
Clustering
Basic and advanced Concepts



Old Faithful Geyser Data 

Old Faithful, Wyoming



Evolutionary Tree

From Wikipedia



What is Cluster Analysis?
• Finding groups of objects such that the objects in a group will 

be similar (or related) to one another and different from (or 
unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Applications of Cluster Analysis

• Understanding
• Group related documents for browsing, 

group genes and proteins that have similar 
functionality, or group stocks with similar 
price fluctuations, group celestial objects 
galaxy, nearby stars, quasars (Sloan Digital 
Sky Survey).

• Summarization
• Reduce the size of large data sets.
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Clustering precipitation in 
Australia



Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters 

Six Clusters 



Different types of clusters

Overlapping cluster



Terminology

• 𝑋: A set of objects or data points that we want to cluster

• 𝐶 ⊆ 𝑋: any subset of 𝑋 can be a cluster, but not necessarily a meaningful cluster.

• 𝐶! ⊆ 𝑋 !"#
$ : 𝐾-clustering.

• 𝐶! ∩ 𝐶% = ∅ for all 𝑖 ≠ 𝑗: If no two clusters have points in common the clustering is non-
overlapping.

• 𝐶! ∩ 𝐶% ≠ ∅ for some 𝑖 ≠ 𝑗: If any two clusters have points in common the clustering is 
overlapping.

• ⋃!"#$ 𝐶! = 𝑋: complete clustering.

• ⋃!"#$ 𝐶! ⊂ 𝑋: partial clustering.

• 𝐶! !"#$  partitions 𝑋: complete and non-overlapping clustering.

• 𝑐!: cluster center 



Two ways to specify a clustering

Directly provide the clustering 
as set of subsets 𝐶! !"#

$  of 𝑋.
Give the class memberships 
instead as a vector 𝑀 
containing cluster label for 
each data point 



SSE Criterion 

• Most common clustering criterion is Sum of Squared Error (SSE) (also called 
potential)
• For each point, the error is the distance to its cluster center
• To get SSE, we square these errors and sum them.

• x is a data point in cluster Ci and ci is the representative point for cluster Ci 
• Given two clusterings, we can choose the one with the smallest SSE.
• One easy way to reduce SSE is to increase K, the number of clusters

•  A good clustering with smaller K can have a larger SSE than a poor clustering with bigger K. 

𝑐! = 𝑎𝑟𝑔𝑚𝑖𝑛" +
#∈%!

𝑑𝑖𝑠𝑡&(𝑐, 𝑥)	𝑆𝑆𝐸 =+
!'(

)

+
#∈%!

𝑑𝑖𝑠𝑡&(𝑐! , 𝑥)



Distances and Similarities 
Clustering criterion (potential) can similarly be defined in terms of Similarity function.
• While using similarity the goal is to maximize, instead of minimize.



K-means Clustering
• Input: K (the number of clusters)

Centroid for Euclidean distance, 
Bregman divergence and Cosine 

similarity is the mean 

Centroid for Manhattan distance 
is the median 



Proof why mean minimizes the SSE with 
Euclidean Distance



K-means: Example
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K-means: Example
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K-means: Example
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4.12

1.41



K-means: Example
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K-means: Example
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K-means: Example

1 32 76 84 5
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Now: calculate all distances...

          and color all data points.



K-means: Example

1 32 76 84 5
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Now: move cluster centers to be the 
average of data points.

c1 = 1/2 * (4 5) + 1/2 * (8 3) = (6 4)

c2 = 1/5 * (1 3) + 1/5 * (2 4) +

        1/5 * (3 3) + 1/5 * (6 2) +

        1/5 * (7 1) = (3.8 2.6)



K-means: Example

1 32 76 84 5
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Now: start next iteration

          repeat distance calculation.

2.28

2.00



K-means: Example

1 32 76 84 5
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Now: calculate all other distances...



K-means: Example

1 32 76 84 5
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(3.8, 2.6)

Now: move cluster centers to be the 
average of data points.

c1 = 1/4 * (4 5) + 1/4 * (8 3) +

        1/4 * (6 2) + 1/4 * (7 1) = (5.67 2.67)

c2 = 1/3 * (1 3) + 1/3 * (2 4) +

        1/3 * (3 3) = (2.00  3.33)



K-means: Example

1 32 76 84 5

1
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(7, 1)

(8, 3)

(6, 2)

(4, 5)
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Now: start next iteration

          calculate distances again...

