
Bounding Pause Times in a
Regional Garbage Collector
Felix S Klock II

Thesis Advisor: Will Clinger

1

1

What is Garbage Collection?

Automated reclamation of unreachable storage

(Tracing) Garbage collection

Mutator: Main application apart from collector

2

2

Say: “Tracing GC finds connected component of the directed object graph that includes the
program registers (that is, the roots)”

[[(Alternative techniques, but probably shouldn’t mention them explicitly: reference counting;
static region+effect systems)]]

Thesis

Our regional garbage collector has provable worst case
bounds on pause times, space usage, and mutator
utilization, and it also achieves high throughput if
provided a spare concurrent task.

(and there’s an additional bonus!)

3

We’ve made a new design, that we call “regional GC”. My thesis is...
BONUS: designed to be adopted in existing runtime systems; compiler implementors and
low-level library writers do not need to know more about the collector than they already do.

Outline

Review of garbage collection & existing technology

Essential structure

Problem (plus solution)

Ensuring completeness

Worst case bounds

Empirical results

4

I will be comparing current tech against the regional GC
“Essential Structure” of Regional Collector
Completeness means GC eventually reclaims all unreachable storage.

Why Garbage Collect?

Reduces programming effort

No dangling pointers

Simplifies component interfaces

Do not want to program in C or C++; would prefer ...

5

5

You would prefer AT LEAST to pgm in Java or C# or ...
[[of course, if “you” would prefer to program C, C++, Forth, or ASM for critical applications,
then “you” might not want to stick around for the rest of the talk.]]

Garbage Collection

Mutator requests memory

If request cannot be fulfilled, collector attempts to
reclaim unreachable memory

6

6

[[because of (1.)conservative GC where mutator might hide pointer data from GC and,
(2.)some languages do offer primitives that might expose object addresses (e.g. for hash
codes); the point is that in most cases the language enforces insensitivity]]

Mutator
Roots

A B C D

E F G H

7

7

[[this is a quick demo of copying gc just to level the playing field]]
start by scanning roots and copying their reachable objects

Mutator
Roots

fwd(A) B C D

E F G H

A

8

8

scanning roots causes migration of A into to-space
(here to-space is on top, from-space is on bottom). Next we scan to-space, which means
scanning A

Mutator
Roots

fwd(A) fwd(B) C D

E F G H

A B

9

9

scanning A in to-space migrates B, and we’ll scan it next

Mutator
Roots

fwd(A) fwd(B) fwd(C) D

E F G H

A B C

10

10

now scanning B migrates C

Mutator
Roots

fwd(A) fwd(B) fwd(C) fwd(D)

E fwd(F) G H

A B C D

F

11

11

scanning C migrates both D and F
we’ll happen to scan D first after copying both objects.

Mutator
Roots

fwd(A) fwd(B) fwd(C) fwd(D)

E fwd(F) G H

F

A B C D

12

12

scanning D updates its reference to C

Mutator
Roots

fwd(A) fwd(B) fwd(C) fwd(D)

E fwd(F) G H

F

A B C D

13

13

and scanning F updates its reference to B.
All of to-space has been scanned; entirety of from-space can be reclaimed.

Mutator
Roots

F

A B C D

14

14

leaving us with just the reachable objects from the original graph

Garbage Collection:
Standard Objections

Requires extra memory

Increases execution time

Constrains mutator implementation strategy

Introduces long pauses

Disrupts interaction with user

15

15

Much of this reduces to “automated processes (1.)introduce new obligations to support
automation, and (2.)make it harder to predict system behavior”
Also, the first two objections are moot; (1.)memory leaks use even more memory, and
(2.)maintaining metadata to guide manual mgmt adds time overhead.

Bounding Pause Times

My work: eliminate long pauses

64-bit address space: larger memories, longer pauses;
problem only getting worse

Total memory usage, overall throughput, and
complexity of GC invariants also matter

16

16

Say: “We already see pause times on the order of seconds with the memory accessible on 32-
bit systems; the problem is only going to get worse as we get more addressable memory on
64-bit machines.”
I am not getting rid of the pauses entirely. I am just introducing strict bounds on how long
they are allowed to be. The bounds I am trying to achieve are on the order of <100ms, which
is not good enough for most hard real-time systems, but is fine for many classes of
applications.
On the last note, I am just making it explicit that I am addressing the three issues w.r.t. other
collection technology, not explicitly mem mgmt.

Us and Them

17

Our invention!

