
Clustering
Basic and advanced Concepts

Old Faithful Geyser Data

Old Faithful, Wyoming

Evolutionary Tree

From Wikipedia

What is Cluster Analysis?
• Finding groups of objects such that the objects in a group will

be similar (or related) to one another and different from (or
unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

Applications of Cluster Analysis

• Understanding
• Group related documents for browsing,

group genes and proteins that have similar
functionality, or group stocks with similar
price fluctuations, group celestial objects
galaxy, nearby stars, quasars (Sloan Digital
Sky Survey).

• Summarization
• Reduce the size of large data sets.

! "#$%CD()(G!+I-$.()$! /0G-$.)1!2)C-3!

!" !""#ABCDEFG#DHI-.LMFND.BGOP45DHPOSLTDUIEDHI-.LV
UFW#BG4PSD;N<DHI-.LU=;UIDHI-.L>?DHI-.LV

H;UDUP@@DHI-.L=.ABCDHI-.LC;=DCPaAbDHI-.LV
EAb4PSDABbcDHI-.LABdF<D=S<GDHPOSLAB##FW<D=SbDHPOSLV
.FG#D;B@AbPSCebGDHI-.LI4Fb#DHI-.L;f=DHI-.LV

;eSDHI-.V

V
V

ABbcSP#PaNgDHI-.V

#" !""#BDUP@"DHI-.L!eGPCB<5DHI-.LHBUDHI-.LV
!HhDEAb4PDHBiAbBDHI-.L!SC4BODUP4"DHI-.LV
UP@"eGB4D!<<PbDHI-.LUA4beAGDUAGNDHI-.LV

UP@"FMDHI-.LVBEUDUP4"DHI-.LVfBSD=S<GDHI-.LV
EPGP4P#FDHI-.LEAb4P<PkGDHI-.L;bABSGAkAbD!G#DHI-.V

V
V

ABbcSP#PaNlDHI-.V

$" mFSSABDEFBDHI-.LmBCD>P@BDCPFSDHI-.LV
EM.!DUP4"DHI-.LEP4aFSD;GFS#BNDHI-.V

V
mASFSbAF#DHI-.V

%" MF5B4D>eacB<Dn?LH4B<<B4D=SC<Dn?L>F##AWe4GPSD>CHDn?LV
CPeA<AFSFDCFSCDn?L?cA##A"<D?BG4PDn?LnSPbF#Dn?LV

;bc#e@WB4aB4Dn?V

V
IA#Dn?V

V

V

Clustering precipitation in
Australia

Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters

Six Clusters

Different types of clusters

Overlapping cluster

Terminology

• 𝑋: A set of objects or data points that we want to cluster

• 𝐶 ⊆ 𝑋: any subset of 𝑋 can be a cluster, but not necessarily a meaningful cluster.

• 𝐶! ⊆ 𝑋 !"#
$: 𝐾-clustering.

• 𝐶! ∩ 𝐶% = ∅ for all 𝑖 ≠ 𝑗: If no two clusters have points in common the clustering is non-
overlapping.

• 𝐶! ∩ 𝐶% ≠ ∅ for some 𝑖 ≠ 𝑗: If any two clusters have points in common the clustering is
overlapping.

• ⋃!"#$ 𝐶! = 𝑋: complete clustering.

• ⋃!"#$ 𝐶! ⊂ 𝑋: partial clustering.

• 𝐶! !"#$ partitions 𝑋: complete and non-overlapping clustering.

• 𝑐!: cluster center

Two ways to specify a clustering

Directly provide the clustering
as set of subsets 𝐶! !"#

$ of 𝑋.
Give the class memberships
instead as a vector 𝑀
containing cluster label for
each data point

SSE Criterion

• Most common clustering criterion is Sum of Squared Error (SSE) (also called
potential)
• For each point, the error is the distance to its cluster center
• To get SSE, we square these errors and sum them.

