
Implementing Survey Propagation on
Graphics Processing Units

Panagiotis Manolios and Yimin Zhang

College of Computing
Georgia Institute of Technology

Atlanta, GA, 30318
{manolios, ymzhang}@cc.gatech.edu

Abstract. We show how to exploit the raw power of current graphics processing
units (GPUs) to obtain implementations of SAT solving algorithms that surpass
the performance of CPU-based algorithms. We have developed a GPU-based ver-
sion of the survey propagation algorithm, an incomplete method capable ofsolv-
ing hard instances of randomk-CNF problems close to the critical threshold with
millions of propositional variables. Our experimental results show that our GPU-
based algorithm attains about a nine-fold improvement over the fastest known
CPU-based algorithms running on high-end processors.

1 Introduction

The Boolean satisfiability problem (SAT) has been intenselystudied both from a theo-
retical and a practical point of view for about half a century. The interest in SAT arises,
in part, from its wide applicability in domains ranging fromhardware and software
verification to AI planning. In the last decade several highly successful methods and
algorithms have been developed that have yielded surprisingly effective SAT solvers
such as Chaff [13], Siege [17], and BerkMin [8]. A major reason for the performance
results of recent SAT solvers is that the algorithms and datastructures used have been
carefully designed to take full advantage of the underlyingCPUs and their architecture,
including the memory hierarchy and especially the caches [18].

We propose using graphics processing units (GPUs), to tackle the SAT problem.
Our motivation stems from the observation that modern GPUs have peak performance
numbers that are more than an order of magnitude larger than current CPUs. In addition,
these chips are inexpensive commodity items, with the latest generation video cards
costing around $500. Therefore, there is great potential for developing a new class of
highly efficient GPU-based SAT algorithms. The challenge indoing this is that GPUs
are specialized, domain-specific processors that are difficult to program and that were
not designed for general-purpose computation.

In this paper, we show how the raw power of GPUs can be harnessed to obtain
implementations of survey propagation and related algorithms that exhibit almost an
order of magnitude increase over the performance of CPU-based algorithms. We believe
that we are the first to develop a competitive SAT algorithm based on GPUs and the
first to show that GPU-based algorithms can eclipse the performance of state-of-the-art
CPU-based algorithms.

Pentium EE 840 3.2GHz Dual CoreGeForce GTX7800

FLOPs 25.6 GFLOPs 313 GFLOPs
Memory bandwidth19.2 GB/sec 54.4 GB/sec
Transistors 230M 302M
Process 90nm 110nm
Clock 3.2GHz 430Mz

Table 1. Performance comparison of NVIDIA’s GTX7800 and Intel’s Pentium Dual Core EE 840
processor.

The SAT algorithm we consider is survey propagation (SP), a recent algorithm for
solving randomly generatedk-CNF formulas that can handle hard instances that are too
large for any previous method to handle [2, 1]. By “hard” we mean instances whose
ratio of clauses to variables is below the critical threshold separating SAT instances
from UNSAT instances, but is close enough to the threshold for there to be a prepon-
derance of metastable states. These metastable states makeit difficult to find satisfying
assignments, and it has been shown in previous work that instances clustered around
the critical threshold are hard randomk-SAT problems [12, 3, 5].

The rest of the paper is organized as follows. In Section 2, wedescribe GPUs,
including their performance, architecture, and how they are programmed. In section 3,
we provide an overview of the survey propagation algorithm.Our GPU-based parallel
version of survey propagation is described in Section 4 and is evaluated in Section 5.
We discuss issues arising in the development of GPU-based algorithms in Section 6 and
conclude in Section 7.

2 Graphical Processing Units

A GPU is a specialized processor that is designed to render complex 3D scenes. GPUs
are optimized to perform the kinds of operations needed to support real-time realistic
animation, shading, and rendering. The performance of GPUshas grown at a remark-
able pace during the last decade. This growth is fueled by thevideo game industry, a
multi-billion dollar per year industry whose revenues exceed the total box office rev-
enues of the movie industry.

