
Minimizing Read Seeks for SMR Disk
Mohammad Hossein Hajkazemi*, Mania Abdi1", Peter Desnoyers1"

Department of Electrical and Computer Engineering*, College of Computer and Information Science1"
Northeastern University

hajkazemi@ece.neu.edu,abdi.ma@husky.neu.edu,pjd@ccs.neu.edu

Abstract—Log-structured storage systems are file or block
storage systems which write data in temporal order, rather using
e.g. LBA or other spatial information to determine physical
location. They are widely used as translation layers for flash
and now Shingled Magnetic Recording (SMR) disk, performing
the out-of-place write function needed for media where direct
overwriting of data is not possible.

Although certain aspects of log-structured storage system per-
formance (i.e. write amplification) have been extensively studied,
few or no efforts have examined the effect of seek overhead on
workloads in this context. We examine seek overheads due to log-
structured writing across a range of well-known and more recent
block I/O traces, demonstrating that while some workloads are
relatively unaffected, others suffer significantly.

In addition we propose two novel mechanisms, opportunistic
defragmentation and translation aware selective caching, for seek
reduction in log-structured systems, as well as an application of
existing disk read-ahead techniques (which we name translation
aware look-ahead-behind prefetching), and demonstrate that these
mechanisms greatly reduce or even eliminate increases in read
seek cost in almost all workloads examined. We evaluate our
proposed techniques using a metric we define, seek amplifica-
tion factor. Results show up to 4x, 4x and 18x improvement
of seek amplification factor among the studied workloads for
opportunistic defragmentation, translation aware selective caching
and translation aware selective caching respectively.

I. INTRODUCTION

The term “log-structured” is typically used to refer to stor­
age mechanisms where data is written sequentially in a new
location, replacing an older version rather than over-writing
it. The idea originated with file systems for write-once optical
drives [1], as well as the pioneering work of Rosenblum,
Ousterhout and others [2], [3], however for the most part early
interest in this approach faded as the magnitude of cleaning
cost and difficulty in reducing it became apparent [4], [5],
and interest did not revive until the introduction of NAND
flash years later. As a result although much effort has been
spent analyzing the copying overhead (write amplification
factor or WAF) of log-structured systems [6], [7], [8], [9], few
works have examined disk seek behavior in these same sys­
tems. However the recent development of Shingled Magnetic
Recording (SMR) [10], [11], a disk organization requiring
out-of-place writes to avoid data loss, has made seek behavior
in log-structured systems relevant again.

The original log-structured file system was motivated by
the goal of reducing write seeks—disk seeks due to non­
sequential writes. As an example, creation of a small file in a
non-journaled file system might require writing six blocks in
different parts of the disk; on disks of the era might take a few

milliseconds in transfer time, but hundreds of ms in seek time.
By writing these blocks sequentially, write seek overhead was
almost eliminated and performance was greatly improved. But
what about seeks for read operations?

Early work on log-structured systems assumed that ever-
increasing RAM sizes would allow caching to virtually elim­
inate the need to read from disk, eliminating read seeks as
a performance consideration; however it was soon recognized
that ever-increasing disk sizes canceled out those increasing
RAM sizes, and that disk read performance would remain a
significant performance factor. A few systems [12] attempted
to reduce read seek overhead1, but this concern became
irrelevant when researchers' focus turned to flash-based log-
structured systems. Although flash performance is affected
by how evenly requests are distributed across planes and
channels [13], there is nothing comparable to the 1000:1
performance disparity between sequential and random disk
accesses. With the advent of SMR, however, which combines
the no-overwrite constraint of flash with the random I/O per­
formance penalty of disk, the question of read seek overhead
due to log structured writing has become relevant again.

So, what is the impact of read seeks on the performance
of log-structured, disk-based storage systems? One can read­
ily construct scenarios where log-structured writes cause no
increase in read seeks; conversely other artificial scenarios
result in huge performance losses relative to update-in-place.
But what about real-world workloads? Are the I/O patterns
which perform poorly on log-structured disk rare ones, or
commonplace? And when they occur, are there methods we
can use to reduce their impact?

We address these questions in the context of block transla­
tion layers2: device- or host-resident algorithms which provide
a conventional rewritable block abstraction layer on top of an
underlying log-structured organization. We perform an exten­
sive series of trace measurements and workload analysis, using
block traces from production Linux and Windows servers. We
measure the read seek overhead of log-structured writes in
a simple infinite-disk model, examine the results in detail,
and present and evaluate several mechanisms for improving
performance.

In particular, the contributions of this paper are:

1 It is likely that this topic received attention at NetApp, a vendor of disk-
based log-structured storage systems, however any results have not been
published.

2Termed Flash Translation Layers (FTLs) or Shingling Translation Layers
(STLs) as appropriate.

978-1-5386-6780-4/18/$31.00 ©2018 IEEE 146

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

T ra c k N

N ew D ata
T ra c k N +1

S'

Corrupted D ata
T ra c k N + 2

T ra c k N + 3

T ra c k N + 4

(a) Conventional Magnetic Recording Drive (CMR) (b) Shingled Magnetic Recording Drive (SMR)

Fig. 1: Track layout of (a) CMR drive vs. (b) SMR drive; overlapping tracks in SMR drive results in a larger number of tracks,
however a random write in a track may damage data in down-stream adjacent tracks.