• x is a data point in cluster Ci and ci is the representative point for cluster Ci
• Given two clusterings, we can choose the one with the smallest SSE.
• One easy way to reduce SSE is to increase K, the number of clusters

• A good clustering with smaller K can have a larger SSE than a poor clustering with bigger K.

𝑐! = 𝑎𝑟𝑔𝑚𝑖𝑛" +
#∈%!

𝑑𝑖𝑠𝑡&(𝑐, 𝑥)	𝑆𝑆𝐸 =+
!'(

)

+
#∈%!

𝑑𝑖𝑠𝑡&(𝑐! , 𝑥)

Distances and Similarities
Clustering criterion (potential) can similarly be defined in terms of Similarity function.
• While using similarity the goal is to maximize, instead of minimize.

K-means Clustering
• Input: K (the number of clusters)

Centroid for Euclidean distance,
Bregman divergence and Cosine

similarity is the mean

Centroid for Manhattan distance
is the median

Proof why mean minimizes the SSE with
Euclidean Distance

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 1)

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 1)

4.12

1.41

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 2)

3.16

4.12

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 1)

4.00

5.39

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 1)

Now: calculate all distances...

 and color all data points.

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä
(5, 6)

(3, 1)

Now: move cluster centers to be the
average of data points.

c1 = 1/2 * (4 5) + 1/2 * (8 3) = (6 4)

c2 = 1/5 * (1 3) + 1/5 * (2 4) +

 1/5 * (3 3) + 1/5 * (6 2) +

 1/5 * (7 1) = (3.8 2.6)

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä

(6, 4)

(3.8, 2.6)

Now: start next iteration

 repeat distance calculation.

2.28

2.00

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä

(6, 4)

(3.8, 2.6)

Now: calculate all other distances...

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä

(6, 4)

(3.8, 2.6)

Now: move cluster centers to be the
average of data points.

c1 = 1/4 * (4 5) + 1/4 * (8 3) +

 1/4 * (6 2) + 1/4 * (7 1) = (5.67 2.67)

c2 = 1/3 * (1 3) + 1/3 * (2 4) +

 1/3 * (3 3) = (2.00 3.33)

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)
Ä

Ä

(5.7, 2.7)

(2, 3.3)

Now: start next iteration

 calculate distances again...

2.60
2.87

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)
Ä

Ä

(5.7, 2.7)

(2, 3.3)

Now: move cluster centers to be the
average of data points.

c1 = 1/3 * (6 2) + 1/3 * (8 3) +

 1/3 * (7 1) = (7 2)

c2 = 1/4 * (1 3) + 1/4 * (2 4) +

 1/4 * (3 3) + 1/4 * (4 5) = (2.5 3.75)

K-means: Example

1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)
Ä

Ä (7, 2)

(2.5, 3.75)

Now: if we calculate all distances, no data
points will change color.

This means, we can stop!

Choosing K

Other methods
 Gap Statisitcs: Tibshirani, Robert, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a data set via the gap statistic." Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63.2 (2001): 411-423.

K-means Clustering – Details

• Initial centroids are often chosen randomly.
• Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the cluster.
• ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
• K-means will converge for common similarity measures mentioned above.
• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points
change clusters’

• Complexity is O(n * K * d * e)
• n = number of points, k = number of clusters,

e = number of iterations, d = number of attributes

Two different K-means Clusterings

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Sub-optimal Clustering
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Optimal Clustering

Original Points

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

10 Clusters Example

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x
y

Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4

Picking the initialization cluster centers: a
significant issue

• It is the speed and simplicity of the k-means method
that make it appealing, not its accuracy. Indeed, there
are many natural examples for which the algorithm
generates arbitrarily bad clustering (i.e., &

&!"#
 is

unbounded even when 𝑛 and 𝑘 are fixed). This does not
rely on an adversarial placement of the starting centers,
and in particular, it can hold with high probability if the
centers are chosen uniformly at random from the data
points.