The raw power of GPUs currently far exceeds the power of CPUs.For example,
Table 1 compares a current Intel Pentium CPU and a current GPU, namely NVIDIA’s
GTX7800, in terms of floating point operations per second (FLOPs) and memory band-
width. It is worth noting that the 313 GFLOPs number for the GTX 7800 corresponds to
peak GFLOPs available in the GPU’s shader, the part of the GPUthat is programmable.
The total GFLOPs of the GTX 7800 is about 1,300 GFLOPs.

In addition, the performance of GPUs is growing at a faster rate than CPU perfor-
mance. Whereas CPU speed has been doubling every eighteen months, GPU perfor-
mance has been doubling about every six months during the last decade, and estimates
are that this trend will continue during the next five years. The rapid improvements in

400

300

200

100

0
200620052004200320020

G
F

LO
P

s

Year

Pentium
NVIDIA

Fig. 1. Comparison of GPUs and CPUs with respect to peak floating point performance. The last
two CPU numbers are for dual-core machines. The figure is partly based on data from Ian Buck,
at Stanford University.

GPU performance can been seen in Figure 1, which compares thepeak floating point
performance of GPUs with CPUs over the course of about five years.

The reason why GPUs have such high peak FLOPs and memory bandwidth is
that they are architecturally quite different from CPUs; infact, they should be thought
of as parallel stream processors providing both MIMD (Multiple Instruction Multiple
Data) and SIMD (Single Instruction Multiple Data) pipelines. For example, NVIDIA’s
GTX7800 has eight MIMD vertex processes and twenty four SIMDpixel processors.
Each of the processors provides vector operations and is capable of executing four arith-
metic operations concurrently.

There is increasing interest in using GPUs for general-purpose computation and
many successful applications in domains that are not related to graphics have emerged.
Examples include matrix computations [7], linear algebra [11], sorting [10], Bioinfor-
matics [15], simulation [6], and so on. In fact, General Purpose computation on GPUs
(GPGPU) is emerging as a new research field [9]. Owens et. al. have written a survey
paper of the field that provides an overview of GPUs and a comprehensive survey of the
general-purpose applications [14].

It is worth pointing out that there are significant challenges in harnessing the power
of GPUs for applications. Since GPUs are targeted and optimized for video game de-
velopment, the programming model is non-standard and requires an expert in computer
graphics to understand and make effective use of these chips. For example, GPUs only
support 32-bit floating point arithmetic (often not IEEE compliant). They do not pro-
vide support for any of the following: 64-bit floating point arithmetic, integers, shifting,
and bitwise logical operations. The underlying architectures are largely secret and are
rapidly changing. Therefore, developers do not have directaccess to the hardware, but
must instead use special-purpose languages and libraries to program GPUs. It takes a

Rasterization
Interpolation

Frame
Buffer

Programmerable
Vertex Processor

Programmerable
Pixel Processor

3D Application OpenGL
or Direct3D or Game

Front End
GPU

Assembly
Primitive

Operation
Raster

Fig. 2. Graphics pipeline

while for one to learn the many tricks, undocumented features (and bugs), perils, meth-
ods of debugging, etc. that are needed for effective GPU programming.

2.1 GPU Pipeline

Nearly all current GPUs use a graphics pipeline consisting of several stages, as outlined
in Figure 2. The graphics pipeline takes advantage of the inherent parallelism found in
the kinds of computations used in 3D graphics.

An application, say a game, communicates with a GPU through a3D API such as
OpenGL or Direct3D. The application uses the API to send commands and the vertex
data modeling of the object to be rendered to the GPU. Objectsare modeled by a se-
quence of triangles, each of which is a 3-tuple of vertices. After receiving this stream of
vertices, the GPU processes each vertex using a vertex shader, an application-specific
program that runs on the vertex processor and which computesvertex-specific values,
such as position, color, normal vector, etc. These transformed vertices are then assem-
bled into triangles (by the primitive assembly stage) and the vertex information is then
used to perform interpolation and rasterization, producing a 2D raster image. Next, a
pixel shader, an application-specific program running on the pixel processor is used
to compute the color values of pixels. The pixel shader can access information stored
on textures, memories organized as cubes. (In GPGPU applications, texture memory is
used in lieu of main memory.) Finally, a color vector containing the four values R(red),
G(green), B(blue), and A(alpha) is output to the frame buffer and displayed on the
screen.

