
Towards Non-Intrusive Software Introspection and Beyond

Apoorve Mohan∗, Shripad Nadgowda‡, Bhautik Pipaliya∗, Sona Varma∗,
Sahil Suneja‡, Canturk Isci‡, Gene Cooperman∗, Peter Desnoyers∗, Orran Krieger†, Ata Turk§

∗Northeastern University, †Boston University, ‡IBM T.J. Watson Research Center §State Street Corporation

Abstract—Continuous verification and security analysis of
software systems are of paramount importance to many orga-
nizations. The state-of-the-art for such operations implements
agent-based approaches to inspect the provisioned software stack
for security and compliance issues. However, this approach, which
runs agents on the systems being analyzed, is vulnerable to
some attacks, can incur substantial performance impact, and
can introduce significant complexity. In this paper, we present
the design and prototype implementation of a general-purpose
approach for Non-intrusive Software Introspection (NSI). By
adhering to NSI, organizations hosting in the cloud can as well
control the software introspection workflow with reduced trust
in the provider. Experimental analysis of real-world applica-
tions demonstrates that NSI presents a lightweight and scalable
approach, and has a negligible impact on the performance of
applications running on the instance being introspected.

Index Terms—Software Introspection, Storage Dissagregation,
IaaS Cloud

I. INTRODUCTION

Many organizations deploy security agents alongside the

provisioned software stack to verify sanity, i.e., to ensure that

the software stack is not compromised. These agents run just

like any other application on the system while implementing

their respective security functions. IaaS-cloud providers even

offer deployable agent-based introspection solutions [1] and

image templates already “baked” with such security agents [2]

[3], which report to a provider-managed central monitoring

service. These agents periodically scan the file systems, mem-

ory, and running processes of the systems within their scope

in order to compare their findings against databases of known

vulnerabilities1 or malware, and send reports to the system

administrator summarizing their findings.

Over the decades, these practices of implementing secu-

rity functions through local agents have become a standard

in data centers and clouds, but this approach has several

shortcomings (see Fig. 1). First, security agents themselves

may become vulnerable and lead to new attack vectors into

one’s system, as reported through a recent “DoubleAgent”

attack that turns one’s antivirus into malware or/and hijacks

the system [6]. Second, as an agent is required to be installed

separately on every system, the operation and maintenance of

these agents becomes challenging at cloud-scale. For example,

introspecting 10K bare-metal instances would require deploy-

ing and managing the same number of agents, and a virtualized

1Non-profit organizations (e.g., Mitre Corporation [4], National Institute of
Standards and Technology [5], etc.) maintain and continuously update open-
source databases of vulnerable software and software configurations for public
use.

}Software
Stack

Send Health
Report

Operating System

Software Packages and Configurations

INTROSPECTED
INSTANCE

Introspection
Program

e.g. Amazon Inspector

Malicious
Program

e.g. User-Mode Rootkit

Performance-Sensitive
Workload

e.g. Apache Http Server

Interference

Introspect Software Stack

Influence
Analysis

At-Scale
Introspection

IAAS CLOUD

Tenant A

Tenant C

Tenant BProvider-Controlled
Monitoring System

Fig. 1: Visualizing agent-based introspection.

environment with 64 virtual machines per host would require

640K such agents. Third, while performing periodic security

inspection, these agents consume system resources (e.g., CPU

cycles, memory, network resources, etc.), which may impact

the performance of the primary workloads that the systems

are catering to. While the system may tolerate or avoid these

overheads, this may, in turn, lead to performance instabilities

or resource inefficiencies [7]. Finally, a provider-managed

introspection service is intrusive for privacy and security-

sensitive organizations such as federal agencies, financial

institutions, hospitals, etc. Despite the economic benefits of

operating in a public cloud, they refrain from using public

cloud offerings due to the lack of control and trust in the

provider. For such organizations to use public cloud offerings,

they would want to enjoy private datacenter-like properties

(e.g., control, privacy, security, etc.), even when operating in

a public IaaS-cloud [8].

Several efforts have been made to overcome the shortcom-

ings of agent-based introspection [9] [10] [11] [12] [13] for

specific instance types. But unfortunately, none of these offers

a solution that is non-intrusive, general-purpose2 and tenant-
controllable at the same time. These efforts either intercept

I/O requests of an instance provisioned to a remote virtual

disk and recreate the filesystem state to perform introspection,

or they propose provider-managed solutions to snapshot virtual

machines at the host-layer and use the snapshot to perform in-

trospection. For example, Banikazemi et al. [9] propose intru-

sion detection techniques for instances provisioned to a SAN

target; however, this can lead to interference within the SAN

controller’s I/O path – this not only violates the requirements

for non-intrusive introspection but also requires specialized

2In the context of this paper the phrase ”general-purpose” refers to
instance-type (i.e. virtual machine or bare-metal server) and operating-system
agnostic. Furthermore, a general-purpose introspection system should not
require specialized hardware (e.g., SAN) or support from the hypervisor (in
case the of virtual machines).

173

2020 IEEE International Conference on Cloud Engineering (IC2E)

978-1-7281-1099-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IC2E48712.2020.00025

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

hardware. In another proposal, Richter et al. [11] propose

recreating the disk state of virtual instances by intercepting

the I/O between the hypervisor and the disk emulator, which

is not a general-purpose solution as it would not work for

bare-metal instances. Oliveira et al. comes closest to achieving

non-intrusive introspection by snapshotting running virtual

machines and exposing the snapshots as read-only pseudo-

devices for out-of-band introspection, however, not only is

this approach instance-specific; it still requires resources and

access to the host where the VMs are running. Furthermore,

these systems require the tenant to trust the cloud provider

fully.

In this paper, we explore the answers to the following

questions:

• Can we develop an agentless introspection technique that
works for both virtual machines and bare-metal servers?

• Can we develop a system that has limited complexity for
small-scale deployments, so it can be deployed in private
clouds and modest clusters?

• Can we reduce the overhead and complexity of security
introspection for cloud-scale systems?

• Can we support tenants that don’t want to trust the
provider (e.g., those that encrypt their storage)?

Disaggregated storage allows us to address these questions.

The most critical aspect of non-intrusive introspection is to

have continuous and non-intrusive access to the state of the

provisioned software stack. Disaggregating the persistent state

of a running instance to a distributed storage system (e.g.,

Ceph [14], Lustre [15]) provides a clean separation of the

provisioned software stack from the running instance. This

disaggregation also enables a simple and practical mechanism

for non-intrusive access to the state of the provisioned software

stack, which can be exploited by different introspection and

inspection APIs to overcome the shortcomings mentioned

above for agent-based approaches. Until recently, storage dis-

aggregation has been primarily limited to virtualized instances.

However, recent research has demonstrated the possibility

to use storage disaggregation for provisioning bare-metal

instances with negligible performance overheads [16] [17] [18]

[19] [20] [21] [22] [23].