𝜑 = 𝜑 ℂ where	ℂ	is
the set of centroids that
K-means converges to

𝜑*+,is the minimum
value 𝜑 ℂ can attain

Sum square error (alternate formula)

Interpret ℂ is the set of
centroids. The
clustering is uniquely
determined from ℂ

𝜑 ℂ = $
$∈𝒳

𝑚𝑖𝑛'(ℂ𝑑(𝑥, 𝑐)*

Solutions to Initial Centroids Problem

• Multiple runs
• Helps, but probability is not on your side

• Select more than k initial centroids and then select among these
initial centroids
• Select most widely separated

• Postprocessing
• Bisecting K-means

• Not as susceptible to initialization issues

Furthest first

• Pick first center to be the mean of the data
• For the subsequent centers iteratively pick the point whose distance

to its closest cluster is largest.
𝑐./0 ← 𝑎𝑟𝑔𝑚𝑎𝑥1∈𝒳 𝑚𝑖𝑛456!𝑑(𝑥, 𝑐)
𝐶./0 ← 𝐶. ∪ 𝑐./0

Problem: Outliers get chosen as
centers.

𝐶- is the set of centroids
at 𝑗,. step.

K-Means ++

𝐷(𝑥) is the distance of
𝑥	to it’s closest cluster
centroid.

K-means Recap

• Given a dataset, 𝒳 ⊆ ℝ+ and number of clusters 𝑘, find a clustering ℂ ⊆ ℝ+such
that the Sum Square Distance (aka potential) is minimized.

𝜑 ℂ = $
$∈𝒳

𝑚𝑖𝑛'(ℂ𝑑(𝑥, 𝑐)*
Sum Square Distance

In general, can be more abstract spaces such as
space of trees, graphs or functions

Loyd’s Algorithm
• Start with random assignments of 𝑘 centroids
• Iteratively,

• Assign each point 𝑥 ∈ 𝒳 to the closest center 𝑐𝜖ℂ
• Re-compute the centroids based on the cluster

assignment.
} O(𝑛𝑘𝑑)

𝑛 = |𝒳|

ℂ is the set of centroids. The
clustering is uniquely
determined from the centroids.

𝑂(𝑛𝑘𝑑) per iteration is prohibitive for large
dimension!

𝑐′

Core ideas for cutting on distance
computation

𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧)
𝑥 𝑧

𝑦

𝑐 𝑐′ 𝑐

𝑥
𝑥

If 𝑑 𝑥, 𝑐 ≥ + ','/

*
 then 𝑑 𝑥, 𝑐 ≤ 𝑑(𝑥, 𝑐-) not
guaranteed

If 𝑑 𝑥, 𝑐 ≤ + ','/

*
	 then	

𝑑 𝑥, 𝑐 ≤ 𝑑(𝑥, 𝑐-) is
guaranteed

Also true when	𝑑 𝑥, 𝑐 ≤ 𝑢 ≤ + ','/

*

Upper bound
for 𝑑(𝑥, 𝑐)

Exploit the triangle inequality

Elkan’s accelerated K-means

𝑠 𝑗 : half the distance
between	𝑗!" centroid and
its closest centroid

Pruning principle:

Requires computation of pairwise distances
between the centroids beforehand
𝑂(𝑘&) distances computes

𝑖./ point is assigned to the right
cluster if 𝑢 𝑖 ≤ 𝑠 𝑎 𝑖 .	No
distance involving the 𝑖./ point
needs to be computed.

𝑖./ point cannot be assigned to 𝑗./
cluster if 𝑢 𝑖 ≤ 𝑙 𝑖, 𝑗 or 𝑢 𝑖 ≤
half the distance between 𝑐(𝑎 𝑖)
and 𝑐 𝑗 . The distance between the
𝑖./ point and the 𝑗./ centroid need
not be computed.

𝑎(𝑖): index of the
cluster assigned to
the 𝑖!" point.