Notice that there are two kinds of programmable processors in the graphics pipeline,
the vertex processor and pixel processor (also called the fragment processor). Both types
of processors are capable of vector processing and can read from textures. However,
the vertex processors are MIMD processors, whereas the pixel processors are SIMD
processors.

One major difference between GPUs and CPUs is that GPUs are capable of “gath-
ering” but not “scattering.” Roughly speaking, gathering means being able to read any
part of memory, while scattering means being able to write toany part of memory. The

memories we are referring to are textures. Both vertex shaders and pixel shaders are ca-
pable of gathering, but as can be seen in Figure 2 vertex shaders cannot directly output
data. Instead, they output a fixed number of values to the nextstage in the pipeline. In
contrast, pixel shaders are able to output data, by writing into the frame buffer. The out-
put for each pixel is a 4-word value representing a color vector. Pixel shaders can also
write to textures by utilizing OpenGL extensions. A major limiting factor for GPGPU
applications is that the amount of information and its location are fixed before the pixel
is processed. In graphics applications, this is not much of alimitation because one typ-
ically knows where and what to draw first.

For general purpose computation, pixel processors are usually preferable to vertex
processors. There are several reasons for this. First, GPUscontain more pixel processors
than vertex processors. Second, pixel processors can writeto texture memory, whereas
vertex processors cannot. Finally, pixel shader texturingis more highly optimized (and
thus much faster) than vertex shader texturing.

2.2 OpenGL

Recall that the architectures of GPUs are closely guarded secrets. Therefore, developers
do not have direct access to GPUs and instead have to access the chips via a software
interface. One popular choice, which is what we use in this paper, is OpenGL (Open
Graphics Library), a specification for a low-level, cross-platform, cross-language API
for writing 3D computer graphics applications.

Currently, the OpenGL specification is managed by ARB, the OpenGL Architecture
Review Board, which includes companies such as NVIDIA, ATI,Intel, HP, Apple, IBM,
etc. OpenGL is an industry standard that is independent of the operating system and
underlying hardware. Microsoft has its own API, DirectX, which is dedicated to the
Window operating system.

OpenGL is very popular for general purpose computing with GPUs, in part due to its
ability to quickly extend the specification with extensionsin response to GPU hardware
developments. These extension enable developers to more fully take advantage of the
new functionality appearing in graphics chips. One exampleof this is the Frame Buffer
Object (FBO), an essential component for general purpose computing with GPUs. The
FBO allows shader programs to write to a specified texture, instead of writing to the
frame buffer. This is quite useful because in the graphics pipeline, no matter what value
is written to the frame buffer, it is turned into a value in theinterval [0..1], which makes
writing non-graphics applications quite difficult. A further benefit of using an FBO is
that we can write to a texture and then use this texture as input in the next pass of the
rendering process.

2.3 The Cg Programming Language

Cg (C for Graphics) is a high-level language for programmingvertex and pixel shaders,
developed by NVIDIA. Cg is based on C and has essentially the same syntax. However,
Cg contains several features that make it suitable for programming graphics chips. Cg
supports most of the operators in C, such as the Boolean operators, the arithmetic oper-
ators, etc., but also includes supports for vector data types and operations. For example,

float4 main(uniform samplerRECT exampletexture, float4 pos : WPOS) {

float4 color;

color = texRECT(exampletexture, pos.xy);

return color;

}

Fig. 3. This is an example of a pixel shader using Cg.

void draw() {

cgGLBindProgram(UpdateEta);

glDrawBuffer(GL_COLOR_ATTACHMENT3_EXT);

cgGLSetTextureParameter(etavarParam, varTex);

cgGLEnableTextureParameter(etavarParam);

glBegin(GL_QUADS);

glVertex2f(0.0, 0.0);

glVertex2f(100, 0.0);

glVertex2f(100, 100);

glVertex2f(0.0, 100);

glEnd();

}

Fig. 4. This is an OpenGL code snippet.

it supports float4, a vector of four floating point numbers, and it supports MAD, a vec-
tor multiply and add operator. Cg also supports several other graphic-based operations,
e.g., it provides functions to access the texture, as shown in theCg example in Figure 3.