1) an evaluation of log-structured translation performance
on a wide variety of modern traces, showing that work­
loads run the gamut from log-friendly (i.e. a net decrease
in seeks), log-sensitive (i.e. seek amplifications of as
much as 10x or more) and log-agnostic, with small or
no change in seek numbers.

2) characterization of the read/write behavior seen in these
traces, showing that a small number of writes are respon­
sible for many fragmented reads, and that seek length
distributions are radically different after log-structured
translation.

3) two novel mechanisms for reducing seek overhead—
opportunistic defragmentation and translation aware
selective caching—and a third mechanism based on
modifications to existing drive read-ahead algorithms.

4) evaluation of these techniques and demonstration that
they reduce or eliminate seek overhead for log-structured
writes in almost all the examined workloads.

We stress the importance for SMR-based systems of this last
contribution. SMR disks at present carry a dual performance
penalty over conventional disk, incurring both (a) cleaning
overhead and (b) additional seeks. Eliminating both overheads
would allow the creation of systems with the capacity advan­
tages of SMR (as compared to non-SMR disk) without the
performance penalty.

Many of today’s large storage systems (where SMR drives
are targeted) are archival systems, accumulating data and never
modifying or deleting it; in these systems a log-structured
translation layer need never enter cleaning (garbage collec­
tion), as writes cease just as the disk fills and runs out of
room. In these systems we can reasonably claim to be able
to eliminate cleaning overhead; by applying the techniques
proposed in this paper it appears possible to reduce or elim­
inate performance overheads due to disk seeks, potentially
eliminating the SMR performance penalty entirely.

II. Ba c k g r o u n d

Shingled magnetic recording decreases the track width
of perpendicular magnetic recording by writing overlapping
tracks, storing more data at the cost of losing the ability
to perform random sector updates without losing data (see
Figure 1). In particular, when overwriting a sector, data in

the physically adjacent track is at risk of being corrupted
or over-written. Although several other methods have been
proposed (e.g. Caveat Scriptor [14], SMART [15], Virtual
Guard [16]), devices shipped to date organize each platter in
zones, where zones are separated by guard tracks wide enough
to prevent adjacent-track corruption, allowing each zone to be
written (or re-written) sequentially and independently of other
zones. In drive-managed SMR devices an internal translation
layer emulates a fully-rewriteable block device on top of these
zones, while in host-aware and host-managed devices the zone
structure and write constraints are exposed to the host.

The host-managed model provide by the Zoned Block
Device extensions to SCSI and SATA is almost identical
to the NAND flash model: a zone (cf. erase unit) consists
of a sequence of sectors (pages) which must be written
sequentially, after which the write pointer may be reset (the
unit may be erased), losing access to data stored in that zone
and allowing it to be re-written from the beginning again.

Existing translation layers for SMR [17], [11] have typically
been very simple, logging updates to a reserved region of
the disk (the media cache), and then merging them back to
data zones, where they are stored in logical order, similar to
mechanisms used in the simplest flash translation layers [18].
As a result almost all data is stored in LBA order, resulting
in little or no read seek amplification, but at the price of high
cleaning overhead.

An alternate approach would be to perform log-structured
writes with a full block or extent map, as is done in high-
performance flash translation layers [19], reducing cleaning
overhead or avoiding it entirely in some archival applications.
In this case read seek amplification becomes a more significant
issue, as the address space defragmentation of simpler mech­
anisms, is eliminated, and the cleaning overhead is reduced,
increasing the relative contribution of smaller overheads.

Disk model: We examine this second approach, where data
is placed on disk in a physical order matching the temporal
order in which it was written, with each write being directed
to a write frontier which advances across the disk. We assume
an infinite disk, ignoring cleaning overhead; for archival work­
loads cleaning may never be needed, and for traditional work­
loads cleaning performance has been extensively examined.
Finally, we ignore specific device performance characteristics

147

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

or geometry. We consider a seek to occur if an I/O operation
starts at a sector other than that immediately following the
previous I/O operation, and term it a read or write seek
according to whether the second of the two operations is a -m
read or write. Performance is expressed as seek amplification: g
the ratio of seeks (read, write, or total) for the log-structured

ĈL)
system to seeks incurred on a conventional drive by the ${
workload trace.

III. S e e k a m p l i f i c a t i o n o f l o g - s t r u c t u r e d w r i t e s

It is the workload that entirely determines the relative read
seek increase (read seek amplification) due to log-structured
writing under the disk model used here. As a thought exper­
iment we can easily construct “toy” cases where read seeks
are unaffected (or even reduced), and others where a large
overhead is seen:

• Small file creation and access (decreased read seeks):
By sequentially writing the blocks modified in creating
a single-block file—block and inode bitmaps, directory
and file inodes, directory and file data, and journal—it
becomes possible to read all blocks needed for accessing
that file (directory/file inodes and data blocks) with a
single seek, rather than the four that would be typically
required.

• Sequential read after random write (increased read seeks):
If a large number of small random writes are performed
to a large file (e.g. a database) , a single sequential read
of that file will require approximately as many seeks as
were saved in performing all the writes. If the file is read
in its entirety N times, the net result will be an N-fold
seek amplification.

We note that these cases may be characterized in terms of
temporal and spatial ordering of reads and writes. In the first
we have a set of operations which are not spatially sequential;
however the temporal order of their writing is mimicked in
the order in which they are read; in this case log structure
eliminates read as well as write seeks. In the second case the
write and read ordering is entirely unrelated, and (importantly)
reads are ordered to improve performance. If the reads were
scattered randomly then we would see a net reduction in
seeks due to the near elimination of write seeks; however
with sequential read, that savings is “paid back” in extra read
seeks, once for each time the data is read sequentially. To
explore the impact of read/write ordering on seek count in
real-world workloads under log-structured writes, we perform
some analysis using the the disk model explained in Section
II.