In this paper, we present the design and prototype imple-

mentation of a general-purpose approach for Non-intrusive

Software Introspection (NSI). NSI exploits the capability of-

fered by distributed storage to create a cheap copy-on-write

snapshot from a remote server and mounts the snapshot as

a read-only volume on the remote server to introspect the

latest state of the provisioned software stack. This approach

has several advantages over previous ones. Since it uses a

standard OS with support for arbitrary file systems, we can

mount any volume, requiring none of the special purpose

techniques developed in the hypervisor or SAN. Moreover,

as the OS of the introspecting server is isolated (not exposed

to the internet), it is simpler to ensure that the introspecting

system is not compromised. Furthermore, the introspection is

now decoupled from the tenant instance and is running on

a remote server, thus avoiding performance impact on the

workloads executing on the tenant’s instance. NSI also enables

tenants to create their own introspection servers to perform

introspection on volumes encrypted by tenant-controlled keys,

avoiding the need to trust to the provider; the only capability

this requires is to ensure that the tenant has a way of mounting

her own volumes.

Key contributions of this work include:

• We propose the design and prototype implementation

of NSI, a general-purpose approach for non-intrusive

software introspection. We also present a brief discussion

on other security analytics use cases that can be aided by

NSI. NSI consists of a set of microservices, reducing its

deployment complexity and enabling it to scale-out or

scale-up quickly. By opting for NSI’s modular design,

IaaS-providers can enable security-sensitive tenants to

control and verify components required to introspect their

provisioned software stack.

• A prototype implementation for NSI utilizing open-

source components is provided3. NSI’s modular

microservice-based structure lends itself to replacing the

underlying components – enabling system administrators

to replace any underlying component to keep up with the

changing technology. The prototype implementation is

straightforward. We implemented introspection capability

into an existing bare-metal provisioning system. All

we needed was a way to snapshot and mount volumes.

Although our prototype implementation is based on a

bare-metal provisioning system, it works with virtual

machines as it is.

• Our prototype implementation shows that the complex-

ity of performing non-intrusive software introspection is

small; i.e., all needed functionality can be contained in a

simple set of services deployed in a VM. Deployment is

straightforward for an enterprise and public clouds, and it

can scale up or scale out quickly with small management

overhead. Our evaluation shows that one can dedicate a

modest amount of infrastructure to introspect on many

computers; e.g., in our analysis, one system with 32

cores, 64 GB memory, and 10 Gbps NIC can perform

basic software introspection every 5 minutes for up to

463 other computers. Based on the evaluation results,

we deduce that for a 10K server cluster (i.e., a typical

Borg cluster [24]), it would take 23 servers to perform

basic software introspection, which is a trivial amount of

infrastructure to set up and manage, rather than reserving

resources for and coordinating with introspection agents

running on all 10K servers.

• We also evaluate the performance impact of NSI’s proto-

type implementation on real-world applications running

on introspected instances and compare it with agent-based

approaches. While agent-based introspection can lead to

up to ∼12% performance degradation NSI is observed to

be scalable with a negligible impact on the performance

3https://github.com/CCI-MOC/abmi

174

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

of the workloads. Our evaluation also demonstrates the

possibility of reserving resources with high confidence

for a particular introspection mechanism even across

different applications.

The remainder of this paper is organized as follows. We

present relevant background and the related work in Section II,

discuss the NSI architecture and prototype implementation

in Section III, present a runtime analysis for NSI and its

performance impact in Section IV, and conclude in Section V.

II. BACKGROUND AND MOTIVATION

In this section, we first list the requirements for employing

a general-purpose introspection system and then present some

existing work on introspection to explain/justify our need for a

new non-intrusive introspection solution. We then discuss the

advances in technology that enable us to perform agentless

introspection in the cloud.

A. Requirement for Non-intrusive Software Introspection

We first review the key desired features of a non-intrusive

software introspection, and how the requirements for support-

ing those features suggest the design of an agentless solution.

In this section, we will briefly discuss those requirements:

a) Separation of Introspector and Introspected: Integrity

of security introspectors is critical. To establish confidence

in their security assessment (about the introspected system),

security introspectors should be impervious to compromises.

In the case of an agent-based system, the agents (i.e., the

security introspectors) execute as just another application on

the system, potentially alongside any malicious software and

exposes themselves to compromise [6], doing more harm

than good. Moreover, the agents could also transitively get

influenced by the existing vulnerability in the system. For

instance, some trojan malware could override the ps utility on

your system to hide certain processes from reporting, and then

any monitor using that utility to detect suspicious processes

on your system will become ineffective [25]. Hence, it is

important that introspectors are separate from the introspected

system, i.e., the integrity of the entity performing the security

introspection should be verifiable independently from the

introspected system.

b) Managing Introspection at Cloud-Scale: It is essential

to keep the operational and maintenance cost associated with

security assessment in clouds to a minimum. In the existing

agent-based approach, a separate instance of security software

is required to be installed on every server. The complexity

of managing them is directly proportional to the scale of

introspected instances in the cloud. For example, introspecting

10K bare-metal instances would require to manage the same

number of agents, and the management complexity would

worsen even further if several virtual machines were run-

ning on each of the bare-metal instances. Common-routine

administrative tasks such as monitoring the health of agents,

collection of assessment reports, and rolling of agent updates

to all servers become challenging in this approach as the

scale grows. Furthermore, when operating at a cloud-scale,

the networking between introspected systems and the reporting

center becomes more complex as well. Therefore, there is a

need for a solution wherein the instances in the cloud can scale

independently, and the cost of implementing their security

introspection can be contained and managed efficiently.

c) Non-intrusive Introspection: Periodic introspection

should not have an impact on the performance of the work-

loads running on the introspected systems. Agent-based so-

lutions require the co-location of the agent with the running

workloads. When the agent periodically executes, it contends

with the running workloads for resources, potentially causing

jitter in the system and impacting the performance of the

running workloads [26]. This impact can be mitigated by either

(i) reserving exclusive resources for the agent on each server,

or (ii) running introspection when the server is under-utilized.

However, both of these approaches have side-effects, since

either (i) the reserved exclusive resources for the agent will

remain idle when the agent is not running (leading to resource

inefficiency), or (ii) there may be large time windows between

introspections, and malicious agents can exploit this feature to

avoid introspection. It is preferable to employ an introspection

mechanism that does not have a performance impact on the

workloads running on the introspected systems.

B. Introspection Mechanisms

In this section, we present an overview of some of the

well-known introspection mechanisms. They can be broadly

classified into two categories:

a) Vulnerability Detection: Vulnerabilities are weak-

nesses that can be exploited by a malicious entity to per-

form unauthorized actions. Heartbleed (OpenSSL-based) [27],

Shellshock/Bashdoor (Unix Bash shell-based) [28], and

GHOST (Linux glibc-based) [29] are examples of the most

infamous software vulnerabilities seen over the last decade.