In addition to the features appearing in Cg that do not appearin C, there are also
limitations in Cg that do not appear in C. For example, while user-defined functions
are supported, recursion is not allowed. Arrays are supported, but array indices must be
compile-time constants. Pointers are not supported; however, by using texture memory,
which is 2-dimensional, they can be simulated by storing the16 high-level bits and the
16 low-level bits in the in thex andy coordinates, respectively. Loops are allowed only
when the number of loop iterations is fixed. In addition, theswitch, continue, and
break statements of C are not supported.

Figure 3 gives an example of a Cg program. The main entry of a Cgprogram can
have any name. In the above example, we have a functionmain that is a pixel shader
whose output is a float4 representing a 4-channel color vector. Our simple pixel shader
takes a single texture,exampletexture, and a single float4,pos, as input and samples
a color value (using the Cg functiontexRECT) from positionpos in the texture.

In Figure 4, we provide an OpenGL example that simply draws a rectangle of size
100x100 pixels on the screen. It first installs the pixel shader program,UpdateEta
(from Figure 3); then it chooses the texture to write to,GL COLOR ATTACHMENT3 EXT;
then it selects the texture to read from,varTex; and finally it sends the rendering com-
mand (starting atglBegin(GL QUADS)). Executing the rendering command results in
running 10,000 pixel shader programs, one per pixel in the 100x100 area. Each pixel

shader program outputs a color, as described above. Notice,that to utilize the GPU, we
have to “draw” something, and this means that the position ofthe output has to be fixed.

3 Survey Propagation

Survey Propagation is a relatively new incomplete method based on ideas from statis-
tical physics and spin glass theory in particular [1]. SP is remarkably powerful, able to
solve very hardk-CNF problems,e.g., it can solve 3-CNF problems near threshold with
over 107 propositional variables.

In this section, we provide a brief overview of the algorithm. We start by recalling
that a factor graph can be used to represent a SAT problem. It is bipartite graph whose
nodes are the propositional variables and clauses appearing in the SAT instance. There
is an edge between a variable and a clause iff the variable appears in the clause. If the
clause contains a positive occurrence of variable, the edgeis drawn with solid line;
otherwise, it is drawn with a dotted line. An example is shownin Figure 5.

 c

 a b

 1

 2 3 4

Fig. 5. The factor graph for(x1∨x2∨¬x3)∧ (¬x1∨x3∨x4)∧ (¬x2∨x3∨¬x4).

Let C,V represent sets of clauses and variables, respectively. We will use a,b,c, . . .
to denote clauses andi, j,k, . . . to denote variables. We defineV(a) to be the set of
variables appearing in clausea and similarlyC(i) denotes the set of clauses containing
variablei. C+(i) is the subset ofC(i) containing the clauses in whichi appears posi-
tively; andC−(i) is the subset ofC(i) containing clauses in whichi appears negatively
(negated).

if a∈C+(i) Cu
a(i) = C−(i); Cs

a(i) = C+(i)\{a}

if a∈C−(i) Cu
a(i) = C+(i); Cs

a(i) = C−(i)\{a}
(3.1)

The SP algorithm is an iterative message-passing algorithmthat for every edge〈a, i〉
in the factor graph passes messages consisting of a floating point number,ηa→i , from
clausea to variablei and passes messages consisting a 3-tuple of floating point num-
bers,Πi→a = 〈Πu

i→a,Πs
i→a,Π0

i→a〉, from variablei to clausea. This process is initial-
ized by randomly assigning values toηa→i from the interval(0..1) for all edges〈a, i〉

in the factor graph. The process is then repeated, where eachiteration is called acy-
cle, as described below. As is discussed in [1], the messages canbe thought of corre-
sponding to probabilities of warnings. The valueηa→i , sent froma to i, corresponds
to the probability that clausea sends a warning to variablei, which it will do if it re-
ceives a “u” symbol from all of its other variables. In the other direction, the triple
Πi→a = 〈Πu

i→a,Πs
i→a,Π0

i→a〉 sent fromi to a corresponds to the probability thati sends
the “u” symbol (indicating that it cannot satisfya) or sends the “s” symbol (indicat-
ing that it can satisfya) or sends the “0” symbol (indicating that it is indifferent). The
formal definitions follow.