Regional GC

Collect objects from subsets of the heap (regions)

Strict size bound on each region

Strict size bound on GC metadata

Isolate book keeping work; perform concurrently

No read barrier

Low cost write barrier; thus low mutator overhead

18

18

Say “MY INVENTION”
Generally, write barrier is used to maintain collector invariants in presence of mutator
actions.

Current Technology

Generational GC

{ Incremental, Concurrent, Real-Time } GC

Garbage-First GC

(none of the above are my work)

19

19

I am putting Incremental/Concurrent/Real-Time GC into the same category because they
share similar attributes that contrast them against the Regional GC.
I am mentioning Garbage-First collector explicitly because the Regional collector draws a lot
of inspiration from it, and therefore I need to explicitly point out the novelties in the Regional
collector.

Generational GC

Generational Regional

Partitioned Heap
(by object age)

Partitioned Heap
(no strict correlation with age)

Cheap write barrier

High Throughput High Throughput
(especially if spare CPUs available)

Old objects collected with all
younger objects

Each region collected independently

Completeness requires occasional
full collections

No full collections, nor even
Θ(heapsize) collections

20

20

MY WORK IS IN RIGHT COLUMN
1. “Age” is quoted because there are some varying notions of age
2. Collecting newly allocated more often is a great *initial* heuristic (weak generation
hypothesis); does not scale (strong gen. hypothesis does not hold); GC implementors ignore
generational effect at peril.
3. Need to track old-to-young references for two reasons:
(a.) To ensure that reachable young objects are not reclaimed by GC
(b.) To update the old object with the new address for the migrated young one

[[The generational write barrier is cheaper than the regional one.]]
[[The generational remembered sets will occupy less space than the regional one, at least by
a constant factor]]

Incremental, Concurrent,
Real-Time GC
Incremental, Concurrent, Real-Time Regional

All collection work
interleaved/concurrent with mutator

Book-keeping work
concurrent with mutator

Never pauses for time proportional to heap size

Complex, expensive
{read, write} barriers

No read barrier; cheap write barrier

Low overall throughput High overall throughput

Good MMU at fine grain
(conjectured)

Good MMU at coarse grain
(provably)

21

21

Explanation of MMU: choose a fixed grain of time, then determine the minimum execution
time the mutator gets within that grain over the course of entire computation.
When explaining the MMU row, point out classes of applications where this is and is not
appropriate (missile, med. devices, vs video games or office applications)

Garbage-First GC

Garbage-First Regional

Partitioned heap; cheap write barrier

Good performance on typical programs

Searches for garbage-rich regions Treats regions uniformly

Soft fine grain pause time bounds Hard coarse grain pause time bounds

Concurrent marking ensures completeness

Worst case quadratic space usage Worst case linear space usage

22

22

Say “*Heuristic* search for gbg-rich regions” for GF
[[Note: Garbage-First was also a *parallel* collector; it would distribute the collection work
across multiple processors, which is part of why it chose its points-into remset structure.]]

Regional Collection

23

23

Regional GC:
Heap Structure

Heap (N words) partitioned into regions of fixed
capacity (R words)

Thus N/R is total number of regions

Minor collection: collect nursery only

Major collection: collect some region and nursery
together

24

24

Define nursery *vocally*: say its where the young objects live
Assumption: the size of the nursery is significantly less than R; we’ve been using a 1 MB nursery
and 5 MB regions
Note: Major GC migrates Y+R words; thus all migrated objects may not fit into R. The collection
policy must address this in some manner. Currently using “reserve regions” to resolve this, but
the long term approach will a more sophisticated policy. The point is that the collector may
migrate objects from region to region; the mutator cannot do so (and should be ignorant of
object migration).

Mutator
Roots

A B C D

E F G H

25

25

Lets partition the object graph

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

26

26

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

27

27

Ask: How are we going to do this? We need to collect the unreachable objects, but we don’t
know which of the incoming pointers are from reachable objects.

Regional GC:
Remembered Set Structure

Each region has an associated points-outof remset

Invariant: live object A points to B only if A in remset(rgn(A))

Supports independent collection of each region

Points-outof: subset of the objects in region

Total size for remembered sets inherently O(N)

28

28

Say: “Tracks any object with a region-crossing reference.”
Say: “This is a slight generalization of a remembered set in a generational collector.”
Invariant only applies when A and B are [1] in different regions, and [2] A not in nursery.
(Note the implication is one-way, which means that the remsets are *imprecise*. There will
be a quiz on this later.)