Workloads: For our experiments we use two sets of block
traces: the well-known MSR traces [20], from production
Windows systems in the 2007-2008 time period, and a set
of Linux and Windows traces collected more recently by
CloudPhysics [21]. We sample the traces and select some that
represent different I/O behavior in terms of read/write intensity
and seek count in both log-structured and non-log-structured
translation. Characteristics of these traces are shown in Table I.

workload

(a) MSR traces

workload

(b) CloudPhysics traces

Fig. 2: Read and write seek counts of a subset of (a) MSR and
(b) CloudPhysics traces for both non-log-structured (NoLS)
and log-structured (LS) translation. We consider a seek to
occur if an I/O operation starts at a sector other than that
immediately following the previous operation.

Results: Results may be seen in Figure 2, where we see read
(orange) and write (blue) seek counts for selected traces for
the log-structured (LS, right bar) and untranslated (NoLS, left
bar) cases. As expected, write seeks are greatly reduced by log-
structured writing, as all back-to-back writes are written se­
quentially regardless of LBA. For some traces (e.g. s rc 2 _ 2 ,
wdev_0, w3 6) there is a modest increase in read seeks,
resulting in an overall reduction in seek overhead. For others
(e.g. w91, w33, w20) the increase in read seeks is huge,
resulting in a large net seek amplification, of up to 5x in the
case of w 91. In a third group, the increase is significant but not
overwhelming, as in h m _ l , w93, w55. Overall we see that
read seek amplification is highly workload-dependent, in some
cases negligible or better (i.e. a gain), and in others risking
significant performance degradation.

In Figure 3 we see log-structured translation overhead in
terms of long (>500KB) seeks over time for a sub-set of
these workloads; the values plotted are the absolute difference
in seeks (log-structured minus original) for each unit of
time. In order to show temporal patterns more clearly we
ignore short seeks (less than +/- 500 KB), which have much
noisier behavior. We see very strong temporal changes in seek
amplification, many of them on a diurnal pattern (slightly

148

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Workloads Characteristics.

read count write count read volume (GB) written volume (GB) mean write size OS (guest)
w84 655397 4158838 13.7 124.1 31.2 Red Hat Enterprise Linux 5
w95 1264721 2672520 30.3 27.7 10.8 Microsoft Windows Server 2008
w64 6434453 1023814 399.6 36.9 37.8 Microsoft Windows Server 2008 R2
w93 2928984 422470 115.7 11.4 28.3 Microsoft Windows Server 2003
w20 19652684 10189634 2353 332.8 34.25 Microsoft Windows Server 2003
w91 3147384 1169222 52.9 15.3 17.1 Microsoft Windows Server 2003
w7 6 258852 5817421 30.3 5.15 35.7 Microsoft Windows Server 2008 R2
w36 113090 18802536 399.6 4.02 141.8 Red Hat Enterprise Linux 5
w89 1536898 2089042 115.7 20.5 31.7 Microsoft Windows Server 2008 R2
wl06 576666 2699254 2353 8.4 21.2 Microsoft Windows Server 2003 Standard
w55 7797622 1057909 35.8 18.4 18.2 Microsoft Windows Server 2008 R2
w33 7603814 8013607 238 241 31.6 Red Hat Enterprise Linux 5
usr_0 904483 1333406 35.3 13 10.2 Microsoft Windows
src2_2 350930 805955 22.7 39.2 51.1 Microsoft Windows
hm_l 580896 28415 8.2 0.5 19.9 Microsoft Windows
web_0 606487 1423458 17.3 11.6 8.5 Microsoft Windows
u s r _ l 41426266 3857714 2079.2 56.1 15.2 Microsoft Windows
wdevO 229529 913732 2.7 7.1 8.2 Microsoft Windows
mdsO 143973 1067061 3.2 7.3 7.2 Microsoft Windows
rsrch _0 133625 1300030 1.3 10.8 8.7 Microsoft Windows
t s _ 0 316692 1485042 4.1 4.1 8 Microsoft Windows

operation (xlOOO)

(a) u s r _ l

operation (xlOOO)

(b) w eb_0

access distance in GB

(a) s r c 2 _ 2

access distance in GB

(b) u s r _ 0

operation (xlOOO) operation (xlOOO)

(c) w91 (d) w55

1.0

0.8

LL. 0.6
Q
u 0.4

0.2

°--2

— NoLS

LS

_______________ '
1

.0 - 1.0 0.0 1.0 2.0
access distance in GB

(c) w 8 4 (d) w64

Fig. 3: Log-structured translation overhead (log-structured
minus original) in terms of long (>500KB) seeks over time
for MSR ((a) u s r _ l and (b) web_0) and CloudPhysics ((c)
w91 and (d) w55) workloads.

Fig. 4: CDF of access distances across (a) src 2 _ 2 and (b)
u s r_ 0 from MSR traces, and (c) w2 0 and (d) w3 6 from
CloudPhysics traces for both non-log-structured (NoLS) and
log-structured (LS) translation.

obscured by plotting vs. operation number rather than time). In
other words, not only does seek amplification vary widely from
trace to trace, but it varies widely over time within individual
traces.