(3.2) ηa→i = ∏
j∈V(a)\{i}

[

∏u
j→a

∏u
j→a+∏s

j→a+∏0
j→a

]

(3.3)
u

∏
j→a

=

[

1− ∏
b∈Cu

a(j)

(1−ηb→ j)

]

∏
b∈Cs

a(j)

(1−ηb→ j)

(3.4)
s

∏
j→a

=

[

1− ∏
b∈Cs

a(j)

(1−ηb→ j)

]

∏
b∈Cu

a(j)

(1−ηb→ j)

(3.5)
0

∏
j→a

= ∏
b∈C(j)\{a}

(1−ηb→ j)

The message passing described above is iterated until we attain convergence, which
occurs when each of theη values changes less than some predetermined value. Such a
sequence of cycles is called around. At the end of a round, we identify a predetermined
fraction1 of variables that the above process has identified as having the largest bias
and assign them their preferred values. Having fixed the values of the variables just
identified, we perform Boolean Constraint Propagation (BCP) to reduce current SAT
problem to simpler one. If the ratio of clauses to variables becomes small, then the
problem is under-constrained and we can use Walk-SAT or someother SAT algorithm
to quickly find a solution. Otherwise, we again apply the SP algorithm to the reduced
SAT problem. Of course, it is possible that either BCP encounters a contradiction or
that SP fails to converge, in which case the algorithm fails.2

Most of running time of SP is spent trying to converge. Noticethat this part of the
algorithm requires performing a large number of memory reads and writes and also
requires a large number of floating point operations. This isexactly what GPUs excel
at doing, which is why we have chosen to develop a GPU-based SPalgorithm.

1 We use 1 percent, the same percentage used in the publicly available implementation by the
authors of survey propagation.

2 In our implementation, we say that SP fails to converge if it takes more that 1,000 cycles,
which is the same parameter used in the code by the authors of survey propagation.

4 Parallel SP on GPU

The basic idea for how to parallelize the SP algorithm is rather straightforward, because
the order in which edges in the factor graph are updated does not matter. Therefore, we
can implement the SP algorithm by running a program per edge in the factor graph,
whose sole purpose is to update the messages on that edge. We can then update the
messages concurrently. That is the basic idea of the GPU algorithm. In more detail, we
ask the GPU to “draw” a quad on the screen where there is one pixel per edge. This
allows us to use a pixel shader per edge to compute and update the edge messages,
and to store the result in the texture memory. Of course, the CPU and GPU have to
communicate after every round of the SP algorithm, so that the GPU can inform the
CPU of what variables to fix, so the CPU can perform the BCP pass, and so the CPU
can then update the GPU’s data structures to reflect the implied literals. The CPU also
determines when the clause to variable ratio is such that Walk-SAT should be used.

Given the irregular architecture of GPUs and the difficulty in programming them,
one must carefully consider the data structures used and thedetails of the algorithm,
something we now do.

4.1 Data Structures

When using GPUs, the textures are the only place where we can store large amounts of
data. Therefore, all of the data used by our algorithm is encoded into textures, which
are rectangular areas of memory. One read-only texture is used to represent the factor
graph. In it we store, for each clause, pointers to all the literals appearing in that clause
(i.e., pointers to all the edges in the factor graph). The pointersfor a particular clause
are layed out sequentially, which make it easy for us to traverse the edges of a given
clause.

We also have three read-write textures, which are used to store information about the
variables, clauses, and edges. The variable texture has an entry per variable; similarly
the clause and edge textures have entries per clause and edge, respectively.

The main components of the variable texture for entryj include ∏b∈C+(j)(1−
ηb→ j), ∏b∈C−(j)(1−ηb→ j), and a pointer to the edge texture. In the edge texture, the
edges with the same variable are layed out sequentially, so the pointer is to the first such
edge and we also store the number of edges containing variable j.

The main components of the clause texture for entrya include a pointer into the
read-only texture (which points to the first pointer in the read-only texture for that

clause) and the value∏ j∈V(a)

[

∏u
j→a

∏u
j→a+∏s

j→a+∏0
j→a

]

.

The main components of the edge texture for entry〈a, i〉 are a pointer to the variable
i (in the variable texture), a pointer to the clausea (in the clause texture), andηa→i =

∏ j∈V(a)\{i}

[

∏u
j→a

∏u
j→a+∏s

j→a+∏0
j→a

]

.