2.60
2.87



K-means: Example

1 32 76 84 5
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Now: move cluster centers to be the 
average of data points.

c1 = 1/3 * (6 2) + 1/3 * (8 3) +

       1/3 * (7 1) = (7 2)

c2 = 1/4 * (1 3) + 1/4 * (2 4) +

       1/4 * (3 3) + 1/4 * (4 5) =  (2.5  3.75)



K-means: Example

1 32 76 84 5
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Ä
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(2.5, 3.75)

Now: if we calculate all distances, no data 
points will change color.

This means, we can stop!



Choosing K

Other methods
 Gap Statisitcs: Tibshirani, Robert, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a data set via the gap statistic." Journal 
of the Royal Statistical Society: Series B (Statistical Methodology) 63.2 (2001): 411-423. 



K-means Clustering – Details

• Initial centroids are often chosen randomly.
• Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the cluster.
• ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
• K-means will converge for common similarity measures mentioned above.
• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points 
change clusters’

• Complexity is O( n * K * d * e )
• n = number of points, k = number of clusters, 

e = number of iterations, d = number of attributes



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Picking the initialization cluster centers: a 
significant issue

• It is the speed and simplicity of the k-means method 
that make it appealing, not its accuracy. Indeed, there 
are many natural examples for which the algorithm 
generates arbitrarily bad clustering (i.e., &

&!"#
 is 

unbounded even when 𝑛 and 𝑘 are fixed). This does not 
rely on an adversarial placement of the starting centers, 
and in particular, it can hold with high probability if the 
centers are chosen uniformly at random from the data 
points.

𝜑 = 𝜑 ℂ  where	ℂ	is 
the set of centroids that 
K-means converges to

𝜑*+,is the minimum 
value 𝜑 ℂ  can attain

Sum square error (alternate formula)

Interpret ℂ is the set of 
centroids. The 
clustering is uniquely 
determined from ℂ

𝜑 ℂ = $
$∈𝒳

𝑚𝑖𝑛'(ℂ𝑑(𝑥, 𝑐)*



Solutions to Initial Centroids Problem

• Multiple runs
• Helps, but probability is not on your side

• Select more than k initial centroids and then select among these 
initial centroids
• Select most widely separated

• Postprocessing
• Bisecting K-means

• Not as susceptible to initialization issues



Furthest first

• Pick first center to be the mean of the data
• For the subsequent centers iteratively pick the point whose distance 

to its closest cluster is largest.
𝑐./0 ← 𝑎𝑟𝑔𝑚𝑎𝑥1∈𝒳 𝑚𝑖𝑛456!𝑑(𝑥, 𝑐)
𝐶./0 ← 𝐶. ∪ 𝑐./0

Problem: Outliers get chosen as 
centers.

𝐶- is the set of centroids 
at 𝑗,. step.



K-Means ++

𝐷(𝑥) is the distance of 
𝑥	to it’s closest cluster 
centroid.





K-means Recap

• Given a dataset, 𝒳 ⊆ ℝ+  and number of clusters 𝑘, find a clustering ℂ ⊆ ℝ+such 
that the Sum Square Distance (aka potential) is minimized.

𝜑 ℂ = $
$∈𝒳

𝑚𝑖𝑛'(ℂ𝑑(𝑥, 𝑐)*
Sum Square Distance

In general, can be more abstract spaces such as 
space of trees, graphs or functions

Loyd’s Algorithm
• Start with random assignments of 𝑘 centroids
• Iteratively,

• Assign each point 𝑥 ∈ 𝒳 to the closest center 𝑐𝜖ℂ 
• Re-compute the centroids based on the cluster 

assignment.
} O(𝑛𝑘𝑑)

𝑛 = |𝒳|

ℂ is the set of centroids. The 
clustering is uniquely 
determined from the centroids. 



𝑂(𝑛𝑘𝑑) per iteration is prohibitive for large 
dimension! 



𝑐′

Core ideas for cutting on distance 
computation

𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧)
𝑥 𝑧

𝑦

𝑐 𝑐′ 𝑐

𝑥
𝑥

If  𝑑 𝑥, 𝑐 ≥ + ','/

*
 then 𝑑 𝑥, 𝑐 ≤ 𝑑(𝑥, 𝑐-) not 
guaranteed

If  𝑑 𝑥, 𝑐 ≤ + ','/

*
	 then	

𝑑 𝑥, 𝑐 ≤ 𝑑(𝑥, 𝑐-) is 
guaranteed

Also true when	𝑑 𝑥, 𝑐 ≤ 𝑢 ≤ + ','/

*
 

Upper bound 
for 𝑑(𝑥, 𝑐)

Exploit the triangle inequality



Elkan’s accelerated K-means

𝑠 𝑗 : half the distance 
between	𝑗!" centroid and 
its closest centroid

Pruning principle:
 

Requires computation of pairwise distances 
between the centroids beforehand
𝑂(𝑘&) distances computes

𝑖./  point is assigned to the right 
cluster if 𝑢 𝑖 ≤ 𝑠 𝑎 𝑖 .	No 
distance  involving the  𝑖./  point 
needs to be computed.