Various tools such as FlawFinder [30], RATS [31], ITS4 [32],

and Foster [33] have been developed to detect software vul-

nerabilities. These tools employ techniques such as pattern

matching, lexical analysis, data flow analysis, taint analysis,

model checking, fault injection, fuzzing testing, etc., to detect

vulnerabilities [34].

b) Malware Detection: Malware is an ill-intentioned

software designed to conceal its identity and cause damage

to the computer system that it runs on. Types of malware

include Viruses [35], Rootkits [36], Keyloggers [37], etc.

Tools such as chkrootkit (for detecting the presence of

Rootkits) [38], Linux Malware Detect (Linux system scanner

to detect threats in shared hosted environments) [39], and

ClamAV (an antivirus engine for detecting trojans, viruses,

etc.) [40] are examples of well-known malware detection tools.

Such tools employ techniques like anomaly-based detection,

specification-based detection, and signature-based detection to

identify the existence of malware in a system [41].

Since there exist different tools and mechanisms to intro-

spect for various software related security issues, we designed

175

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

NSI such that it is compatible with different existing intro-

spection mechanisms.4 NSI’s default introspection mechanism

performs vulnerability detection. When evaluating NSI, we

demonstrate its compatibility with rootkit analysis and virus

scan mechanisms. (See Section IV for details.)

C. Related Work

With the increase in the number, complexity, and code-base

size of deployed software systems, the number of threats that

can lead to security breaches increased as well [42], [43],

[44]. Thus, introspection has become a key requirement for

organizational IT deployments in cloud settings [1], [13], [45],

[46], [47], [48], [49], [50], [51] and large-scale introspection

systems have been developed to address these requirements.

Introspection systems can be classified into two types:

Agent-based and Agentless introspection systems. In agent-

based introspection systems, the introspection agent/software

runs on each server and the agent periodically executes the

desired introspection mechanisms (e.g., ClamAV [40], chk-

rootkit [38], Linux malware detect [39], etc.) on the server

to forward the introspection results to a centralized statistics

collection system. Amazon Inspector [1], IBM BigFix [52],

Symantec Endpoint Protection [53], and Tanium Threat Re-

sponse [54] are examples of agent-based introspection sys-

tems.

Agent-based introspection has a number of drawbacks such

as being amenable to intrusion and creating interference,

and these issues have been previously reported in connection

with production deployments [26]. For virtual machines and

containers, agentless introspection systems such as OpVis [13],

Anchore [55], Clair [56], AquaSec [57], and Twistlock [58]

have been proposed to overcome these drawbacks. These

solutions exploit the non-intrusive capabilities available in

virtualized/containerized systems that enable snapshotting of

the target file-systems/images. Specifically, the open-source

tool OpVis [13] snapshots virtualized instances at the host-

level and introspects the snapshots using filesystem tree in-

trospection techniques such as Columbus [59]. Anchore [55]

and Clair [56] use image-scanning capabilities to introspect

container images. AquaSec [57], and Twistlock [58] offer

proprietary agentless container introspection solutions.

There exist a few studies that focus on agentless intro-

spection of bare-metal servers that are provisioned to Storage

Area Network (SAN) targets. Banikazemi et.al. [9] proposes

intrusion detection techniques at the SAN target level. Un-

fortunately, the introspection they do at the SAN-level leads

to interference within the SAN controller’s I/O path [10].

IDStor [10] avoids this problem through a network-based

intrusion detection approach. It intercepts every iSCSI request

between the server and the SAN target, re-creates the filesys-

tem state identifying an inverse mapping between blocks and

the inodes of files (external to the SAN), and introspects the

re-created filesystem state. However, it cannot detect threats

4NSI is compatible with introspection mechanisms for which access to the
filesystem is sufficient to detect threats.

instances provisioned from a
virtual disk exposed as remote
bootdrive (e.g. as iSCSI boot)

S1

D1

"read-only" snapshot mounted
to a server for introspection

Introspection
Server

Non-Intrusive
Introspection

Fig. 2: Non-intrusive introspection of instance S1 provisioned

to virtual disk D1.

caused by software that has not yet been accessed by the

server. Moreover, IDStor approach is not sustainable as it

requires developing special-purpose software to identify block-

inode inverse mapping for every filesystem type. Unlike these

approaches, the NSI design separates the image-control and in-

trospection services and thus avoids interference. Furthermore,

it can view the entire filesystem, and can detect vulnerabilities

located in the unused parts of the image. Finally, NSI is not

specific to SAN solutions, which require specialized hardware

to operate.

D. Enabling Technologies

a) Data center resource disaggregation: The advances

in data center networking capabilities (such as the common

use of 10-40 Gbps NIC’s on hosts, full bisection networks,

improved Ethernet latency, redundant network switches, higher

network bandwidth, link aggregation on bare-metal instances

to handle failures [20], [60], etc.) have led to an ongoing

paradigm shift towards data center resource disaggregation.

By fabricating the same system resource-types on standalone

blade servers that are interconnected via a network fabric,

high-capacity, low-overhead disaggregated services can be

offered [61]. Prominent examples includes, growing preference

to use a distributed remote storage over local-disk solutions for

storage for reasons of reliability, cost and scalability [21], [62],

[63], [64], ability to improve aggregate resource usage [65],

etc.

b) Unified system for instance provisioning and image
management: So far, such disaggregations were primarily

limited to virtualized systems and were not considered for

bare-metal instances. However, solutions such as M2 [17],

[66], Bolted [18], OpenStack-Ironic [67], etc., exploit the

above-mentioned technological advancements and offer rapid

bare-metal provisioning in a fashion similar to virtual-machine

provisioning. The bare-metal instances are provisioned from

remote disks stored on distributed storage. Due to the afore-

mentioned technological advances, they deliver comparable

performance to applications that run over locally mounted

disks [17], [68]. Furthermore, they offer image management

functionalities such as rapid snapshotting and cloning for the

bare-metal instance images. The advent of these systems has

exemplified the possibility of a general-purpose provisioning

176

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

(4) Collect
Introspection

Report

INTROSPECTION
SERVICE

Create
Host Image

Provision
Instance

PROVISIONING
SERVICE

(2) Mount
Clone

(1) Create
Clone

(3) Introspect
Clone

ORCHESTRATOR

Host Image

Running Instance

IMAGE
MANAGEMENT

SERVICE

Fig. 3: NSI workflow design

and image management system for both virtual and bare-metal

instances in the cloud.

III. NSI OVERVIEW

This section presents an overview of NSI’s design, compo-

nents, and workflow; and our prototype implementation. We

also briefly discuss some of the other use cases that can be

addressed using the proposed design.