Regional GC:
Remembered Set Structure

Maintenance is standard

Mutator logs introduction of region-crossing references

Write-barrier stores objects holding references into log

Periodically fold log into remembered sets

Collector must update remembered sets

29

29

When introducing GC meta-data structure, the questions I ask are: what obligations does it
impose on the mutator, and what obligations does it impose on the collector.
The mutator requirements are certainly not novel. The collector requirements are not novel
either, but they were new to me. (Point out that the updating must happen during both
minor and major gc’s)
[[Important: mutator is responsible for logging objects when region-crossing pointers are
introduced; other parts of the collector will make use of that.]]

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Live object A points to B
only if A in remset(rgn(A))

30

30

RE: the invariant, A and B are in different regions, and are not in the nursery

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Live object A points to B
only if A in remset(rgn(A))

31

31

Note that G is unreachable, so this is not the smallest remembered set allowed by the
invariant. (But it is the remembered set that will tend to develop.)
Point out that if mutator added references from F to one of C or D, then it would need to add
F to Region 1’s remset. (Don’t say F to A; keep discussion regional)
Point out that if mutator changed B’s outgoing reference to point at F, then we’d have further
imprecision.
“So, now we can collect any region we like independently from the others. This raises a
question: ...”

Which region to collect
next?

Vast range of workable policies

We choose round-robin

Round-robin behaves like renewal-older-first
[Clinger and Hansen, PLDI ’97]
[Clinger and Rojas, SCP ’06]

32

32

[[Say: “It does not matter much”, but only if I believe this...]]
What I really mean is “Any policy that dictates which region to collect reasonably far ahead of
time will do.” Last-minute selection a la Garbage-First might not be appropriate.
Say “If you know what ROF is, then this acts like that. If you don’t, don’t worry about it; its
not a crucial aspect of this work.”

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Round Robin Collection

33

33

Round-robin means: periodically do major gc of region (i++ mod (N/R)). Repeat.
First going to demo minor gc. On minor gc, evacuate objects out of the nursery into some
region with available space.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Minor GC into region 1

34

(kindergarten)

34

During a minor collection, we evacuate the reachable objects in the nursery into some region
(labelled “kindergarten” here). So first we evacuate A into region 1

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B C D

F G HE

fwd(A)

Minor GC into region 1

35

(kindergarten)

35

After that, evacuate E as well, because G’s reference to E is keeping it alive

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B C D

F G H

E

fwd(E)

fwd(A)

Minor GC into region 1

36

(kindergarten)

36

Now nursery has been completed evacuated; we can reclaim its storage

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B C D

F G H

E

Minor GC into region 1

37

(kindergarten)

37

So that’s minor collections; now lets consider a major collection of region 2; the mutator will
run for a while

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B C D

F G H

E

Minor GC into region 1

38

(kindergarten)

38

So that’s minor collections; now lets consider a major collection of region 2; the mutator will
run for a while

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B C D

F G H

E

Major GC region 2

39

39

Explain the yellow box by saying GC is going to be updating the remset structure.
Now we evacuate the nursery (where nothing happens in be alive in this simplified example)
as well as region 2. No mutator roots point directly into region 2, but there are objects in
other regions, like B in region 1 (which we discover in region 1’s remembered set). So we
have to evacuate C.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B fwd(C) D

F G H

E

C
Major GC region 2

40

40

During the evacuation of C, we have to scan it for any objects it points to within region 2.
That scan discovers region-crossing pointers, so C has to be kept in the new remembered set
for region 2.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B fwd(C) D

F G H

E

C
Major GC region 2

41

41

And we also scan the other remembered sets; thus we discover that D’s reference to C needs
to be updated.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B fwd(C) D

F G H

E

C
Major GC region 2

42

42

Now the memory for the nursery, the region 2’s portion of the heap, and region 2’s
remembered set can be reclaimed.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B D

F H

E

C
Major GC region 2

43

43

And the newly copied objects can be associated with region 2.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B D

F H

E

C

Major GC region 2

44

44

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A

B D

F H

E

C

Major GC region 2

45

45

Problem

46

46

Remembered Sets: Problem

. . .

Each remembered set potentially holds O(R) objects

Collecting one region generally requires information
from O(N/R) remembered sets

47

Remembered Sets: Problem

Collecting one requires traversing remsets for all others

Traversal takes worst case Θ(N) time

Cannot perform during collection pause without
violating O(R) bound on pause time

Points-into remsets of Garbage-First counter this ...

