Clustering

Basic and advanced Concepts
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Evolutionary Tree
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What is Cluster Analysis?

* Finding groups of objects such that the objects in a group will
be similar (or related) to one another and different from (or

unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized




Applications of Cluster Analysis

* Understanding

* Group related documents for browsing,
group genes and proteins that have similar
functionality, or group stocks with similar
price fluctuations, group celestial objects
galaxy, nearby stars, quasars (Sloan Digital
Sky Survey).

* Summarization
* Reduce the size of large data sets.

Discovered Clusters

Industry Group

W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN, Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,
Compag-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,

la-DOWN,Mi ft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financia- DOWN

Oil-UP

Clustering precipitation in
Australia




Notion of a Cluster can be Ambiguous
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Different types of clusters

Each

. Each (b) Center-based clusters.
point is closer to the center of its
cluster than to the center of any
other cluster.

(a) Well-separated clust
point is closer to all of the points in its
cluster than to any point in another
cluster.

(¢) Contiguity-base FEach ity-based cluste Clus:
point is closer to at least point s of high density sep-

ions of low dens

in its cluster than to any point in
another cluster.

Overlapping cluster

some general
(Points in the

Points in a

intersection of the circles belong to both.)

Figure 8.2. Different types of clusters as illustrated by sets of two-dimensional points.



Terminology

* X: Asetof objects or data points that we want to cluster

C CX: any subset of X can be a cluster, but not necessarily a meaningful cluster.
{Ci c X}{<=1: K-clustering.

° Ci N C] = @ foralli # ] If no two clusters have points in common the clustering is non-

overlapping.

° Ci N C] * @ for some i # ] If any two clusters have points in common the clustering is

overlapping.
U€<=1 Ci = X: complete clustering.
U€<=1 Ci C X partial clustering.

° {Ci}le partitions X: complete and non-overlapping clustering.

Cj: cluster center



Two ways to specify a clustering

Directly provide the clustering ~ Give the class memberships

as set of subsets {C;}_, of X. instead as a vector M
containing cluster label for

each data point



SSE Criterion

* Most common clustering criterion is Sum of Squared Error (SSE) (also called
potential)

* For each point, the error is the distance to its cluster center
* To get SSE, we square these errors and sum them.

K
SSE = z z dist?(c;, x) c; = argmin, Z dist?(c,x)

i=1x€C; X€C;
* xis a data pointin cluster C;and c; is the representative point for cluster C
* Given two clusterings, we can choose the one with the smallest SSE.
* One easy way to reduce SSE is to increase K, the number of clusters

* Agood clustering with smaller K can have a larger SSE than a poor clustering with bigger K.



Distances and Similarities

Clustering criterion (potential) can similarly be defined in terms of Similarity function.
While using similarity the goal is to maximize, instead of minimize.

K
Total Cohesion = Z Z cosine(x, ¢;)
i=1 xeC;

Table 8.2. K-means: Common choices for proximity, centroids, and objective functions.

Proximity Function Centroid | Objective Function
Manhattan (L;) median | Minimize sum of the L; distance of an ob-
ject to its cluster centroid
Squared Euclidean (L3) mean Minimize sum of the squared L, distance
of an object to its cluster centroid
cosine mean Maximize sum of the cosine similarity of
an object to its cluster centroid
Bregman divergence mean Minimize sum of the Bregman divergence

of an object to its cluster centroid




K-means Clustering

. Input: K (the number of clusters)

Select K points as the initial centroids.

repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

until The centroids don’t change

Centroid for Euclidean distance, Centroid for Manhattan distance
Bregman divergence and Cosine is the median
similarity is the mean

1
C;, = — E X
m;

xeC;



Proof why mean minimizes the SSE with
Euclidean Distance

)
MSSE = //Z Z

Z 2% (cx —xx) = 0 = mygey = Z Tk = Ck = —— Z Tk
my

zeCy, xzeC), xzeCly,



K-means: Example
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K-means: Example
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K-means: Example
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K-means: Example
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K-means: Example

(5,6)
(4,5)
5 +
@
(2, 4)
41 O
(1.3) (3,3)
st O o
2 4
17T ®¢
(CA)
% % % % % % % % >
1 2 3 4 5 6 7 8



K-means: Example

Now: calculate all distances...
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Now: move cluster centers to be the
average of data points.