A. Design Philosophy

The key goals of NSI are: (1) to enable non-intrusive soft-

ware introspection in the cloud; (2) the introspection solution

should be agnostic to cloud instance type (i.e., virtual machine

or bare-metal); and (3) cloud providers should be able to

support security-sensitive tenants. These goals have a number

of implications in NSI’s design. Fig. 2 present a high-level

overview of of the proposed non-intrusive introspection.

NSI relies on diskless provisioning of cloud instances to

access the state of the provisioned software stack. By doing

so, NSI is not required to execute an agent on the introspected

bare-metal instance or the host (in the case of virtual ma-

chines). Furthermore, using the feature-set offered by today’s

modern distributed storage systems, NSI can discreetly create

lightweight read-only clones of the current software stack,

which can be accessed remotely without interfering in the I/O

path of the remotely provisioned instance. The read-only clone

can be mounted remotely and be introspected non-intrusively

– irrespective of the instance-type. Modern distributed storage

implementations expose block device interfaces for operations

such as lightweight cloning, remote mounting, etc. By pro-

visioning instances in a diskless manner, tenants workloads

are decoupled from the software stack, opening the possibility

for discreetly snapshotting the current state of the software

stack and performing out-of-band introspection on the latest

snapshot. Thus, while performing periodic introspection, NSI

avoids any performance impact on the workloads executing on

an the introspected instance. NSI opts for a microservice-based

architecture for software introspection to enable independent

control and management of different components required for

software introspection. Tenants can either rely on the provider

to implement all these components or bring in their own

implementation of a particular component. Tenants can also set

up their own introspection servers to perform introspection on

volumes encrypted by tenant-controlled keys, avoiding having

to trust the provider; the only capability this requires is to

ensure that the tenant has a way of mounting her own volumes.

B. Components and Workflow

NSI consists of four microservices. Fig. 3 presents the

workflow design for NSI between the four microservices are:

(a) Provisioning Service, (b) Image Management Service,

(c) Introspection Service, and (d) Orchestration Service.
a) Provisioning Service: This service provisions cloud

instances from the remote-mountable image disks made avail-

able by the Image Management Service. For newly provisioned

instances, the service calls the Image Management Service

to create a new host image, and then the cloud instance is

provisioned from that host image. A server can be released by

a tenant, and later the tenant can restart the server by pointing

it to the same image. We call this re-provisioning. If the

instance is being re-provisioned, the Provisioning Service uses

the existing image hosted at the Image Management Service

for re-provisioning.
b) Image Management Service: This service hosts the

remote-mounted images for cloud instances and provides APIs

to rapidly snapshot or clone a provisioned cloud instances‘

image. The remote provisioning service heavily relies on the

image management service to perform its activities, but NSI

mainly uses the cloning capabilities of this service to clone

the host image of the instance to be introspected.
c) Introspection Service: This service first mounts a

clone (lightweight snapshot) created by the Image Manage-

ment Service for the instance to be introspected, mounts

the clone as a as a standard filesystem, and then scans the

mounted image to check for vulnerabilities. It maintains a

database of known vulnerabilities. This database is populated

and periodically updated by querying vulnerability databases

(open- or close-source based on availability). The introspection

service can run rootkit analysis and/or software vulnerability

analysis over the mounted volume. For security-sensitive ten-

ants, this service should also have a mechanism to manage

secrets (encryption keys) to be used when mounting encrypted

disks. We note that introspection operations that need memory

analysis are not immediately supported with this design.
d) Orchestration Service: This service controls the re-

mote introspection workflow among the different components.

It also offers an interface for tenantss to introspect the instance

they own. Tenants can submit requests to this interface for

introspecting the instance they control. This allows them to

control and change the introspection periodicity on demand,

and hence it allows them to control the cost of introspection

of their instance.

As shown in Fig. 3, when performing a remote introspec-

tion, the Orchestration Service: (1) creates a clone of the

177

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

provisioned instances‘ remote disk via the Image Management

Service; then (2) mounts the filesystem present on the clone;

and (3) invokes the Introspection Service to perform vulner-

ability analysis on the mounted image. Finally, (4) it collects

the vulnerability analysis results and reports the data back to

the tenant that initiated the introspection.

C. Extended Scope

NSI is an extensible system that can be used to support

the enforcement of various Security and Compliance Industry

Standards. This includes government regulatory standards like

FedRAMP [69], NIST [5], and other industry standards like

PCI-DSS [70], Center for Internet Security (CIS) [71]. These

are IT/Cloud standards required across Financial, Payment

Card industries. While we believe many of these requirements

can be implemented on top of NSI, in the scope of the paper,

we discuss two specific requirements that can be satisfied by

our system.

a) Configuration Analytic: Software misconfiguration

has been a major source of availability, performance, and

security problems. In a virtualized and multi-tenant cloud

environment, it is non-trivial to ensure correctness when con-

figuring and cross-configuring such components. Moreover,

configuration checks are also part of the different regulatory

compliance obligations [71] [5] [69]. There are existing agent-

based solutions [52] [72] to facilitate configuration manage-

ment for VMs and bare-metal systems, and there are also

agentless solutions [73] [74] [75] for containers. The unique

storage dis-aggregation framework in NSI allows us to bring

agentless configuration analytic capabilities for VMs and bare

metals to scans application and system configuration settings

to test them for compliance and best-practices adherence from

a security perspective.

b) Integrity Assurance: Another critical security capabil-

ity for the system is to identify the tampering of critical system

management artifacts. These artifacts include configuration

files, credentials, secrets-keys, or any other confidential data

from your system. This is again regulated under the Chap-

ter 11.5 of PCI-DSS standard. By periodically introspecting

the system state and comparing it to the previous state(s), we

can identify the file modifications in the system. These file

modifications are further semantically analyzed to determine

higher-level user action causing the change. For example, if we

identify ”/etc/passwd” and ”/etc/shadow” files are modified,

by comparing the content change, we can determine user

add/remove action in the system. These changes are then

compared against whitelisted actions to realize if unauthorized

actions are triggered in the system. State-of-art integrity as-

surance solutions requires an active monitoring agents like

inotify or auditd into system. Operating these agents in

context has proven to be detrimental to the application perfor-

mance. The agentless framework in NSI can be very efficiently

leveraged to provide the integrity compliance assurance for

VMs and bare metals.

D. Prototype Implementation

Since NSI follows a service-based approach, it allows

administrators to replace the solutions used for any of the

underlying services with the solutions that they prefer.

In our implementation, we employed M2 [17] as the Pro-

visioning Service, and M2 in conjunction with Ceph [76] as

the Image Management Service.

M2 is an open-source, multi-tenant, diskless provisioning

service. It provisions instances to a remote disk residing on

an image store backed up by a distributed file system, and

uses the Hardware Isolation Layer [77] tool to isolate the

provisioned servers. In our implementation, images of the

instances provisioned by M2 reside in Ceph. M2 employs

an iSCSI-based [78] network-booting [79] approach to pro-

vision instances. We used the Linux SCSI Target Framework

(TGT) [80] for iSCSI-based network booting.