... but at unacceptable worst-case space cost

48

48

[[While one expects the remembered sets to be small in practice, in general every object in a
region could have region-crossing pointers.]]

Remembered Sets: Problem

Leverage points-into remset structure?

Idea: do not maintain complete points-into remset

Instead construct similar structures “just in time”

Call these points-into summaries

Concurrently scan remembered sets; discard summary
after each collection

49

49

Do not maintain complete points-into for all regions through entire computation

Example:
Summary to collect region 1

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

50

50

If policy said next major gc is rgn1. Scan remembered sets of regions 2 and 3, to find. . .

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Example:
Summary

51

51

Object C points into region 1

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Example:
Summary to collect region 2

52

52

OTOH, if policy said next major gc is rgn2. scan remembered sets of regions 1 and 3, to
find. . .

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Example:
Summary

53

53

Objects B and D point into region 2

Example:
Summary to collect region 3

54

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

54

OTOH if policy said next major gc is rgn3. scan remembered sets of regions 1 and 2, to
find. . .

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Example:
Summary

55

55

Objects C and G point into region 3.
The strategy of Just-In-Time summarization does raise some questions. . .

Just-in-Time Summarization

Question: Can’t such summaries grow arbitrarily large?

Answer: Cap how large the summaries can grow
(called the wave-off limit)

If summary reaches wave-off limit then abandon attempt

Wave-off limit bounds size and time

56

56

[[optional vocal: How does this solve anything?]] Say “popular” explicitly and describe the
problem.
Wave-off is a military term; refers to an action to abort a landing, initiated by the someone on
the ground (or the pilot) at their discretion. (Another analogy: the collector is forcing
relocation of the regions selected for collection, but will abort relocation if a region is a “high-
profile” target.)
[[This answer raises a new question. . .]]

Just-in-Time Summarization

Question: With wave-off, can’t all regions have large
summaries, and thus none are collectable?

Answer: Choose appropriate wave-off limit

At any instant, heap has ≤ N references into N/R regions

With wave-off limit = 2R, at most 1/2 of the regions
could reach the limit; the other half are collectable.

57

57

This argument generalizes to larger choices for the wave-off limit
[[The wave-off limit is bigger than you might have thought it would be (2R is a lot of
references)]].

Concurrent Summarization:
Core of Algorithm

Start with K summaries; K = Θ(N/R)

Thus K mutator activity periods between K major gc’s
to traverse remsets and construct ≥ K new summaries

Usual case: single traversal of N/R remembered sets

Distribute objects into ≥ K new points-into summaries

58

58

K *proportional* to N/R!
[[the K factor is going to dictate one time/space tradeoff between how much storage is given
to summaries and how much time we have to spend constructing summaries...]]

Concurrent Summarization:
Core of Algorithm

Usual case: single traversal of N/R remembered sets

Unusual (worst case) scenario: system hits wave-off
limit on (many) summarization attempts

Build more than K summaries on a traversal

Do not schedule work of one traversal evenly across K
mutator activity periods; instead schedule to permit
multiple traversals

59

59

There is a time/space tradeoff here; devoting more space to summary construction permits a
less aggressive summarization schedule. Note that the schedule does need to finish in a
bounded number of traversals.

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

60

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

61

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

62

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

63

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

64

Concurrent Summarization

. . .

K ≥ K
... ...

remember: K = Θ(N/R)

65

Concurrent Summarization

. . .

K ≥ K...

remember: K = Θ(N/R)

66

Concurrent Summarization:
Core of Algorithm

There are some implementation subtleties

Summarization progresses concurrently with mutator

Summarization will be interrupted by collector activity

67

67

Concurrent Summarization:
Interaction with Mutator

Mutator can introduce reference from object A to B

Add A to summary for B’s region, if present

Easy; such introductions logged by write barrier

Schedule must bound number of such mutator actions

Otherwise summaries can become too imprecise;
lose guarantee that sufficient regions are collectable

68

68

[[This last bullet implies that we have a MAX mutator utilization bound, which might be a bad
thing in the eyes of some...]]

Concurrent Summarization:
Interaction with Collector

Collector moves live objects that point to other regions

Collector must update corresponding summary entries

Collector reclaims dead objects

Collector must clear corresponding summary entries

Need both to avoid dangling pointers to freed storage
in points-into summary structures

69

69

Note: these interactions are analogous to the handling of weak-references; entries are not
roots, but they do need to be kept consistent with object migration.
[[Second main bullet indicates that maybe “Just-in-time” is not appropriate term for
summary construction.]]