𝑢 𝑖 : upper bound of
distance of the 𝑖!" point to
the currently assigned
cluster centroid, vector (𝑛
dimensional).

𝑙(𝑖, 𝑗): lower bound of the
distance of the 𝑖!" point to
the 𝑗!" cluster centroid,
matrix (𝑛×𝑘 dimensional).

𝑐(𝑗): 𝑗,. cluster centroid,

Distance computation: vector operation
Inequality: scalar operation

Bounding the distance of 𝑥 from center after the
center moves from 𝑐 to 𝑐∗

𝑑 𝑥, 𝑐 − 𝑑(𝑐, 𝑐 ∗) 𝑑 𝑥, 𝑐 + 𝑑(𝑐, 𝑐∗)

𝑑(𝑐, 𝑐 ∗)
Lower bound
𝑑 𝑥, 𝑐∗ ≥ max 0, 𝑑 𝑥, 𝑐 − 𝑑 𝑐, 𝑐∗

Upper bound
𝑑 𝑥, 𝑐∗ ≤ 𝑑 𝑥, 𝑐 + 𝑑 𝑐, 𝑐∗

 ≤ 𝑢 + 𝑑(𝑐, 𝑐∗)
 = 𝑢∗

≥ max 0, 𝑙 − 𝑑 𝑐, 𝑐∗
= 𝑙∗

Lower bound
for 𝑑(𝑥, 𝑐)

Lower bound
for 𝑑(𝑥, 𝑐∗)

Upper bound
for 𝑑(𝑥, 𝑐)

Upper bound
for 𝑑(𝑥, 𝑐∗)

𝑥

𝑐∗

Distance computation: vector operation
Upper and lower bound: scalar operation

max 0, 𝑙 𝑖, 𝑗 − 𝛿(𝑗)

𝑟: tells if the upper bound needs
to be tightened.

Both upper bound and the lower
bound are tight on this step.

Limitations of Elkan

• Updating the 𝑙 matrix takes 𝑂 𝑛𝑘𝑒 , even though time spent
computing distances is reduced to 𝑂 𝑛𝑑 from 𝑂 𝑛𝑘𝑑𝑒 empirically
(not in worst case);
• Storing the 𝑙	matrix (𝑛×𝑘 dimension) can be a bottleneck for large 𝑘.
• Each iteration spent 𝑂 𝑘6𝑑 	time computing between centroid

distances.
𝑛: dataset size
𝑘: number of clusters
𝑑: number of dimensions
𝑒: number of iterations

Results for Elkan

Hamerly’s accelerated K-means

Main difference from Elkan:
 𝑙 𝑖 instead of 𝑙 𝑖, 𝑗 .

Maintains one
lower bound per
point instead of 𝑘.

𝑙(𝑖): lower bound of the
distance of the 𝑖!" point
to the second closest
centroid

Tradeoff
• Less memory for storing lower bounds.
• Fewer computations for updating lower bounds.
• However, there is less pruning and consequently

 more distance computation.

𝑂(𝑛) instead of 𝑂(𝑛×𝑘)

Pruning principle:
 𝑖./ point is assigned to the right cluster if 𝑢 𝑖 ≤ 𝑠 𝑎 𝑖

or 𝑢 𝑖 ≤ 𝑙(𝑖). No distance involving the 𝑖./ point needs
to be computed.

max 0, 𝑙 𝑖 − 𝛿′

𝑙(𝑖) by definition is also a lower
bound to the distances to other
centers, except the closest one.

𝛿1 ensures that if the second closest
cluster changes the lower bound is still
valid.

Some considerations

• Effect of data distribution
• More clustered data, more pruning
• More uniform data, less pruning

Memory requirements

Summary

• For moderate 𝑑 (< 50) and k (< 100), Hamerly is well-suited (has
smaller time and memory footprint).
• Large 𝑑 (greater than 50), Elkan might be better (has smaller time

footprint, in spite of large memory requirements).