Ceph is an open-source storage platform that implements

a highly reliable and scalable object storage on a distributed

cluster. M2 uses Ceph’s block storage interface for managing

and snapshotting instance disk images.

For the Introspection Service, we extended M2 to sup-

port software introspection. This implementation maintains a

database of software vulnerabilities populated using Canonical

Ubuntu Security Notices [81]5. Inherently, it uses IBM’s open-

source agentless crawler (IASC) [82] for scanning snapshots.

IASC crawls through the filesystem tree present on a snapshot

and generates frames corresponding to different OS and soft-

ware package details. IASC stores the generated frames in a

JavaScript Object Notation (JSON) [83] file. The vulnerability

detection component of the Introspection Service then reads

each frame and compares them against the blacklist present

in the pre-populated database. After comparing each frame

against the database, a list of vulnerabilities is generated

and returned to the Orchestration Service. We are working

on upstreaming the Introspection Service to M2. Note that

our introspection implementation can be extended with other

vulnerability detection services such as chkrootkit [38], OS-

CAP [84], or Linux Malware Detect (LMD) [39].

We also implemented our own Orchestration/Coordination

Service, which coordinates among the services for intro-

spection. It is implemented as a RESTful web-service [85].

Upon receiving an introspection request for a server, the

Orchestration Service first creates a snapshot of the server’s

disk image, then maps the snapshot as a block device using

Ceph’s block device interface, followed by mounting the

block device to a target directory. Now that the snapshot

has been mounted for introspection, the Orchestration Service

invokes the Introspection Service, passing the path to the

target directory as an argument. After the Introspection Service

returns the list of vulnerabilities, the Orchestration Service

returns that list as the response to an introspection request.

5It is also possible to periodically query other open-source databases
maintained by various non-profit organizations such as Mitre Corporation’s
Common Vulnerabilities and Exposures [4], National Institute of Standards
and Technology’s National Vulnerability Database [5], etc., and update the
vulnerability database.

178

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Dissection of time taken to process a single Software

Introspection request across different NSI services considering

two different VM configurations to host NSI.

Before returning the list of vulnerabilities, the Orchestration

Service also cleans up the state. i.e., it unmounts the mapped

block device, unmaps the disk image snapshot, and deletes the

snapshot.

IV. EVALUATION

In this section, we evaluate NSI. We first present the

experimental setup. We then analyze NSI and its service’s

runtime under an increasing load. We then present the end-

to-end introspection times of different vulnerability analysis

mechanisms. Finally, we present the performance impact of in-

trospection via NSI on workloads running on the introspected

bare-metal servers.

A. Experimental Setup

To evaluate NSI, on-demand bare-metal instances from

the Massachusetts Open Cloud [86] were used. The bare-

metal instances used during the evaluation have two 8-

core Intel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz (32 hy-

perthreaded cores), 64GB RAM and two dual-port 10 Giga-

bit Intel 82599 NIC’s. All of the bare-metal servers to be

introspected were running the RHEL 7.5 OS (provisioned from

a 50GB base image). The servers had no local disks attached

and the application data was stored on NFS drives mounted

on the bare-metal servers which was not being introspected.

A three-node 98 TB Ceph storage cluster with 27 OSD’s

and 10 Gbit external and internal NIC’s was used as the

Image Management Service. Each experiment presented from

here on is repeated five times, and the average of the five

values is plotted. For all the experimental results presented

in this section, none of the NSI components (responsible for

introspection) were running on the introspected bare-metal

instance. Therefore, the performances of applications running

on the introspected bare-metal instances are not affected –

irrespective of their compute intensities.

(a) NSI’s runtime under increasing load.

(b) Runtime of Image Management Service under increasing load.

(c) Runtime of Introspection Service under increasing load.

(d) Runtime of Orchestration Service under increasing load.

Fig. 5: Runtime analysis of NSI and its services.

B. Runtime Analysis of NSI and its Components

In this section, we present an analysis of NSI and its

components’ runtimes. For these analyses, two different VM

configurations are used to host the Provisioning Service,

Image Management Service client, Introspection Service, and

Orchestration Service. These VMs run CentOS 7.4. The first

configuration (VM1) had 32 vCPUs and 64 GB RAM allo-

cated, whereas the second configuration (VM2) had 4 vCPUs

and 4 GB RAM allocated. No workloads were running on

179

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Network traffic between Ceph Client and Ceph Cluster

when processing single introspection request.

the bare-metal servers while they were being introspected.

Note that the reason to conduct this experiment with two

VM configurations is to provide insight to tenants operating

at different scales. For example a tenant operating at a small

scale should not worry about reserving many resources for

introspection; whereas a tenant opreating at a larger scale

should be able to estimate the the amount of resources required

to introspect its massive infrastructure.

Fig. 4 presents a runtime dissection of the introspection of

a single server across NSI services. As seen in the figure,

in total, NSI requires from 7 to 9 seconds to process a

single introspection request when deployed on VM1 and VM2,

respectively. In both configurations, the introspection time

is dominated by the Introspection and Image Management

Service times, with the Orchestration Service taking the least

amount of time.

Fig. 5 presents how the runtime of NSI and its services

behave as the number of concurrent introspection requests

issued to them is increased from 1 to 32. Fig. 5a shows

the total introspection time of NSI under different numbers

of concurrent introspection requests, whereas Figs. 5b, 5c,

and 5d show the time consumed by the Image Management,

Introspection, and Orchestration Services, respectively.

As seen in Fig. 5a, the time to process introspection requests

is almost flat initially but starts to increase when trying to

process more concurrent requests (8 in the case of VM1,

and 4 in the case of VM2). As the number of concurrent

requests increases, the runtime increase in the Image Man-

agement Service is more prominent. This increase is due to

the increased network communication overhead between the

Ceph client and the Ceph cluster. As seen in Fig. 5a, even for

VM2 with 32 concurrent requests, the introspection time is less

than 40 seconds, indicating that NSI can be deployed with

modest resource requirements in production systems with a

large number of servers that need to perform fast introspection.

Also, the runtime differences between VM1 and VM2 indicate

that NSI can benefit from vertical scaling – especially when the

number of expected concurrent requests increase. Fig. 6 shows

the cummulative network traffic between ceph client and ceph

cluster when processing single introspection request. It was

Fig. 7: Software Introspection, Rootkit Analysis, and Virus

Scan times while running various workloads on the intro-

spected server.

observed that while processing a single introspection request,

∼75 MBs and ∼3MBs data was received (rx) and transmitted

(tx) respectively between the Ceph Client and Ceph Cluster.