Ensuring Completeness

70

70

Completeness

The problem: garbage cycles that cross regions

71

Say: “Nothing presented so far solves this problem.”

Garbage Cycle that Crosses
Regions

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

B C D

W F

Q T

72

Concurrent Marking and
Remset Refinement

Old idea [Yuasa ’90]: periodically “snapshot” heap;
commonly called “Snapshot-at-the-Beginning” (SATB)

Our use inspired by Garbage-First collector

Snapshot developed concurrently with the mutator

Provides exact information about objects at time of
snapshot

Remset Refinement: remove dead objects of snapshot
from remembered sets

73

73

I think of the “snapshot” as being like a Polaroid picture. The subjects of the photo have
usually moved by the time development is complete, but any corpses in the picture will still
be dead.
[[Secondary purpose: collection of long acyclic chains against flow of collector.]]
Note that GF used SATB to guide its search for garbage-rich regions; we’re just using it for
collection completeness [[we thought this would imply the marker could be low-priority...
but...]]
Note that marked objects *are* considered for collection!

Concurrent Marking and
Remset Refinement

Two main components

mark bitmap (the developing snapshot)

mark stack (must be broken up across N/R regions)

Mutator tells marker about old references it overwrites;
support code must be added to write barrier

Collector must update stack and bitmap appropriately

74

74

The update to the mark stack and mark bitmap has the same “weak reference” property that I
discussed with respect to the summarization structures.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Concurrent SATB Mark and
Refinement

75

75

Initial illustration: a snapshot of this heap would indicate that in the regions, the objects { G,
H } are dead

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Concurrent SATB Mark and
Refinement

76

☠ ☠
76

{ G, H } are dead, and therefore G can be removed from the remembered set for region 2.

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

A B C D

E F G H

Concurrent SATB Mark and
Refinement

77

☠ ☠
77

Why does Mark&Refine matter? Well, what happens if A dies during the computation?

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

B C D

W F

Q T

Concurrent SATB Mark and
Refinement

78

78

If object A unreachable, objects {B, C, D, F} keep each other alive until the system takes a new
snapshot that reveals that they can be removed from the remembered sets
[[or until all four objects happen to migrate to the same region, but we *do* *not* rely on
such luck]]

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

B C D

W F

Q T

Concurrent SATB Mark and
Refinement

79

☠
☠

☠☠

79

Thus corresponding entries can be removed from the remembered sets

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

B C D

W F

Q T

Concurrent SATB Mark and
Refinement

80

☠
☠

☠☠

80

Mutator
Roots

REGION 1 REGION 2 REGION 3

nursery

B C D

W F

Q T

Concurrent SATB Mark and
Refinement

81

81

Now the remsets do not see the cycle, and the collector will reclaim the storage for {B, F}
when it collects region 1 (and likewise for objects C and D).

Worst Case Bounds

82

82

Worst Case Space Bounds

Each of the N/R regions has O(R) associated state

Total heap size is O(N)

Heap size kept proportional to reachable storage

Wave-off = 2R ensures 1/2 N/R regions collectable

Refinement keeps waved-off regions from preserving
float elsewhere

83

83

I am assuming here that the marking process is run sufficiently often to keep region-crossing
garbage from accumulating. Also, this is only a quick sketch; not unreasonable to calculate
the constant factors involved in the worst-case asymptotic bounds.

Worst Case Time Bounds

Pause Time Bounds

Traverse the O(R) summary, collect O(R) objects, and
update O(R) structure of region’s remembered set,
mark stack, and points-into summaries

Therefore work at each pause bounded by O(R)

Minimum Mutator Utilization

Pauses spaced apart by allocation + mutation limits

84

84

I am assuming here that the summarization task is given sufficient priority to keep collector
on schedule. Some side issues: MMU, Max Mutations / Summarization Cycle.
[[That is work-in-progress]]

Common Case Behavior

85

85

Common case performance will outperform worst case. A typical region has a small mark-
stack and small points-into summary, as well as a reasonably sized points-outof remembered
set. To see worst-case performance, an adversarial mutator would need to create region-
crossing garbage cycles as quickly as it can, and it would also need to cause maximal wave-
off. Experiments so far with our prototype support (the size) claim. I need to gather more
data to fully support both of these claims.

Empirical Results

86

86

To test the design, I have constructed a prototype.

Prototype

Regional collector for Larceny

Compared against Larceny’s other collectors

87

 I am using the Larceny runtime for the Scheme language as the basis for the prototype, and
comparing it against Larceny’s other collectors (a generational one and a non-generational
stop-and-copy collector).