In current version of OpenGL, the maximum texture size is limited to 256MB, and
this is a major restriction because it limits the size of the problems we can consider. We
note that the amount of memory available on GPUs is constantly increasing (already
GPUs with 1GB memory are available) and that it is possible touse multiple GPUs

together. Also, the OpenGL size constraints on textures will eventually be relaxed, but
for now, one can distribute the data across multiple textures.

4.2 Algorithm

The algorithm is given as input a factor graph encoded in the textures as described
above. Also, theη values are initialized with randomly generated numbers from the in-
terval(0..1). If successful, the algorithm returns a satisfying assignment. As previously
described, the algorithm consists of a sequence of rounds, the purpose of which is to
converge on theη values. A single round of the algorithm consists of a sequence of
cycles, each of which includes four GPU passes, where we assume that we start with
the correctη values and show how to compute theη values for the next cycle. Recall
that computing on a GPU means we have to draw quads using OpenGL, which in turn
means that the computation is being performed by pixel shaders. We omit many of the
details and focus on the main ideas below.

1. For each variablej, compute∏b∈C+(j)(1−ηb→ j) and∏b∈C−(j)(1−ηb→ j) by iter-
ating over all of the edges that variable appears in. Recall that we have a pointer
to the first such edge in the variable texture and that we know what the number of
such edges is.

2. For each clausea, compute∏ j∈V(a)

[

∏u
j→a

∏u
j→a+∏s

j→a+∏0
j→a

]

by iterating over all the

edges this clause appears in. Recall that that we have a pointer to the read-only tex-
ture and we know the number of such edges. The pointer to the read-only memory
points to the first such edge in the edge texture and the next pointer points to the
next edge, and so on. By iterating and following the variablepointers in the edge
texture, we can compute the above value. This is because we can use the values
stored in the variable texture to compute∏u

j→a, ∏s
j→a, and∏0

j→a for each variable
j occurring ina.

3. For each edge〈a, i〉, computeηa→i = ∏ j∈V(a)\{i}

[

∏u
j→a

∏u
j→a+∏s

j→a+∏0
j→a

]

. This can be

done by iterating over the elements in the edge texture and using the pointers to the
variable and clause of the edge. All that is required is a simple division, given the
information already stored in the textures (and after recomputing∏u

j→a, ∏s
j→a, and

∏0
j→a).

4. Use an occlusion query to test for convergence. If so, thisround is over and the
GPU and CPU communicate as described previously. Otherwise, goto step 1. An
occlusion query is a way for the GPU to determine how many of the pixel shaders
have updated the frame buffer. In our case, if the differencebetween consecutive
η values is below a certain threshold, the pixel shader does not update the frame
buffer. If the occlusion query returns 0, that means that allof the pixel shaders were
killed, i.e., the algorithm has converged.

We note that a GPU’s inherent limitations with respect to thesupport of dynamic
data structures can lead to inefficiencies. For example, after BCP, the length of clause
may be reduced. Unfortunately, due to the restrictions imposed by Cg, GPU-based pro-
grams cannot take advantage of reduced clause sizes and willstill have to scan fork

1200
1100
1000
900
800
700
600
500
400
300
200
100

0
403632282420161284

C
om

pu
ta

tio
n

tim
e(

se
cs

)

3-SAT variable number(10^4)

Intel Xeon 3.06GHz
NVIDIA GTX 7900

Fig. 6. A comparison between our GPU-based algorithm and the fastest CPU-based algorithm for
survey propagation on random 3-SAT instances, with a clause to variableratio of 4.2.

literals. Fortunately, if we lay out the literals in a clausein a sequential fashion (which
we do), then there is a negligible effect on performance.

5 Experimental Results

We implemented our GPU-based survey propagation algorithmusing Cg1.4, C++, and
OpenGL2.0. The experiments were run on an AMD 3800+ 2.4GHz machine with an
NVIDIA GTX 7900 GPU. The operating system we use is 32-bit WindowsXP. We note
that this is a 64-bit machine and we expect to get better performance numbers if we use
it for 64-bit computation, but since the NVIDIA GTX 7900 is a rather new GPU, the
only drivers we could find were for 32-bit Windows. We also note that using NVIDIA’s
SLI (Scalable Link Interface) technology, we can use two NVIDIA GPUs, which should
essentially double our performance numbers.