Note that the communication between the Ceph client and

the backend (i.e. the Image Management Service) causes

the increase in end-to-end introspection time. The memory

bandwidth is much higher than the network bandwidth and

the blocks are fetched on-demand, thus memory bandwidth

is not increasing the end-to-end introspection time. The Ceph

client and backend are deployed with vanilla settings in our

modest setup. Parameters for enabling read-ahead, minimum

active clients, client-side caching, etc. were left unmodi-

fied/untouched. This can be one of the reasons why there was

an increase of 5 seconds as the number of concurrent requests

handled by the Image management Service increases from 16

to 32.

With the above results at hand, now let’s consider

an example for where we want to check for vulnerabilities in

the kernel and installed software packages for a typical Borg

cluster consisting of 10K bare-metal servers [24]. As shown

in Fig. 5a, it takes ∼22 seconds to concurrently process 32

such requests with VM2, which indicates that a server with the

same CPU-cores and memory can process ∼436 such requests

every 5 minutes. Therefore, to introspect 10K servers every

5 minutes for basic vulnerabilities, 23 such servers should

suffice. Furthermore, the network bandwidth usage to process

each request (i.e., Fig. 6) shows that a 10 Gbps NIC should

be sufficient for such an introspection server.

C. Different Introspection Mechanisms

Fig. 7 presents the Software Introspection, Rootkit Anal-

ysis, and Virus Scan introspection times with NSI while

running various workloads on the introspected server. The

basic Software Introspection scans for vulnerable OS and

180

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Impact of periodic introspection on MySQL workload

performance with increasing compute intensity.

software packages on a server6. The Rootkit Analysis checks

for the presence of rootkits using the chkrootkit [38]

software tool. A rootkit is a software program that tries to

gain unauthorized access to the system without being detected,

The Virus Scan Emulation emulates the behavior of anti-virus

software, i.e., to scan the contents of the entire filesystem. The

content scan option of IBM’s Agentless System Crawler [82]

was used for this experiment.

In Fig. 7, the three introspection mechanisms were applied

while the servers were running six different applications: the

MySQL [87] database server; the K-means clustering and

LavaMD n-body simulation applications from the Rodinia

benchmark suite [88]; the Apache web server [89]; and the

Embarrassingly Parallel (EP) and Conjugate Gradient (CG) ap-

plications from the NASA Advanced Supercomputing Parallel

Benchmark (NPB) suite [90] (class C). In this experiment, the

applications were configured to use all of the 32 hyperthreaded

cores available on the bare-metal server. The Sysbench [91]

and ApacheBench [92] benchmarking tools were used to gen-

erate workloads for the MySQL database server and Apache

web server, respectively. Both benchmarks were running on

the introspected bare-metal instances during the experiments.

NSI was running on a VM2 configuration.

As expected, the time taken to introspect a server with

different introspection mechanisms varied a lot, since the dif-

ferent introspection mechanisms were performing significantly

different analyses on the filesystem. As seen in Fig. 7, the time

taken to introspect a server was similar across applications.

The slight introspection time variance observed was due to

the differences in installed software and filesystem content

across different applications. Note that as the perturbations

across different applications are minor, we can estimate the

resources we need for the introspection with high confidence;

if it varied by a lot for different workloads, such estimate

would have been difficult.

6NSI’s Introspection Service (presented in Section III-D) was used for
detecting vulnerable OS and software packages

Fig. 9: Impact of agent-based introspection on performance

of applications running on the bare-metal server being intro-

spected.

Fig. 10: Impact of agentless introspection on performance

of applications running on the bare-metal server being intro-

spected.

D. Impact of NSI on Application Performance

We studied the impact of periodic agentless introspection on

a single application when running with different application

intensities and on different applications. In both cases, the

server was introspected three times during the lifetime of each

application and at an interval of one minute. Introspection of

each application started after the bootstrap of that application,

and application runtimes averaged around three minutes. VM2

configuration was used to host NSI services, and the applica-

tions and benchmarking tools used were the same as those

presented in Section IV-C.

Fig. 8 presents the MySQL database server’s OnLine

Transaction Processing (OLTP) throughput (Transactions-Per-

Second (TPS)) for two cases (with and without introspection)

as the number of MySQL server threads were varied from

1 through 32. The first case (circles with dashed red line)

presents the recorded TPS when the bare-metal server was

181

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

not introspected and the second case (triangles with dashed

blue line) shows the TPS when the bare-metal server was

periodically introspected. As seen in the figure, the two lines

match perfectly and there is no visible degradation in the OLTP

throughput due to introspection.

Figs. 9 and 10 respectively present the impact of agent-

based and agentless introspection on application performance.

For both figures, the reported performance percentages are

normalized against the application performance observed when

there is no introspection. For Fig. 9, introspection mechanisms

presented in Section IV-C are installed as agents on the bare-

metal servers and they are again configured to periodically

introspect the servers three times during the lifetime of each

application and at one-minute intervals.

As seen in Fig. 9, agent-based introspection causes up to

12% performance degradation. On the other hand, as seen in

Fig. 10 agentless introspection has negligible impact on the

application performance.

V. CONCLUSION

In this work, we proposed a general-purpose approach

for non-intrusive software introspection, NSI, and presented

its design and prototype implementation. NSI assumes that

cloud instances are provisioned to remote virtual drives. By

introspecting snapshots of these boot drives, NSI (i) mitigates

the issue of trusting a potentially compromised agent during

vulnerability analysis, (ii) eases the management of intro-

spection by performing introspection through a centralized

service instead of at each node, and (iii) provides a noninvasive

introspection mechanism for bare-metal servers that does not

impact their performance.

Our experimentation shows that NSI has negligible intro-

spection overhead on the application performance, whereas

agent-based systems can lead up to 12% performance degra-

dation in application performance. Through NSI’s prototype

implementation and experimentation we demonstrate (a) how

trivial it is to add non-intrusive introspection capability to an

existing diskless provisioning infrastructure, (b) resources we

need to dedicate for a general-purpose non-intrusive intro-

spection are modest, (c) ease of scaling-up and scaling-out in

enterprise and cloud-scale deployments, and (d) how tenant’s

can minimize trust in the provider for introspection.

VI. ACKNOWLEDGMENT

We gratefully acknowledge Mihir Borkar and Aditya Mohan

Sharma for their contributions in development and documen-

tation of NSI, and Naved Ansari and Radoslav Nikiforov

Milanov for their assistance in reserving and setting up the

evaluation environments. We would also like to thank the

industry partners of the Mass Open Cloud (MOC), including

Red Hat, Two Sigma, and Intel. Partial support for this work

was provided by National Science Foundation Grant OAC-

1740218.

REFERENCES

[1] Amazon, “Amazon Inspector,” https://aws.amazon.com/inspector/.

[2] A. E. C. Cloud, “Amazon web services,” Retrieved November, vol. 9, p.
2011, 2011.

[3] D. Aguado, T. Andersen, A. Avetisyan, J. Budnik, M. Criveti,
A. Doroiman, A. Hoppe, G. Menegaz, A. Morales, A. Moti et al., A
practical approach to cloud IaaS with IBM SoftLayer: Presentations
guide. IBM Redbooks, 2016.