Problems with prototype

Entirely sequential

SATB marking emulated

SATB write barrier code is emitted in-line but ignored

Points-into summarization emulated

Each traversal over all remembered sets computes
only one points-into summary, instead of K = Θ(N/R)

88

88

 The stop-and-mark computation was scheduled so that the system did 1 word of marking
for every 3 words of allocation. Experiments used a 1 MB nursery and 5 MB regions

[[If time and feeling good, patter about experiencing the dual of second system effect.]]

Prototype: Pause Time

0

500

1,000

1,500

2,000

2,500

3,000

earley gcbench nboyer:5 nboyer:6 sboyer:6 perm9:10 perm9:20 twobit gcold:0 gcold:1000

 M
ax

 C
ol

le
ct

io
n

P
au

se
 (m

s)

Benchmarks (broken down by GC technology)

regional generational stop-and-copy

89

Prototype: Memory Usage

0

100

200

300

400

500

600

700

800

900

1,000

earley gcbench nboyer:5 nboyer:6 sboyer:6 perm9:10 perm9:20 twobit gcold:0 gcold:1000

M
ax

 M
em

or
y

U
sa

ge
 (M

B
)

Benchmarks (broken down by GC technology)

Non-Remset Storage
Remset Storage

90

Prototype: Throughput

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

earley gcbench nboyer:5 nboyer:6 sboyer:6 perm9:10 perm9:20 twobit gcold:0 gcold:1000

(n
or

m
al

iz
ed

 to
 g

en
er

at
io

na
l o

ve
ra

ll
tim

e)

Benchmarks (broken down by GC technology)

Mutator
Collection
Refinement
Summary

91

Fixing the Prototype

Summary representation

Incremental tasks

Concurrent tasks

Heap contraction

64-bit Larceny

92

92

Related Work:
Generational Collection

Originated with [Lieberman and Hewitt: CACM ’83]

Simplified in [Ungar: ’84]

93

93

Regional collector is more like LiebermanHewitt than Ungar
Already described GF.
MOS algorithm has uses a policy to migrate cycles into the same “train”; hard to reason about
how long it takes to reclaim cyclic garbage
Beltway allows flexible policy selection, but one must choose between *either* incremental or
complete collection; the Regional collector offers both at once.

Related Work:
Heap Partitioning

Mature Object Space (“Train”) [Hudson and Moss:
IWMM ’92]

Beltway [Blackburn et al: PLDI ’02]

MarkCopy [Sachindran and Moss OOPSLA ’03]

Garbage-First GC: [Detlefs et al: ISMM ’04]

94

Related Work

Incremental, Concurrent and/or Real-Time GC

(Many!)

Multiprocessing, Compactifying [Steele: CACM ’75]

On-the-Fly [Dijkstra et al: LNCS ’76, CACM ’78]

Parallel Real-Time [Blelloch and Cheng: PLDI ’99,
PLDI ’01]

Metronome [Bacon et al: LCTES ’03]

95

95

Collectors of Steele and of Dijkstra et al are notoriously complex and subtle to implement.
Blelloch and Cheng work is notable for provided hard bounds on space and time usage (and
also introduced notion of MMU).
Metronome collector is a real-time mark-sweep design where they got the measured read-
barrier cost down to an impressive 4% overhead. Regional collector is a totally different point
in the design space.

Proposed Schedule

May ­
September

2008

Implementation work: incremental
summarization and marking; concurrent

marking; concurrent summarization.

October ­
January

2009

Gather benchmark results on time and
memory usage; write thesis

February ­
April
2009

Defend Thesis

96

96

Conclusion

Regional Collection

Provable worst case bounds on space usage and
pause times

Low implementation complexity (for mutator)

High throughput if concurrent task available

97

97

Thanks for listening!

98

98

Just-in-Time Summarization

Question: why not apply the previous argument to the
Garbage-First collector?

Answer: Garbage-First collector maintains points-into
remsets imprecisely over entire computation

Regional collector constructs points-into summaries
just-in-time; imprecision is bounded

99

99

Note: The points-into summaries’ imprecision can and *must* be bounded. If imprecision
unbounded, then previous argument falls apart b/c cannot reason based on heap state at
particular instant.
[[Note: a possible experiment would be to try variant of Garbage-First that maintains
precise points-into remsets. We suspect the overhead of such a GC would be
inacceptable.]]