K-means: Example
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Now: start next iteration

repeat distance calculation.

K-means: Example
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Now: calculate all other distances...

K-means: Example
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Now: move cluster centers to be the
average of data points.

K-means: Example

Cr=1/4* (45)+1/4*(83)+
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Now: start next iteration

calculate distances again...

K-means: Example
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Now: move cluster centers to be the
average of data points.

K-means: Example

c1=1/3*(62)+1/3*(83)+

t 113*(71)=(7 2)
@, 5) Co=1/4*(13)+1/4* (24)+
ST ® 1/4*(33)+1/4*(45)= (2.5 3.75)
(2,4)
s ®
(1.3) ®(3.3) (5.7, 2.7) (8.3)
3 —_
® (2,3.3) @ ® ®
(6,2)
2T @
7, 1)

1T @

' f f f f f f } >




Now: if we calculate all distances, no data
points will change color.

K_mea nS : Exa m ple This means, we can stop!
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Choosing K

Optimal number of clusters
Elbow method
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Other methods

Gap Statisitcs: Tibshirani, Robert, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a data set via the gap statistic." Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63.2 (2001): 411-423.



K-means Clustering — Details

. Initial centroids are often chosen randomly.
. Clusters produced vary from one run to another.
. The centroid is (typically) the mean of the points in the cluster.
. ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
. K-means will converge for common similarity measures mentioned above.
. Most of the convergence happens in the first few iterations.

. Often the stopping condition is changed to ‘Until relatively few points
change clusters’

ComplexityisO(n*K*d*e)
. n = number of points, k = number of clusters,
e = number of iterations, d = number of attributes



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...

Iteration 1 Iteration 2
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.



Picking the initialization cluster centers: a
significant issue

Sum square error (alternate formula)
QO(C) = Z mincecd(x' C)Z
XX * It is the speed and simplicity of the k-means method
interpret Cisthe setof  that make it appealing, not its accuracy. Indeed, there
centrods. The are many natural examples for which the algorithm

clustering is uniquely i ] . . © .
determined from C generates arbitrarily bad clustering (i.e., oo 1S
opt

Popeis the minimum unbounded even when n and k are fixed). This does not

value p(C) canattain - rely on an adversarial placement of the starting centers,
and in particular, it can hold with high probability if the
centers are chosen uniformly at random from the data
points.




Solutions to Initial Centroids Problem

* Multiple runs
* Helps, but probability is not on your side

* Select more than k initial centroids and then select among these
initial centroids
* Select most widely separated

* Postprocessing

* Bisecting K-means
* Not as susceptible to initialization issues



Furthest first

* Pick first center to be the mean of the data
* For the subsequent centers iteratively pick the point whose distance
to its closest cluster is largest.
Ciy1 < ArgMaX,cy mmcecjd(x, C)

Cie1 < G UG}

Problem: Outliers get chosen as Cj is the set of centroids

at jt" step.
centers J P



K-Means ++

la. Take one center ¢, chosen uniformly at random from A’

2
1b. Take a new center ¢;, choosing = € A" with probability %.
zeX

lc. Repeat Step 1b. until we have taken k centers altogether.

2-4. Proceed as with the standard k-means algorithm. D) s the distance of

x to it’s closest cluster
centroid.

Theorem 3.1. If C is constructed with k-means++, then the corresponding potential function ¢
satisfies, E[p] < 8(Ink + 2)oopr.



