | — Momentum E
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Adadelta
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adaptive learning
rate methods
1.0

Adam: adds momentum to RMSprop
Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

AdamW: changes to weight decay penalty
Loshchilov, I. and Hutter, F. Fixing weight decay regularization in
adam. arXiv preprint arXiv:1711.05101, 2017

S. Ruder “An overview of gradient descent optimization algorithms”
https://ruder.io/optimizing-gradient-descent/index.html




Other structures: Autoencoder
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Image: https://en.wikipedia.org/wiki/Autoencoder

e Dimensionality reduction
e Representation learning
e Denoising

----------------------------------------------- Ideally they are identical. ---------------sooomoooooeooeoeooo

X~ X A
Original Partially Reconstructed
input destroyed Input input
X input %
(@) © (O
8 g g Bottleneck!
Encoder Decoder
@ 0 [0 g% [— 1 7 x
o @) @)
o R
O O O An compressed low dimensional
L representation of the input. s

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html



Other structures: Sequences

Recurrent Neural Networks

Recurrent Neural Network vs. Feedforward Neural Network

Output layer

Unfold

fw
Hidden layers VvV -
Input layer @

Image sources: ibm.com/cloud/learn/recurrent-neural-networks
Wikipedia “Recurrent Neural Network”



Other structures: Sequences

Recurrent Neural Networks

01 02
l l
? - @
l
What time ?

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9



Other structures: Sequences

Recurrent Neural Networks

) W, ®
t t t
Original RNN [ A ‘nh j-[ A }-
| |
© o ® ® © ©
Long Short Term Memory e ® T
(LSTM) RNNs { A A J:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other structures: Sequences

Recurrent Neural Networks

Bidirectional RNNs use
the forward and reverse
context of inputs

Layer
+ + +
Bidirectional < LSTM - LSTM -- € LSTM
Layer
—>» LSTM | -- » LSTM » - - LSTM =
A VN y
Input /[ [
Lover |1 —~ (= — (xes
y < // \\\v/ £ \“\ /

Image: |. K. Ihianle et al.: Deep Learning Approach for Human Activities Recognition From Multimodal Sensing Devices



Other structures

Graphs

Locality (neighborhood)
varies for each node

Image sources and further reading:
https://gnn.seas.upenn.edu

https://distill.pub/2021/gnn-intro/



https://gnn.seas.upenn.edu
https://distill.pub/2021/gnn-intro/

Big ideas: CNNs

Deep neural networks (DNNs) are neural networks with “many” hidden layers
e Convolutional Neural Networks (CNNs) are a kind of neural network with a

topology that exploits structure in the input data to make learning easier/faster
o Sparse interactions (“local receptive fields”)
o Parameter/weight sharing
o Translation invariance

CNNs use the convolution operation

e CNNs are popular and ubiquitous
Datasets

Clearly defined tasks and evaluation
Computational tools

Methods and architectures

o O O O



Big ideas: Universal

e Inductive bias limits your model hypothesis space and is a way to add what

you know about the problem into the model
o Structure can be a very useful inductive bias

e Implementation of successful models has “hidden” problems

e Many advances in ML driven by access to
o Datasets

Clearly defined tasks and evaluation

Computational tools

Methods and architectures

Financial incentives

e Be mindful

o O O O