In considering the performance impact of seek amplifica­
tion, we note that the cost of a seek varies significantly with
its length. Very short seeks (e.g. 100s of KB) result only
in a modest rotational delay, equivalent to the transfer time
required to read the skipped sectors. Longer seeks incur both
head seek and rotational delay; for seeks of substantially more
than one track the rotational delay can be well-approximated
by an average 1/2 rotation (3-5ms), while the time required

for head movement increases from a few ms to 25ms or more
as the seek length increases.

CDFs of seek distances are shown in Figure 4. We note
that there is a systematic difference between the older traces
(src2 _ 2 , u sr_ 0) and the newer ones (w84, w64): in the
older traces a larger fraction of log-structured seeks (vs. non­
log-structured) were between +1 GB and -1 GB, while for the
newer traces less than half of the log-structured seeks fell
within a range that includes virtually all of the seeks from
the original block traces.

Actual seek lengths are dependent on details of how the
data is written. In particular, since the traces include reads

149

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

from sectors which were written before the period of trace
collection, we need to assign a physical location for unwritten
data. We assume this data is stored at a physical location
corresponding to its LBA, and start the write frontier above the
highest LBA found in the trace. As a result many seeks will be
longer than they would be if all data was written log-structured
from the beginning, biasing any computation of mean seek
distance. However the CDFs in Figure 4 are restricted to a
narrow range of LBA offsets, which would not be affected by
placement of unwritten data.

From the results shown in Figures 2, 3, and 4 we can
conclude the following about the effect of log-structured
writing on seek behavior, at least for the traces available to
the authors:

• Not all workloads incur read seek amplification from
log-structured storage; however for some workloads the
penalty is substantial.

• Workloads which have little or no read seek amplification
when averaged over long time periods (e.g. w55) may
have periods where they suffer significant read seek
overhead.

• The effect of log-structured writes on the distribution of
seek lengths varies by workload; more work is needed to
fully understand it.

Finally we note that the MSR traces, which are over a
decade old, exhibit substantially different behaviors than the
newer CloudPhysics traces. We urge researchers to consider
carefully whether results based on the MSR traces are appli­
cable to more modern systems.

IV. R e a d s e e k r e d u c t i o n s t r a t e g i e s

We next motivate and describe three techniques for reducing
read seek amplification: opportunistic degragmentation, trans­
lation aware look-ahead-behind prefetching, and translation
aware selective caching.

A. Opportunistic defragmentation

As arbitrary LBAs are written to the physical write frontier,
a log-structured system becomes fragmented—i.e. the LBA
space is represented by many non-contiguous physical extents,
each corresponding to a small fragment or LBA range. This
fragmentation is in turn responsible for read seek amplifica­
tion, where a read for an LBA range may require access to
multiple physical extents and thus seeks between those extents.

We can measure this fragmentation in two ways: static frag­
mentation and dynamic fragmentation. Static fragmentation
is just a measure of how many physical extents have been
created; it is also equivalent to the number of seeks which
would be incurred by a sequential read of the entire LBA
space. However we don’t read the LBA space sequentially;
some fragmentation may never effect a read operation in the
workload, while other fragments may impact many read oper­
ations. By dynamic fragmentation we mean the fragmentation
of a single read—i.e. the number of non-contiguous physical
extents which would need to be fetched to fulfill that read
request.

(a) u s r _ 0

(c) w2 0

(b) h m _ l

(d) w3 6

Fig. 5: CDF of fragmented reads for (a) u se r_ 0 , (b) hm_l,
(c) w2 0 and (d) w3 6.

In Figure 5 we see CDFs for dynamic fragmented read
operations (i.e. ignoring un-fragmented reads) for several
traces. Rather than being evenly distributed, in each case the
bulk of the fragments are found in a small fraction of the
read operations: for us r_0 , hm_l and w2 0 over half of the
fragments are found in about 20% of the operations, while for
w36 the disparity is even higher.

The idea of opportunistic defragmentation (Algorithm 1)
is to take advantage of the fact that read operations re­
order fragmented data before returning it, allowing us to
eliminate heavily-fragmented sections of data by writing back
a defragmented version at the cost of only a single seek (to
the write frontier) and a sequential write.

Extensive defragmentation (e.g. as performed by simple
translation layers in SMR drives) would likely eliminate
almost all read seek amplification, as it would in effect turn
a log-structured (i.e. temporally-ordered) system back into a
spatially-ordered one at run time; however the overhead of
doing so would be extremely high. Opportunistic defragmen­
tation instead focuses on fragments which actually matter -
because they impact a read - and takes advantage of work
which already needed to be done in order to fulfill a read
request.

We see this in operation in Figure 6. The LBA range 1..6

Algorithm 1: Opportunestic defragm entation

l while True do
2 10 R e c e i v e l O ()
3 if 10 = = read then
4 D o R e ad (lOextent)
5 if F r a g m e n t e d R e a d (lOextent) = = True then
6 | W r i t e A t L o g H e a d (lOextent) ;
7 end
8 end
9 end

150

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

5 6 3

(A) : Wr 3

(B) : Wr 5

(C) : Rd 2-5

(D) : defragment
(Wr 2-5)

- >►....►....► (E): Rd 2-5 * 5

(F): Rd 1-2

Non-written LBA ^Inva lida ted __Written L BA | Recently written LBA

y Write frontier — ► Rd Seek>> Read

Fig. 6: State of the log along with required seeks for a
sequence of read/write operations under log-structured transla­
tion showing how opportunistic defragmentation reduces extra
seeks but also can impose overhead. and LBA 3 and
5 are updated resulting in fragmentation, t c ’- sequential read
operation of LBA range 2..5 incurs three additional seeks, tp:
opportunistic defragmentation re-writes the read LBA range
(2...5) to the log head. tF\ LBA range 2..5 is re-read but
this time with no additional seek. tF: A read to LBA range
1..2 causes an extra seek as a results of using opportunistic
defragmentation.