Average ¢ Minimum ¢ Average T
k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 | 135512 126433 119201 111611 0.14 0.13
25 | 48050.5 15.8313 25734.6 15.8313 1.69 0.26
50 | 5466.02 14.76 14.79 14.73 3.79 4.21

Table 2: Experimental results on the Norm-25 dataset (n = 10000, d = 15)

Average ¢ Minimum ¢ Average T'
k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 | 7553.5 6151.2 6139.45 5631.99 0.12 0.05
25 | 3626.1 2064.9 2568.2 1988.76 0.19 0.09
50 | 2004.2 1133.7 1344 1088 0.27 0.17

Table 3: Experimental results on the Cloud dataset (n = 1024, d = 10)

Average ¢ Minimum ¢ Average T
k | k-means k-means++ | k-means k-means++ | k-means k-means++
10 | 3.45-10% 2.31-107 3.25-10° 1.79 -107 107.5 64.04
25 | 3.15-10° | 2.53-10 | 3.1-10% | 2.06 -10° | 4215 313.65
50 | 3.0810% | 4.67 -10° | 3.08 -10° | 3.98 -10° 766.2 282.9

Table 4: Experimental results on the Intrusion dataset (n = 494019, d = 35)




K-means Recap

In general, can be more abstract spaces such as
space of trees, graphs or functions

* Given a dataset, X € R? and number of clusters k, find a clustering C € R%such
that the Sum Square Distance (aka potential) is minimized.

Sum Sq uare Distance C is the set of centroids. The

(p(@) = 2 mince(cd(x' C)Z clustering is uniquely

determined from the centroids.
XEX

Loyd’s Algorithm
 Start with random assignments of k centroids n=|X|
* lteratively,
* Assign each point x € X to the closest center ceC \
* Re-compute the centroids based on the cluster } O(nkd)
assignment.



O (nkd) per iteration is prohibitive for large
dimension!



Core ideas for cutting on distance
computation

Exploit the triangle inequality

d(x,z) <d(x,y) +d(y,2z)

X

If d(x,c) = @

then d(x,c) < d(x,c") not
guaranteed

/y\
X Z

X

Y,
If d(x,c) < d(cc’) then

2 Upper bound

d(x,c) <d(x,c')is ford(x,c)
guaranteed

> d(c,c’
Also true when d(x,c) < u < (CTC)



Flkan’s accelerated K-means

Distance computation: vector operation
Inequality: scalar operation

0(k?) distances computes

Pruning principle:
it" point is assigned to the right
cluster if u(i) < s(a(i)).No
distance involving the it"* point
needs to be computed.

it" point cannot be assigned to jt*
cluster if u(i) < I(i,j) oru(i) <
half the distance between c(a(i))
and c(j). The distance between the
it" point and the j* centroid need
not be computed.

a(i): index of the
cluster assigned to
the it" point.

(i, j): lower bound of the
distance of the it" point to

the j* cluster centroid,
matrix (nXk dimensional).

u(i): upper bound of
distance of the it" point to
the currently assigned
cluster centroid, vector (n
dimensional).

Requires computation of pairwise distances
between the centroids beforehand

c(j): j** cluster centroid,

s(j): half the distance
between jt* centroid and
its closest centroid



Bounding the distance of x from center after the
center moves from c to c*

Distance computation: vector operation
Upper and lower bound: scalar operation

Lower bound
Lower bound for d(x, c)

d(x,c*) = max(O d(x c) —d(c,c ))

> max(0, 1= d(cc ) ,’

= [%  Lower bound

for d(x,c*) {
Upper bound !
d(x,c*) <d(x,c) +d(c,c*) \
<uA+ d(c C ) \
= u* _ Upper bound
' ford(x, c)

Upper bound
for d(x,c*)




Algorithm 3 Elkan’s algorithm—using k lower bounds per point and k2 center-

center distances
procedure ELKAN(X, C)
a(i) < 1,u(i) < o0, Vi € N {Initialize invalid bounds, all in one cluster. }
(i, j)<0.YieN,j €K
while not converged do
5: compute |[c(j)—c(GNHI.Vj.j € K
compute s(j) <= minjy=; [lc(j) —c(G)H/2.Vj € K
foralli € N do
;f(u_(: %-ies(a(')) then continue with next 7 r: tells if the upper bound needs
10: forall j € K do to be tightened.