[4] “Common Vulnerability Exposures,” https://cve.mitre.org/.
[5] “National Vulnerability Database,” https://nvd.nist.gov/.
[6] “The clever ’DOUBLEAGENT’ attack turns an-

tivirus into malware,” https://www.wired.com/2017/03/
clever-doubleagent-attack-turns-antivirus-malware/.

[7] W. Yan and N. Ansari, “Why anti-virus products slow down your
machine?” in Computer Communications and Networks, 2009. ICCCN
2009. Proceedings of 18th Internatonal Conference on. IEEE, 2009,
pp. 1–6.

[8] “Creating a Classified Processing Enclave in
the Public Cloud |IARPA,” https://www.iarpa.gov/
index.php/working-with-iarpa/requests-for-information/
creating-a-classified-processing-enclave-in-the-public-cloud, 2017.

[9] M. Banikazemi, D. Poff, and B. Abali, “Storage-based intrusion de-
tection for storage area networks (sans),” in Mass Storage Systems
and Technologies, 2005. Proceedings. 22nd IEEE/13th NASA Goddard
Conference on. IEEE, 2005, pp. 118–127.

[10] M. Allalouf, M. Ben-Yehuda, J. Satran, and I. Segall, “Block storage
listener for detecting file-level intrusions,” in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010,
pp. 1–12.

[11] W. Richter, “Agentless cloud-wide monitoring of virtual disk state,” in
Proceedings of the 2014 workshop on PhD forum. ACM, 2014, pp.
15–16.

[12] H. Zhou, H. Ba, J. Ren, Y. Wang, Y. Li, Y. Chen, and Z. Wang,
“Agentless and uniform introspection for various security services in
iaas cloud,” in Information Science and Control Engineering (ICISCE),
2017 4th International Conference on. IEEE, 2017, pp. 140–144.

[13] F. Oliveira, S. Suneja, S. Nadgowda, P. Nagpurkar, and C. Isci, “Opvis:
extensible, cross-platform operational visibility and analytics for cloud,”
in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference:
Industrial Track. ACM, 2017, pp. 43–49.

[14] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, (OSDI), USA, 2006, pp. 307–320.

[15] “About the lustre file system.” [Online]. Available: http://lustre.org/
about/

[16] A. Turk, R. S. Gudimetla, E. U. Kaynar, J. Hennessey, S. Tikale,
P. Desnoyers, and O. Krieger, “An experiment on bare-metal bigdata
provisioning,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). Denver, CO: USENIX Association,
Jun. 2016. [Online]. Available: https://www.usenix.org/conference/
hotcloud16/workshop-program/presentation/turk

[17] A. Mohan, A. Turk, R. S. Gudimetla, S. Tikale, J. Hennesey, U. Kaynar,
G. Cooperman, P. Desnoyers, and O. Krieger, “M2: Malleable metal as a
service,” in 2018 IEEE International Conference on Cloud Engineering
(IC2E), April 2018, pp. 61–71.

[18] A. Mosayyebzadeh, A. Mohan, S. Tikale, M. Abdi, N. Schear,
T. Hudson, C. Munson, L. Rudolph, G. Cooperman, P. Desnoyers,
and O. Krieger, “Supporting security sensitive tenants in a bare-metal
cloud,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19). Renton, WA: USENIX Association, Jul. 2019, pp.
587–602. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/mosayyebzadeh

[19] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina
et al., “Rack-scale disaggregated cloud data centers: The dredbox project
vision,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe. EDA Consortium, 2016, pp. 690–695.

[20] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker, “Network requirements for
resource disaggregation,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, 2016, pp. 249–264. [Online]. Available: https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/gao

182

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

[21] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black,
A. Douglas, N. Cheriere, D. Fryer, K. Mast, A. D. Brown,
A. Klimovic, A. Slowey, and A. Rowstron, “Understanding rack-scale
disaggregated storage,” in 9th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 17). Santa Clara, CA:
USENIX Association, 2017. [Online]. Available: https://www.usenix.
org/conference/hotstorage17/program/presentation/legtchenko

[22] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys ’16. New
York, NY, USA: ACM, 2016, pp. 29:1–29:15. [Online]. Available:
http://doi.acm.org/10.1145/2901318.2901337

[23] H. M. M. Ali, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani,
“Energy efficient disaggregated servers for future data centers,” in 2015
20th European Conference on Networks and Optical Communications-
(NOC). IEEE, 2015, pp. 1–6.

[24] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

[25] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Vmm-
based hidden process detection and identification using lycosid,” in Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments. ACM, 2008, pp. 91–100.

[26] “Amazon. summary of the october 22,2012 aws service event in the
us-east region.” https://aws.amazon.com/message/680342.

[27] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference. ACM, 2014, pp. 475–488.

[28] T. Fox-Brewster, “What is the shellshock bug? is it worse than heart-
bleed,” The Guardian, 2014.

[29] R. H. Inc., “GHOST: glibc vulnerability (CVE-2015-0235),” https:
//access.redhat.com/articles/1332213.

[30] D. A. Wheeler, “Flawfinder,” 2011.
[31] C. C. Security, “Rough Auditing Tool for Security,” https://security.web.

cern.ch/security/recommendations/en/codetools/rats.shtml.
[32] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static vulner-

ability scanner for c and c++ code,” in Computer Security Applications,
2000. ACSAC’00. 16th Annual Conference. IEEE, 2000, pp. 257–267.

[33] J. S. Foster and A. S. Aiken, “Type qualifiers: lightweight specifications
to improve software quality,” Ph.D. dissertation, Citeseer, 2002.

[34] W. Jimenez, A. Mammar, and A. Cavalli, “Software vulnerabilities,
prevention and detection methods: A review1,” Security in Model-Driven
Architecture, p. 6, 2009.

[35] P. Szor, The art of computer virus research and defense. Pearson
Education, 2005.

[36] M. Davis, S. Bodmer, and A. LeMasters, Hacking Exposed Malware
and Rootkits. McGraw-Hill, Inc., 2009.

[37] A. Emigh, “The crimeware landscape: Malware, phishing, identity theft
and beyond,” Journal of Digital Forensic Practice, vol. 1, no. 3, pp.
245–260, 2006.

[38] “checkrootkit,” http://www.chkrootkit.org/.
[39] “Linux Malware Detect,” https://www.rfxn.com/projects/

linux-malware-detect/.
[40] “Clam AntiVirus,” https://www.clamav.net.
[41] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”

Purdue University, vol. 48, 2007.
[42] Y. Shin and L. Williams, “Is complexity really the enemy of software

security?” in Proceedings of the 4th ACM workshop on Quality of
protection. ACM, 2008, pp. 47–50.

[43] T. Mccabe, “More complex= less secure,” McCabe Software, Inc, p. 12,
2014.