is contiguous at the start, but is then fragmented by writes
to LB As 3 and 5. A read of the LBA range 2.. 5 incurs
three extra seeks due to this fragmentation; however if we
then defragment the range by writing the data back to the
write frontier, a subsequent read of the same range incurs no
extra seeks. We note that opportunistic defragmentation does
not come for free; it incurs an additional seek to the write
frontier and transfer time to re-write the data, and its use
of free space will eventually necessitate running the cleaning
algorithm with its attendant overheads. We can reduce these
overheads by restricting the times when defragmentation is
performed, specifically by defragmenting only regions with
N or more fragments, or waiting until a fragmented range has
been accessed k or more times.

B. Translation aware look-ahead-behind-prefetching

Although the file system and block layers in most op­
erating systems go to sometimes great lengths to ensure
that data is allocated contiguously, it does not always get
written sequentially to disk. This can be clearly seen in a
section from the MSR hm_l trace shown in Figure 7a, where
a series of contiguous LBA ranges are written in various
orders: descending, ascending within small chunks with the
chunks descending, interleaved ascending, etc. Examples in
the CloudPhysics traces are less extreme; however in Fig­
ure 7b we see an example of small-scale randomness which is

le5

write operation write operation

(a) h m _ l (b) wl 0 6
Fig. 7: Examples of highly non-sequential LBA accesses from
traces (a) hm_l and (b) w!0 6.

more common in those workloads. In addition another source
of non-sequentiality occurs when multiple sequential write
streams are interleaved on their way to the disk.

In a conventional disk system, none of these write patterns
would be a big deal. On further examination one finds that
the sequences of descending I/Os in Figure 7a were dispatched
almost simultaneously (e.g. several dozen I/Os over the course
of a few microseconds), and that they actually completed in
ascending LBA order. In other words, the disk subsystem was
able to re-order the I/Os on the fly and then re-write them
sequentially with almost no overhead.

In a simple log-structured system these I/Os would instead
be written in an unwanted order, preserving it so that it could
interfere with later reads of the same LBA range. Rather than
long-distance seeks, the risk here is of missed rotations, where
a read of physical location N+l followed by a read of location
N requires an entire disk rotation to “back up” to the preceding
LBA. To examine how often this might occur, we measure
mis-ordered writes, writes with LBAs sequentially following a
write in the near future, (“near future” being defined as “within
the next 256 KB of write operations). We see values for this
metric for several traces in Figure 8; in several cases as many
as one in 25 (wl06) or one in 20 (src2_2) of writes are mis-
ordered.

We consider the mis-ordered writes phenomenon and offer
translation aware look-ahead-behind prefetching. Although
techniques used in this method (i.e., look-ahead and look-
behind prefetching [22]) are not novel, employing them

workload

Fig. 8: Mis-ordered writes within the distance of 256KB.

151

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

t
upon accessing fragments could reduce future read seeks
significantly. Look-behind prefetching is a standard caching
technique used in disk drives; it is similar to look-ahead
prefetching, which is thought to be implemented on every
modern drive; look-behind prefetching is no more difficult to
implement, but may be less commonly implemented due to
limited utility with conventional workloads. For log-structured
systems, however, we argue that look-behind prefetching
serves to effectively reduce missed rotations due to out-of­
order writes.

To describe look-behind, we first describe lookahead: after
completing a read up through LBA N, if there is no pending
request requiring seeking to another track, the drive will read
LBA 7V + l,iV + 2, .. .iV + fc into cache, in the hopes that they
will be requested in the near future. This is quite likely, e.g. in
the common pattern of single-threaded sequential read, where
the read request for block N +1 is not received until after the
read completion for block N has propagated up through the
operating system and the next read request could be issued.
In other words, lookahead consists of continuing to read for
some length of time after all the current requests are finished.

In contrast, look-behind entails reading LBAs before the
next requested LBA. On receiving a read request for LBA N,
the disk seeks to the appropriate track; once the read head
is centered, it reads data into cache up through LBA N — 1,
then reads N and completes the request. In other words, in
look-behind the drive bets that a read to N will be followed
by a read to N — 1; implementing it consists of reading for
some length of time before the next request begins. Although
look-behind provides some performance improvement with
conventional workloads, it is limited; however it is just the
thing to prevent missed rotations due to mis-ordered writes in
a log-structured system. In our trace-driven workload analysis
under log-structured translation we evaluate a combination
of lookahead and look-behind prefetching, as described in
Algorithm 2.