z < max(£(i, j), le(a(@) —c(H/2)
if j = a(i) or u(i) < z then continue with next j

if r then
u(i) < |[x(@) — c(a(@))ll
15: r < False
if u(i) < z then continue with next j
£i. j) < llx@ —c(l Both upper bound and the lower

if £(, j) <u(i) thena(i) < j  poynd are tight on this step.
for all j € K do {Move the centers and track their movement}
20: move ¢(j ) to its new location
let §(j) be the distance moved by ¢(j)
for alli € N do {Update the upper and lower distance bounds }
u(i) < u(i)+é(a(i))
forall j € K do

25: 0. j) — ti.pr—s¢. max(0,1(i,j) — 8(j))




Limitations of Elkan

 Updating the [ matrix takes O(nke), even though time spent

computing distances is reduced to O(nd) from O (nkde) empirically
(not in worst case);

* Storing the [ matrix (nXk dimension) can be a bottleneck for large k.

* Each iteration spent 0(k?d) time computing between centroid
distances.

n: dataset size
k: number of clusters

d: number of dimensions
e: number of iterations



Results for Elkan

k=3 k=20 E— 100 name cardinality | dimensionality | description
birch iterations 17 38 56 birch 100000 2 | 10 by 10 grid of Gaussian clusters, DS1 in (Zhang et al., 1996)
covtype 150000 54 | remote soil cover measurements, after (Moore, 2000)
standard 5.100e+06  7.600e+07  5.600e+08 kddcup 95413 56 | KDD Cup 1998 data, un-normalized
fast 4.495e+05 1.085e+06 1.597e+06 mnist50 60000 50 | random projection of NIST handwritten digit training data
speedup 11.3 70.0 351 mnist784 60000 784 | original NIST handwritten digit training data
covtype iterations 18 256 152 random 10000 1000 | uniform random data
standard  8.100e+06 7.680e+08 2.280e+09
fast 0.416e+05 7.147e~06 7.353e+06 Table 2. Rows labeled ‘Standard” and ‘fast” give the number of distance calculations performed by the unaccelerated k-means algorithm
and by the new algorithm. Rows labeled “speedup” show how many times faster the new algorithm is, when the unit of measurement is
speedup 8.60 107 310 distance calculations.
kddcup iterations 34 100 325
standard ~ 9.732e+06 1.908e+08 3.101e+09
fast 6.179e+05 3.812e+06 1.005e+07
speedup 15.4 50.1 309
mnist50  iterations 38 178 217
standard  6.840e+06 2.136e+08 1.302e+09
fast 1.573e+06 9.353e+06 3.159e+07
speedup 4.35 228 41.2
mnist784  iterations 63 60 165
standard 1.134e+07 7.200e+07 9.900e+08
fast 1.625¢+06 7.396e+06 3.055e+07
speedup 6.98 9.73 324
random iterations 52 33 18
standard  1.560e+06 6.600e+06 1.800e+07
fast 1.040e+06 3.020e+06 5.348e+06
speedup 1.50 2.19 3.37




Hamerly’s accelerated K-means

Main difference from Elkan: Maintains one [(i): lower bound of the
l(i) instead of l(i,j). lower bound per distance of the it" point
point instead of k. to the second closest
centroid

Pruning principle:

it" point is assigned to the right cluster if u(i) < s(a(i))
or u(i) < I(i). No distance involving the i*" point needs
to be computed.

Tradeoff 0(n) instead of 0 (nxk)
. Less memory for storing lower bounds.

. Fewer computations for updating lower bounds.

. However, there is less pruning and consequently

more distance computation.