[44] D. Williams, R. Koller, and B. Lum, “Say goodbye
to virtualization for a safer cloud,” in 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18).
Boston, MA: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/hotcloud18/presentation/williams

[45] R. Koller, C. Isci, S. Suneja, and E. De Lara, “Unified monitoring and
analytics in the cloud,” in 7th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 15), 2015.

[46] H. wook Baek, A. Srivastava, and J. Van der Merwe, “Cloudvmi: Virtual
machine introspection as a cloud service,” in Cloud Engineering (IC2E),
2014 IEEE International Conference on. IEEE, 2014, pp. 153–158.

[47] F. Yao and R. H. Campbell, “Cryptvmi: Encrypted virtual machine
introspection in the cloud,” in Cloud Computing (CLOUD), 2014 IEEE
7th International Conference on. IEEE, 2014, pp. 977–978.

[48] L. Jia, M. Zhu, and B. Tu, “T-vmi: Trusted virtual machine introspec-
tion in cloud environments,” in Cluster, Cloud and Grid Computing
(CCGRID), 2017 17th IEEE/ACM International Symposium on. IEEE,
2017, pp. 478–487.

[49] S. Nadgowda, C. Isci, and M. Bal, “DÉjÀvu: Bringing black-
box security analytics to cloud,” in Proceedings of the 19th
International Middleware Conference Industry, ser. Middleware ’18.
New York, NY, USA: ACM, 2018, pp. 17–24. [Online]. Available:
http://doi.acm.org/10.1145/3284028.3284031

[50] S. Nadgowda and C. Isci, “Drishti: Disaggregated and interoperable
security analytics framework for cloud,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’18. New
York, NY, USA: ACM, 2018, pp. 528–528. [Online]. Available:
http://doi.acm.org/10.1145/3267809.3275470

[51] S. Suneja, R. Koller, C. Isci, E. de Lara, A. Hashemi, A. Bhattacharyya,
and C. Amza, “Safe inspection of live virtual machines,” in ACM
SIGPLAN Notices, vol. 52, no. 7. ACM, 2017, pp. 97–111.

[52] IBM, “IBM bigFix: A collaborative endpoint management and security
platform,” .

[53] S. Corp., “Symantec Endpoint Protection,” https://www.symantec.com/
smb/endpoint-protection.

[54] Tanium, “Platform for endpoint management and security.”
[55] “Open source tools for container security and compliance.” https://

anchore.com.
[56] “Automatic container vulnerability and security scanning for appc and

docker,” https://coreos.com/clair/docs/latest/.
[57] “Container security - docker, kubernetes, openshift, mesos.” https://

www.aquasec.com/.
[58] “Docker security and container security platform.” https://twistlock.com.
[59] S. Nadgowda, S. Duri, C. Isci, and V. Mann, “Columbus: Filesystem

tree introspection for software discovery,” in Cloud Engineering (IC2E),
2017 IEEE International Conference on. IEEE, 2017, pp. 67–74.

[60] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350–361.

[61] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards
a next generation data center architecture: scalability and commoditiza-
tion,” in Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow. ACM, 2008, pp. 57–62.

[62] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 29.

[63] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in ACM
SIGPLAN Notices, vol. 31, no. 9. ACM, 1996, pp. 84–92.

[64] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand, “Parallax:
Managing storage for a million machines.” in HotOS, 2005.

[65] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp.
69–87. [Online]. Available: https://www.usenix.org/conference/osdi18/
presentation/shan

[66] A. Turk, R. S. Gudimetla, E. U. Kaynar, J. Hennessey, S. Tikale,
P. Desnoyers, and O. Krieger, “An Experiment on Bare-Metal BigData
Provisioning,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016.

[67] “OpenStack Bare Metal Provisioning Program,” https://wiki.openstack.
org/wiki/Ironic.

[68] D. Clerc, L. Garcés-Erice, and S. Rooney, “Os streaming deployment,”
in Performance Computing and Communications Conference (IPCCC),
2010 IEEE 29th International. IEEE, 2010, pp. 169–179.

[69] “Federal risk and authorization management program.” [Online].
Available: https://www.fedramp.gov

[70] “Payment card industry security standards council.” [Online]. Available:
https://www.pcisecuritystandards.org

[71] “Center for internet security.” [Online]. Available: https://www.
cisecurity.org

[72] “Hcl appscan,” https://www.hcltechsw.com/wps/portal/products/appscan.

183

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

[73] O. Tuncer, N. Bila, S. Duri, C. Isci, and A. K. Coskun, “Confex: Towards
automating software configuration analytics in the cloud,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2018, pp. 30–33.

[74] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable declarative
configuration specification and validation for applications, systems, and
cloud,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference: Industrial Track. ACM, 2017, pp. 29–35.

[75] T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam, “Con-
fadvisor: A performance-centric configuration tuning framework for
containers on kubernetes,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2019, pp. 168–178.

[76] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[77] J. Hennessey, S. Tikale, A. Turk, E. U. Kaynar, C. Hill, P. Desnoyers,
and O. Krieger, “Hil: designing an exokernel for the data center,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing.
ACM, 2016, pp. 155–168.

[78] K. Z. Meth and J. Satran, “Design of the iscsi protocol,” in Mass
Storage Systems and Technologies, 2003.(MSST 2003). Proceedings.
20th IEEE/11th NASA Goddard Conference on. IEEE, 2003, pp. 116–
122.

[79] H. P. Anvin and M. Connor, “X86 network booting: Integrating gpxe
and pxelinux,” in Linux Symposium. Citeseer, 2008, p. 9.

[80] T. Fujita and M. Christie, “tgt: Framework for storage target drivers,”
in Proceedings of the Linux Symposium, vol. 1. Citeseer, 2006, pp.

303–312.
[81] “Ubuntu Security Notices,” https://usn.ubuntu.com/.
[82] “Agentless System Crawler,” https://github.com/cloudviz/

agentless-system-crawler.
[83] T. Bray, “The javascript object notation (json) data interchange format,”

Tech. Rep., 2017.
[84] “Open Security Content Automation Protocol,” https://www.open-scap.

org/tools/openscap-base/.
[85] R. Battle and E. Benson, “Bridging the semantic web and web 2.0 with

representational state transfer (rest),” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 6, no. 1, pp. 61–69, 2008.

[86] “Mass Open Cloud,” https://massopen.cloud/.
[87] “mysql relational database managament system,” https://www.mysql.

com/.
[88] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 2009, pp. 44–54.

[89] “Apache HTTP Server Project,” https://httpd.apache.org/.
[90] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[91] A. Kopytov, “Sysbench: a system performance benchmark,” URL:
http://sysbench. sourceforge. net, 2004.

[92] “ab - Apache HTTP server benchmarking tool,” https://httpd.apache.org/
docs/2.4/programs/ab.html.

184

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:48:04 UTC from IEEE Xplore. Restrictions apply.