In Figure 9 we see how the combination of look-behind
and look-ahead prefetching can reduce the number of seeks.
As depicted, at the initial state LBA 1 to LBA 6 are already
written to the log. Thereafter, LBA 3, 2 and 4 are updated

Algorithm 2: Look-ahead-behind-prefetching i
i while True do
2

3

4

5

6
7

8

9

10
11

10 <— R e c e i v e l O ()
if 10 — read then

for Iba in lOextent do
pba �<— R e t r i e v e P B A ()
if F r a g m e n t e d R e a d () == True then

P r e F e t c h (fetchRegion);
D o R e a d (pba);
P o s t F e t c h (fetchRegion);

end
else

12

13

14

end
end

15

16 end
end

D o R e a d (pba) ;

t
1 2 3 4 5 6

y (A): Wr 3
i 2 : 4 5 6 3

▼ (B): Wr 2

1 WM. 4 5 6 3 2
V (C): Wr 4

i m 5 6 3 2 4
^_________________________
...¥

► ^
...¥

■ lUj: KQ 1-0
-------------W

^ 5
^________

__

1
////.Or/;V7/:////V7/,5 6 3 2 4

^ > ~ (D’): Rd 1-5
..�..�

�--------------------..�

^ Non-written LBA ^

| Recently written LBA

Invalidated Q Written LBA

y Write frontier — ^ Rd Seek

Pre-post_fetched LBA

.... ► Read

Fig. 9: State of the log along with required seeks for a
sequence of read/write operations under log-structured trans­
lation showing how translation aware look-ahead-behind
prefetching eliminates extra seeks. tA, t b and tc- LBAs 3,
2 and 4 are updated, tp- LBA range 1..5 is read resulting in
four additional seeks due to fragmentation. to f • another read to
the same LBA range (1..5) is performed yet with no additional
seeks as look-ahead-behind prefetching is enabled; LBA 3 and
4 are prefetched upon reading LBA 2.

from tA to tc- At to a read operation to LBAs 1 to 5 takes
place; As seen, a read (without prefetching) leads to a total of 5
seeks, of which 2 are due to fragmentation. However, a shown
at to f look-ahead/look-behind reduces the overall seeks to 3;
in the path to read LBA 2, LBA 3 and LBA 4 are prefetched.

C. Translation aware selective caching

Finally, by caching small number of selected fragments in
RAM, we are able to eliminate a significant portion of seeks
which would not be omitted by a vastly large buffer cache.
Unless done carefully this is unlikely to work, as operating
systems running on modern servers typically devote gigabytes
of RAM to caching on-disk data—orders of magnitude more
than are available for on-drive caching, (and although more
RAM is available on the host, using it would directly compete
with the buffer cache.)

We take advantage of the fact that (for the workloads
examined in this work) access to fragments on disk is highly
skewed, with a small number of fragments responsible for a
large number of seeks. By caching just those fragments we
are able to make the best use of a small cache, eliminating

152

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

(a) usr_l

6000 a)

2 0 0 0 ^
3
E

o 3

25i
2° N
15 g1

io i

1500 2

(b) hm_l

125 |

1001
75 g1

50 £
ro

25 5
E

fra g m n e t ID

(c) web_0

4K
------ access-cifunt*
— s ize r

l 3Ku

S 2K-
u / rra

IK

OK
OK 2K 4K 6K

300 S

ri>
200 2

tu>
100 Id

E=50 U

150 _
CO

125 S
CD

50

25

0
fra g m n e t ID

5K 10K 15K
fra g m n e t ID

(d) src2_2
10K

8K
| 6K
a) 4K

(D 2K
OK

------- a c c e s s c o u f i t

f-J

i*-1

1K 2K 3K
fra g m n e t ID

201
CD

1 5 -s
di
CQ

10 4=(D>
5 J53

E
o 3

(e) w2 0 (f) w33 (g) w55 (h) wl0 6

Fig. 10: X axis: fragments are sorted by read access count from the most to least popular. Blue solid line: access count of the
sorted fragments. Red dashed line: CDF of required cache size to store the fragments.

large numbers of seeks while avoiding cache pollution from
data which is unlikely to incur read seeks.

In Figure 10 we see fragment access statistics for a range of
traces; fragments (solid blue line) are sorted by access count
(y axis) from most to least popular, while the cumulative cache
size needed to hold the corresponding fragments is shown in
dashed red. In each case we see that the fragments responsible
for a large majority of accesses (and thus additional seeks) add
up to a few 10s of MB or less, well within the size that may be
readily cached within an on-host driver, (although such a cache
might be a bit large for current drive controllers with 128 MB
DRAM, drives are starting to move to 256 MB DRAM chips
for cost and supply reasons.)

Our translation aware selective caching algorithm is seen
in Algorithm 3; data from fragmented reads is cached with
LRU eviction, eliminating read seeks in those cases where the
data sought may be found in cache first.

V. E v a l u a t i o n

Using the disk model described in Section II, we evaluate
the three proposed techniques, opportunistic defragmentation,
translation aware look-ahead-behind prefetching and trans­
lation aware selective cachings we count the number of
seeks generated in non-log-structured fashion and accordingly
report the seek amplification factor (SAF) under log-structured
translation as well as when such techniques are combined with
it. We run our experiments against workloads sampled from
both MSR [201 and CloudPhysics [21] traces; workloads were
selected to represent different behaviors in terms of read/write
intensity and seek count. For the experiments related to
translation aware selective caching technique, the cache size
is set to 64MB.

Results may be seen in 11; for MSR workloads as seen
in Figure 11a, when log-structured translation is used, all
studied workloads except for u s r _ l and hm_l show a seek
amplification factor of less than one, meaning a reduction
in seek count. Such workloads are write-intensive (see Table
I) and potentially could benefit more from log-structured
translation (all back-to-back writes are written sequentially
requirung no seek). Contrary to MSR workloads, as observed
in Figure 1 lb, the majority of CloudPhysics workloads suffer
from a SAF of greater than one when log-structured translation
is used. As reported in Table I, these workloads are not
write-intensive and therefore benefit less from back-to-back
write operations. As a result, additional seeks incurred by
fragmented reads leads to a greater seek count compared to
non-log-structured fashion.