Algorithm 4 Hamerly’s algorithm—using 1 lower bound per point

procedure HAMERLY(X, C)
a(i) < 1, u(i) < 00,£(i) < 0,Vi € N {Initialize invalid bounds, all in one cluster. }
while not converged do
compute s(j) < min; = le(j) — c(i)II/2.Vj € K

5: foralli € N do I(i) by definition is also a lower
z <— max(£(i), s(a(i))) bound to the distances to other
if u(i) < z then continue with next centers, except the closest one.

u(i) < ||x(i) — c(a(i))|| {Tighten the upper bound}
if u(i) < z then continue with next i
10: Find ¢(j) and ¢(j"), the two closest centers to x (i), as well as the distances to each.
if j % a(i) then
a(i) < j
u(@) < |lx @) —c(@@)ll
@) < llx(@)—c(GN)Il
15: for all j € K do {Move the centers and track their movement}
?;?;?j(;(lj)e)a :l(:eltc?i:t:lvcleofrz:g\?:d by ¢(;) o' ensures that if the second closgst '
, cluster changes the lower bound is still
8" «<— max;ek 8(j) valid.
for alli € N do {Update the upper and lower dlstance bounds }
20: u(i) <— u(i) + 8(a(i))
0(i) < T)y—38" max(0,1(i) — &)




Table 1: This table gives the overhead (in time and
memory) for each examined algorithm. Each entry rep-
resents the asymptotic overhead spent by that algorithm
[beyond Lloyd’s algorithm]. The initialization time (col-
umn 2) is extra time needed to allocate memory and
create data structures. Time/iteration is the extra time
spent during each A-means iteration, and memory ac-
counts for all extra memory used.

init. time time/iteration | memory
k-d tree | nd + nlog(n) | - nd
elkan ndk + dk? dk? nk + k?
hamerly | ndk dk? n




Some considerations

e Effect of data distribution
* More clustered data, more pruning
* More uniform data, less pruning



Total user CPU Seconds (User CPU seconds per iteration)

Dataset k= k=20 k= 100 k = 500

uniform random iterations 44 227 208 710

n = 1250000 lloyd 4.0 (0.058) 61.4 (0.264) 320.2 (1.070) 3486.9 (4.909)

d=2 kd-tree 3.5 (0.006) 11.8 (0.035) 34.6 (0.102) 338.8 (0.471)
elkan 7.2 (0.133) 75.2 (0.325) 353.1 (1.180) 2771.8 (3.902)
hamerly 2.7 (0.031) 14.6 (0.058) 28.2 (0.090) 204.2 (0.286)

uniform random iterations 121 353 312 1405

n = 1250000 lloyd 21.8 (0.134) 178.9 (0.491) 660.7 (2.100) 13854.4 (9.857)

d=28 kd-tree 117.5 (0.886) 622.6 (1.740) 2390.8 (7.633) 46731.5 (33.254)
elkan 14.1 (0.071) 130.6 (0.354) 591.8 (1.879) 11827.9 (8.414)
hamerly 10.9 (0.045) 40.4 (0.099) 169.8 (0.527) 1395.6 (0.989)

uniform random iterations 137 4120 2096 2408

n = 1250000 lloyd 66.4 (0.323) 5479.5 (1.325) 12543.8 (5.974) 68967.3 (28.632)

d = 32 kd-tree 208.4 (1.324) 29719.6 (7.207) T4181.3 (35.380) 425513.0 (176.697)
elkan 48.1 (0.189) 1370.1 (0.327) 2624.9 (1.242) 142459 (5.907)
hamerly 46.9 (0.180) 446.4 (0.103) 1238.9 (0.581) O886.9 (4.097)

birch iterations 52 179 110 99

n = 100000 lloyd 0.53 (0.004) 4.60 (0.024) 11.80 (0.104) 48 .87 (0.490)

d=2 kd-tree 0.41 (<0.001) 0.96 (0.003) 2.67 (0.021) 17.68 (0.173)
elkan 0.58 (0.005) 4.35 (0.023) 11.80 (0.104) 54.28 (0.545)
hamerly 0.44 (0.002) 0.90 (0.003) 1.86 (0.014) 7.81 (0.075)

covtype iterations 19 204 320 111

n = 150000 lloyd 3.52 (0.048) 48.02 (0.222) 322.25 (0.999) 564.05 (5.058)