𝑖./  point cannot be assigned to 𝑗./  
cluster if 𝑢 𝑖 ≤ 𝑙 𝑖, 𝑗  or 𝑢 𝑖 ≤ 
half the distance between 𝑐(𝑎 𝑖 ) 
and 𝑐 𝑗 . The distance between the 
𝑖./  point and the 𝑗./  centroid need 
not be computed.

𝑎(𝑖): index of the 
cluster assigned to 
the 𝑖!"  point.

𝑢 𝑖 : upper bound of 
distance of the 𝑖!"  point to 
the currently assigned 
cluster centroid, vector (𝑛 
dimensional).

𝑙(𝑖, 𝑗): lower bound of the 
distance of the 𝑖!"  point to 
the 𝑗!" cluster centroid, 
matrix (𝑛×𝑘 dimensional).

𝑐(𝑗): 𝑗,. cluster centroid, 

Distance computation: vector  operation
Inequality: scalar operation



Bounding the distance of 𝑥 from center after the 
center moves from 𝑐 to 𝑐∗

𝑑 𝑥, 𝑐 − 𝑑(𝑐, 𝑐 ∗) 𝑑 𝑥, 𝑐 + 𝑑(𝑐, 𝑐∗)

𝑑(𝑐, 𝑐 ∗)
Lower bound
𝑑 𝑥, 𝑐∗ ≥ max 0, 𝑑 𝑥, 𝑐 − 𝑑 𝑐, 𝑐∗

Upper bound
𝑑 𝑥, 𝑐∗ ≤ 𝑑 𝑥, 𝑐 + 𝑑 𝑐, 𝑐∗

               ≤ 𝑢 + 𝑑(𝑐, 𝑐∗)
               = 𝑢∗

≥ max 0, 𝑙 − 𝑑 𝑐, 𝑐∗
= 𝑙∗

Lower bound 
for 𝑑(𝑥, 𝑐)

Lower bound 
for 𝑑(𝑥, 𝑐∗)

Upper bound 
for 𝑑(𝑥, 𝑐)

Upper bound 
for 𝑑(𝑥, 𝑐∗)

𝑥

𝑐∗

Distance computation: vector  operation
Upper and lower bound: scalar operation



max 0, 𝑙 𝑖, 𝑗 − 𝛿(𝑗)

𝑟: tells if the upper bound needs 
to be tightened.

Both upper bound and the lower 
bound are tight on this step.



Limitations of Elkan

• Updating the 𝑙 matrix takes 𝑂 𝑛𝑘𝑒 , even though time spent 
computing distances is reduced to 𝑂 𝑛𝑑  from 𝑂 𝑛𝑘𝑑𝑒  empirically 
(not in worst case); 
• Storing the 𝑙	matrix (𝑛×𝑘 dimension) can be a bottleneck for large 𝑘.
• Each iteration spent 𝑂 𝑘6𝑑 	time computing between centroid 

distances.
𝑛: dataset size
𝑘: number of clusters
𝑑: number of dimensions
𝑒: number of iterations



Results for Elkan



Hamerly’s accelerated K-means

Main difference from Elkan:
 𝑙 𝑖  instead of 𝑙 𝑖, 𝑗 . 

Maintains one 
lower bound per 
point instead of 𝑘.  

𝑙(𝑖): lower bound of the 
distance of the 𝑖!" point 
to the second closest 
centroid  

Tradeoff
•  Less memory for storing lower bounds.
•  Fewer computations for updating lower bounds.
•  However, there is less pruning and consequently 

 more distance computation. 

𝑂(𝑛) instead of 𝑂(𝑛×𝑘) 

Pruning principle:
 𝑖./  point is assigned to the right cluster if 𝑢 𝑖 ≤ 𝑠 𝑎 𝑖  

or 𝑢 𝑖 ≤ 𝑙(𝑖). No distance  involving the  𝑖./  point needs 
to be computed.



max 0, 𝑙 𝑖 − 𝛿′

𝑙(𝑖) by definition is also a lower 
bound to the distances to other 
centers, except the closest one. 

𝛿1 ensures that if the second closest 
cluster changes the lower bound is still 
valid.





Some considerations

• Effect of data distribution
• More clustered data, more pruning
• More uniform data, less pruning





Memory requirements



Summary

• For moderate 𝑑 (< 50) and k (< 100), Hamerly is well-suited (has 
smaller time and memory footprint).
• Large 𝑑 (greater than 50), Elkan might be better (has smaller time 

footprint, in spite of large memory requirements).