Algorithm 3: Selective caching on reads
1 while True do
2 IO i— R e c e i v e I O ()
3 if IO == read then
4 if F r a g m e n t e d R e a d () == True then
5 for fragment within lOextent do
6 if C h e c h k C a c h e (fragment) == True then
7 | R e a d C a c h e (fragment);
8 end
9 else

io I R e a d D i s k (fragment);
n | w r i t e C a c h e (fragment);
12 end
13 end
14 end
is else
16 | R e a d D i s k () ;
17 end
18
19

end
end

153

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

(a) MSR traces

workload

(b) CloudPhysics traces

Fig. 11: Seek amplification factor of log-structured translation (left bar), log-structured translation when combined with
opportunistic defragmentation (second bar from left), translation aware look-ahead-behind prefetching (third bar) and
translation-aw are selective caching (last bar) for (a) a subset of MSR and (b) CloudPhysics workloads.

All the proposed techniques except for opportunistic defrag­
mentation result in SAF improvement across every workload;
as stated in IV-A, opportunistic defragmentation comes at the
cost of an additional seek which may result in greater seek
amplification factor. This can be seen in Figure 11 in some
of the studied workloads such as src2_2, w93 and w2 0; in
w2 0 case we observe that SAF is worsen by 2.8x.

Depending on workload, translation aware look-ahead-
behind prefetching has a different impact on SAF. While it
shows a marginal improvement for some cases (e.g., usr_l,
hm_l, w55 and w33 with less than 1% of improvement) it
significantly improves SAF in other cases including w8 4, w95
and w91 (up to 3.7x improvement); these latter cases probably
contain a considerable amount of mis-ordered writes.

Translation-aw are selective caching on average, performs
the best among all proposed techniques. As seen in Figure
11, it results in the lowest SAF in all workloads except for
a few such as usr_l and src2_2. In the best case for the
w91 workload, it reduces the SAF caused by log-structured
translation from 3.7 to 0.2.

VI. R e l a t e d w o r k

Following the original log-structured file system paper [3]
a long series of works have examined the write amplification
due to cleaning, both for disk-based systems [5], [4] and for
flash [23], [24], [6], [7], [8], [9]. In general these efforts
have focused on simplified random workload models; write

amplification for workloads has primarily been addressed in
the context of evaluating cleaning and translation algorithms.

Besides, a number of file systems which also write in part
or totally in a log-structured fashion have been proposed for
SMR disk; examples include SFS [25], HiSMRfs [26], and
SMRBD [27]. Other work has examined block translation lay­
ers, including SMART [15], Virtual Guard [16] and Cassuto’s
early work on indirection systems for SMR disk [17].

None of the prior work, however, has addressed the inherent
seek overhead (specifically read seek overhead caused by
fragmentation) in log-structured storage systems, which is
addressed by this work. There is only a small number of work
that offers general solutions to overcome the seek overhead in
log-structured systems [28], [12], [29], [30].

Zhang and Ghose proposed a combined journaling/log-
structured file system for reduced seek overhead [28]. Their
approach is orthogonal to ours as it is offered at the file
system level while our proposed techniques try to resolve
the issue at the translation layer level. This also applies to
Wang’s WOLF file system [12] which went to great lengths
to separate hot and cold data (for cleaning cost reduction)
without incurring seek overhead due to switching between
write frontiers. Similar to Wolf [12], Zhang and Liu [29],
leverage an external intermediate buffer at the system level
to handle the defragmentation process and be able to rewrite
files defragmented sectors on disk.

There are also some other work proposed to reduce seeks,

154

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

yet not for log-structured file system. For instance, Jemigan
and Quinn proposed a two pass defragmentation mechanism
for the FAT file system [30]. In contrast to our proposed
techniques which is transparent to the upper layers (OS) and
is triggered automatically whenever a fragment is accessed,
Jernigan's and Quinn's proposed approach requires a com­
mand from upper layers to initiate the process.

VII. Co n c l u s i o n

We present the first examination of disk seek overheads in
log-structured storage systems such as sMR disk translation
layer, showing the effect of workloads on this issue. We
show that a fraction of workloads incur large numbers of
additional read seeks when writes are performed in log-
structured fashion.

We describe and evaluate three techniques for addressing
these overheads: two novel methods—opportunistic defrag­
mentation and translation aware selective caching—and trans­
lation aware look-ahead-behind prefetching, an existing disk
buffering technique, showing that read seek overheads are
substantially reduced in all cases, resulting in little to no
overhead for log-structured disk storage in almost all cases.

Ac k n o w l e d g m e n t

We would like to thank Irfan Ahmad and CloudPhysics for
the use of their traces, and our shepherd, Hung-Wei Tseng, and
the anonymous reviewers for their valuable suggestions. This
work was supported in part by a NetApp Faculty Fellowship.

Re f e r e n c e s

[1] R. Finlayson and D. Cheriton, Log files: an extended file service
exploiting write-once storage. ACM, 1987, vol. 21, no. 5.

[2] J. Ousterhout and F. Douglis, “Beating the I/O bottleneck: a case for
log-structured file systems,” ACM SIGOPS Operating Systems Review,
vol. 23, pp. 11-28, Jan. 1989, aCM ID: 65765.