d =54 kd-tree 6.65 (0.205) 266.65 (1.293) 2014.03 (6.285) 3303.27 (29.734)
elkan 3.07 (0.022) 11.58 (0.044) 70.45 (0.212) 152.15 (1.347)
hamerly 2.95 (0.019) 7.40 (0.024) 42.83 (0.126) 169.53 (1.505)

kddcup iterations 39 55 169 142

n = 95412 lloyd 4.74 (0.032) 12.35 (0.159) 116.63 (0.669) 464.22 (3.244)

d = 56 kd-tree 9.68 (0.156) 58.55 (0.996) 839.31 (4.945) 3349.47 (23.562)
elkan 4.13 (0.012) 6.24 (0.049) 32.27 (0.169) 132.39 (0.907)
hamerly 3.95 (0.011) 5.87 (0.042) 28.39 (0.147) 197.26 (1.364)

mnist50 iterations a7 249 190 s81

n = 60000 lloyd 2.92 (0.018) 23.18 (0.084) 75.82 (0.387) 162.09 (1.974)

d = 50 kd-tree 4.90 (0.069) 100.09 (0.393) 371.57 (1.943) 794.51 (9.780)
elkan 2.42 (0.005) 7.02 (0.019) 21.58 (0.101) 55.61 (0.660)
hamerly 2.41 (0.004) 4.54 (0.009) 21.95 (0.104) 77.34 (0.928)




Table 3: These results show the fraction of times that
each algorithm was able to skip the innermost loop
on data of different dimensions (values closer to 1 are
better). These results are averaged over runs using k =
3, 20, 100, and 500 (one run for each k). The randX
datasets are uniform random hypercube data with X
dimensions.

dataset | rand2 | rand8 rand32 | rand128
elkan 0.56 0.01 0.00 0.00
hamerly | 0.97 0.88 0.91 0.83
dataset | birch | covtype | kddcup | mnist50
elkan 0.52 0.34 0.18 0.22
hamerly | 0.94 0.89 0.82 0.82

Memory requirements

Megabytes

Dataset | Algorithm | Ak=3|k=20|k=100 | £=500
uniform lloyd 7.5 7.5 7.5 7.5
random kd-tree 32.1| 321 32.1 32.1
n=1.25M | elkan 19.8| 60.3| 251.0( 1205.2
d=2 hamerly 14.7| 14.7 14.7 14.7
uniform | lloyd 21.9| 219 21.9 21.9
random kd-tree 54.8| 54.8 54.8 54.8
n=1.25M | elkan 34.1| 74.6| 265.3(1219.5
d=8 hamerly 200 29.0 20.0 29.0
uniform | lloyd 79.1| 79.1 79.1 79.1
random kd-tree 145.2145.2| 145.2| 1453
n=1.25M | elkan 91.3]|131.8| 322.6( 1276.8
d=32 hamerly 86.2| 86.2 86.2 86.3
birch loyd 1.4 1.1 1.1 1.3
n=100K | kd-tree 29 29 2.8 2.7
d=2 elkan 2.1 5.2 20.6 97.3

hamerly 1.5 1.7 1.6 1.5
covtype |lloyd 16.2| 16.2 16.1 16.4
n=150K | kd-tree 27.2| 27.2 27.2 27.3
d=54 elkan 17.4| 225 45.3| 160.4

hamerly 17.0| 17.0 16.8 17.2
kddcup loyd 10.9] 10.8 11.1 11.2
n=95412 | kd-tree 18.8| 189 19.1 19.0
d=56 elkan 11.9| 15.1 20.6| 103.1

hamerly 11.6| 11.6 11.3 11.7
mnist50 | lloyd 6.3 6.6 6.4 6.8
n=60K kd-tree 10.5]| 10.4 10.6 10.7
d=50 elkan 7.0 9.1 18.4 64.8

hamerly 6.9 6.9 6.9 6.8




summary

* For moderate d (< 50) and k (< 100), Hamerly is well-suited (has
smaller time and memory footprint).

* Large d (greater than 50), Elkan might be better (has smaller time
footprint, in spite of large memory requirements).



