Old Faithful Geyser Data

Old Faithful, Wyoming

[Diagram showing a scatter plot with eruption time on the x-axis and waiting time on the y-axis.]
Evolutionary Tree

From Wikipedia
What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.

Intra-cluster distances are minimized

Inter-cluster distances are maximized
Applications of Cluster Analysis

● Understanding
 – Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

<table>
<thead>
<tr>
<th>Discovered Clusters</th>
<th>Industry Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technology1-DOWN</td>
</tr>
<tr>
<td>2</td>
<td>Technology2-DOWN</td>
</tr>
<tr>
<td>3</td>
<td>Financial-DOWN</td>
</tr>
<tr>
<td>4</td>
<td>Oil-UP</td>
</tr>
</tbody>
</table>

● Summarization
 – Reduce the size of large data sets

Clustering precipitation in Australia
What is not Cluster Analysis?

- **Supervised classification**
 - Have class label information

- **Simple segmentation**
 - Dividing students into different registration groups alphabetically, by last name

- **Results of a query**
 - Groupings are a result of an external specification

- **Graph partitioning**
 - Some mutual relevance and synergy, but areas are not identical
Notion of a Cluster can be Ambiguous

How many clusters?

Two Clusters

Four Clusters

Six Clusters
Types of Clusterings

- A clustering is a set of clusters

- Important distinction between hierarchical and partitional sets of clusters

- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree
Partitional Clustering

Original Points

A Partitional Clustering
Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram
Other Distinctions Between Sets of Clusters

- **Exclusive versus non-exclusive**
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or ‘border’ points

- **Fuzzy versus non-fuzzy**
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics

- **Partial versus complete**
 - In some cases, we only want to cluster some of the data

- **Heterogeneous versus homogeneous**
 - Cluster of widely different sizes, shapes, and densities
Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function
Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters
Types of Clusters: Center-Based

- **Center-based**
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the “center” of a cluster, than to the center of any other cluster.
 - The center of a cluster is often a *centroid*, the average of all the points in the cluster, or a *medoid*, the most “representative” point of a cluster.

4 center-based clusters
Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters
Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters
Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.
Types of Clusters: Objective Function

- Clusters Defined by an Objective Function
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
 - A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.
 - Mixture models assume that the data is a 'mixture' of a number of statistical distributions.
Map the clustering problem to a different domain and solve a related problem in that domain

- Proximity matrix defines a weighted graph, where the nodes are the points being clustered, and the weighted edges represent the proximities between points.

- Clustering is equivalent to breaking the graph into connected components, one for each cluster.

- Want to minimize the edge weight between clusters and maximize the edge weight within clusters.
Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering

- Sparseness
 - Dictates type of similarity
 - Adds to efficiency

- Attribute type
 - Dictates type of similarity

- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation

- Dimensionality

- Noise and Outliers

- Type of Distribution
Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering
K-means: Example
K-means: Example
K-means: Example
K-means: Example
K-means: Example
K-means: Example

Now: calculate all distances... and color all data points.
K-means: Example

Now: move cluster centers to be the average of data points.

\[c_1 = \frac{1}{2} \times (4, 5) + \frac{1}{2} \times (8, 3) = (6, 4) \]
\[c_2 = \frac{1}{5} \times (1, 3) + \frac{1}{5} \times (2, 4) + \frac{1}{5} \times (3, 3) + \frac{1}{5} \times (6, 2) + \frac{1}{5} \times (7, 1) = (3.8, 2.6) \]
K-means: Example

Now: start next iteration
repeat distance calculation.
K-means: Example

Now: calculate all other distances...
K-means: Example

Now: move cluster centers to be the average of data points.

\[c_1 = \frac{1}{4} \times (4, 5) + \frac{1}{4} \times (8, 3) + \frac{1}{4} \times (6, 2) + \frac{1}{4} \times (7, 1) = (5.67, 2.67) \]

\[c_2 = \frac{1}{3} \times (1, 3) + \frac{1}{3} \times (2, 4) + \frac{1}{3} \times (3, 3) = (2.00, 3.33) \]
K-means: Example

Now: start next iteration
calculate distances again...

(1, 3) — (3, 3) — (4, 5) — (6, 2) — (7, 1) — (8, 3)
K-means: Example

Now: move cluster centers to be the average of data points.

\[c_1 = \frac{1}{3} \cdot (6, 2) + \frac{1}{3} \cdot (8, 3) + \frac{1}{3} \cdot (7, 1) = (7, 2) \]

\[c_2 = \frac{1}{4} \cdot (1, 3) + \frac{1}{4} \cdot (2, 4) + \frac{1}{4} \cdot (3, 3) + \frac{1}{4} \cdot (4, 5) = (2.5, 3.75) \]
K-means: Example

Now: if we calculate all distances, no data points will change color.
This means, we can stop!
K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.

- The centroid is (typically) the mean of the points in the cluster.

- ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.

- K-means will converge for common similarity measures mentioned above.

- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’

- Complexity is $O(n \times K \times I \times d)$
 - $n =$ number of points, $K =$ number of clusters,
 $I =$ number of iterations, $d =$ number of attributes
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Importance of Choosing Initial Centroids

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Importance of Choosing Initial Centroids

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6
Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

\[
SSE = \sum_{i=1}^{K} \sum_{x \in C_i} \text{dist}^2(m_i, x)
\]

- \(x\) is a data point in cluster \(C_i\) and \(m_i\) is the representative point for cluster \(C_i\)
 - can show that \(m_i\) corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase \(K\), the number of clusters
 - A good clustering with smaller \(K\) can have a lower SSE than a poor clustering with higher \(K\)
Importance of Choosing Initial Centroids ...
Importance of Choosing Initial Centroids ...
Problems with Selecting Initial Points

- If there are K ‘real’ clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if $K = 10$, then probability $= 10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in ‘right’ way, and sometimes they don’t
- Consider an example of five pairs of clusters
Starting with two initial centroids in one cluster of each pair of clusters
10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
Starting with some pairs of clusters having three initial centroids, while other have only one.
Starting with some pairs of clusters having three initial centroids, while other have only one.
Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues
Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters

- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.
Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid.

- An alternative is to update the centroids after each assignment (incremental approach):
 - Each assignment updates zero or two centroids.
 - More expensive.
 - Introduces an order dependency.
 - Never get an empty cluster.
 - Can use “weights” to change the impact.
Pre-processing and Post-processing

● Pre-processing
 – Normalize the data
 – Eliminate outliers

● Post-processing
 – Eliminate small clusters that may represent outliers
 – Split ‘loose’ clusters, i.e., clusters with relatively high SSE
 – Merge clusters that are ‘close’ and that have relatively low SSE
 – Can use these steps during the clustering process
 ◆ ISODATA
Bisecting K-means

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3: Select a cluster from the list of clusters
4: for $i = 1$ to number_of_iterations do
5: Bisect the selected cluster using basic K-means
6: end for
7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
8: until Until the list of clusters contains K clusters
Bisecting K-means Example

Iteration 10
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.
Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)
Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)
Overcoming K-means Limitations

One solution is to use many clusters.
Find parts of clusters, but need to put together.
Overcoming K-means Limitations

Original Points

K-means Clusters
Overcoming K-means Limitations

Original Points

K-means Clusters