[3] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” in 13th ACM symposium on Operating
systems principles. Pacific Grove, California, United States: ACM,
1991, pp. 1-15. [Online]. Available: http://dx.doi.org/10.1145/121132.
121137

[4] J. T. Robinson, “Analysis of steady-state segment storage utilizations in a
log-structured file system with least-utilized segment cleaning,” SIGOPS
Operating Systems Review, vol. 30, no. 4, pp. 29-32, Oct. 1996.

[5] J. Menon and L. Stockmeyer, “An age-threshold algorithm for garbage
collection in log-structured arrays and file systems,” in High Perfor­
mance Computing Systems and Applications, J. Schaeffer, Ed. Springer
US, 1998, vol. 478, pp. 119-132.

[6] S. Baek, J. Choi, D. Lee, and S. H. Noh, “Model and validation of block
cleaning cost for flash memory,” in In t’l Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation. Samos, Greece:
Springer-Verlag, 2007, pp. 46-54.

[7] L. Xiang and B. Kurkoski, “An improved analytic expression for write
amplification in NAND flash,” in 2012 International Conference on
Computing, Networking and Communications (ICNC). Maui, Hawaii:
IEEE, 2012, pp. 497-501.

[8] P. Desnoyers, “Analytic Models of SSD Write Performance,” ACM
Transactions on Storage, vol. 10, no. 2, pp. 8:1-8:25, Mar. 2014.

[9] B. Van Houdt, “A Mean Field Model for a Class of Garbage Collec­
tion Algorithms in Flash-based Solid State Drives,” in Proceedings o f
the ACM SIGMETRICS/International Conference on Measurement and
Modeling o f Computer Systems, ser. SIGMETRICS ’13. New York,
NY, USA: ACM, 2013, pp. 191-202.

[10] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Modeling
drive-managed smr performance,” ACM Transactions on Storage (TOS),
vol. 13, no. 4, p. 38, 2017.

[11] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylighta window on
shingled disk operation,” ACM Transactions on Storage (TOS), vol. 11,
no. 4, p. 16, 2015.

[12] J. Wang and Y. Hu, “Wolf-a novel reordering write buffer to boost the
performance of log-structured file system,” in Proceedings o f the 1st
USENIX Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083329

[13] M. Jung and M. Kandemir, “An Evaluation of Different Page Allocation
Strategies on High-Speed SSDs,” in Proc. o f the 4th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage’12), Boston,
MA, Jun. 2012.

[14] S. Kadekodi, S. Pimpale, and G. A. Gibson, “Caveat-scriptor: Write
anywhere shingled disks.” in HotStorage, 2015.

[15] W. He and D. H. Du, “Smart: An approach to shingled magnetic
recording translation.” in FAST, 2017, pp. 121-134.

[16] M. Shafaei and P. Desnoyers, “Virtual guard: A track-based translation
layer for shingled disks,” in 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17). USENIX Association, 2017.

[17] Y. Cassuto, M. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” in Mass Stor­
age Systems and Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE, 2010, pp. 1-14.

[18] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 6, no. 3, p. 18, 2007.

[19] A. Gupta, Y. Kim, and B. Urgaonkar, DFTL: a flash translation
layer employing demand-based selective caching o f page-level address
mappings. ACM, 2009, vol. 44, no. 3.

[20] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
practical power management for enterprise storage,” in Proceedings o f
the 6th USENIX Conference on File and Storage Technologies. San
Jose, California: USENIX Association, 2008, pp. 1-15.

[21] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient
MRC Construction with SHARDS,” in 13th USENIX Conference on
File and Storage Technologies (FAST 15). Santa Clara, CA: USENIX
Association, 2015, pp. 95-110.

[22] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[23] S. Boboila and P. Desnoyers, “Performance models of flash-based Solid-
State drives for real workloads,” in IEEE Symposium on Massive Storage
Systems and Technologies. Denver, Colorado: IEEE, Jun. 2011.

[24] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in SYSTOR 2009:
The Israeli Experimental Systems Conference. Haifa, Israel: ACM,
2009, pp. 1-9.

[25] D. Le Moal, Z. Bandic, and C. Guyot, “Shingled file system host-
side management of shingled magnetic recording disks,” in Consumer
Electronics (ICCE), 2012 IEEE International Conference on. IEEE,
2012, pp. 425-426.

[26] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim, “Hismrfs: A high
performance file system for shingled storage array,” in Mass Storage
Systems and Technologies (MSST), 2014 30th Symposium on. IEEE,
2014, pp. 1-6.

[27] R. Pitchumani, J. Hughes, and E. L. Miller, “Smrdb: key-value data store
for shingled magnetic recording disks,” in Proceedings o f the 8th ACM
International Systems and Storage Conference. ACM, 2015, p. 18.

[28] Z. Zhang and K. Ghose, “yfs: A journaling file system design for
handling large data sets with reduced seeking,” in Proceedings o f the
FAST ’03 Conference on File and Storage Technologies, March 31 -
April 2, 2003, Cathedral Hill Hotel, San Francisco, California, USA,
2003.

[29] J. D. Ji Zhang, Hain-Ching Liu, “Disk drive storage defragmentation
system,” 2006, uS Patent 11,353,370. [Online]. Available: http:
//www.google.it/patents/US4741207

[30] S. D. Q. Richard P. Jernigan, “Two-pass defragmentation of compressed
hard disk data with a single data rewrite,” 1994, uS Patent 5,574,907A.
[Online]. Available: http://www.google.it/patents/US4741207

155

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 18:32:20 UTC from IEEE Xplore. Restrictions apply.