The CPU-based survey propagation program we used is from theauthors of the
survey propagation algorithm [1] and is the fastest implementation of the algorithm we
know of. We ran the survey propagation algorithm on the fastest machine we had access
to, which is an Intel(R) Xeon(TM) CPU 3.06GHz with 512 KB of cache, running Linux
Redhat. (We did not use the same machine we ran the GPU experiments on because the
Intel machine is faster.) The experimental data we used is available upon request.

In Figure 6, we compare the two algorithms on a range of 3-SAT instances, where
the clause to variable ration is 4.2; this means that the problems are hard as they are
close to the threshold separating satisfiable problems fromunsatisfiable problems [12].
The number of variables ranges from 40,000 to 400,000 and each data point corresponds
to the average running time for three problems of that size. As is evident in Figure 6,
our algorithm is over nine times as fast as the CPU based algorithm.

In Figure 7, we compare the two algorithms on a range of hard 4-SAT instances,
where the clause to variable ration is 9.5. The results for the 4-SAT instances are similar
to the results we obtained in the 3-SAT case. That is, for hard4-SAT instances, our

1000

900

800

700

600

500

400

300

200

100

1412108642

C
om

pu
ta

tio
n

tim
e(

se
cs

)

4-SAT variable number(10^4)

Intel Xeon 3.06GHz
NVIDIA GTX 7900

Fig. 7. A comparison between our GPU-based algorithm and the fastest CPU-based algorithm for
survey propagation on random 4-SAT instances, with a clause to variableratio of 9.5.

GPU-based algorithm attains about a nine-fold improvementin running times over the
best known CPU-based algorithm.

6 Observations on Programming With GPUs

In this section, we outline some observations about programming with GPUs that we
think are relevant to the SAT community. The currently available information on GPU
programming is mostly geared to the graphics community, andour experience has been
that it takes a while for non-specialists to understand. Hopefully, our observations will
help to speed up the process for researchers interested in applying GPUs to SAT and
similar problems. A good source of information on this topicis the GPGPU Website [9].

When considering using GPUs for general purpose computing, it is important to
choose or develop a parallel algorithm. Recall that these processors are best thought
of as parallel stream processors and all algorithms that have been successfully imple-
mented on these chips are parallel algorithms. In fact, GPUsare a poor choice for per-
forming reductions,e.g., selecting the biggest element in an integer array turns outto
be very difficult to implement efficiently on a GPU.

It is also important to be aware GPUs do not currently supportinteger operations.
You may have noticed that Cg does have integer operations, but these are compiled
away and are in fact emulated by floating point operations. Another important difference
between CPU and graphics processors is that GPUs do not perform well in the presence
of branch instructions, as they do not support branch prediction. Also, reading data from
the GPU to the CPU is often a bottleneck. Finally, a major limitation of GPUs is that
the per pixel output is restricted to be a four-word vector (extensions allowing sixteen
four-word vectors are also currently available), which effectively rules out the use of
GPUs for algorithms that do not fit this framework.

Since many optimization algorithms are iterative in nature, they may well be good
candidates for implementing on graphics processors. When doing this, we suggest that

one carefully encodes the problem into the texture. It is important to do this in a way
that attains as much locality as possible because GPUs have very small caches, which
means that it is crucial to read memory sequentially, as random access to memory will
have a detrimental effect on performance.

It is also often necessary to divide algorithms into severalpasses. For example, recall
that each pixel shader only outputs one four-word vector; ifmore than four words are
needed, then multiple passes have to be used. The general idea is to partition algorithms
into several steps, each of which performs a specific function and saves intermediate
results to a texture. Subsequent passes can then use the result of the previous passes.

One optimization that is quite useful is to test convergenceby using an occlusion
query. Without this, one has to use the CPU to test for convergence, which will greatly
affect performance. In contrast, an occlusion query gives precise information and can
be pipelined, so it has negligible impact on the performanceof GPUs.

7 Conclusions and Future work

In this paper, we have shown how to harness the raw power of GPUs to obtain an
implementation of survey propagation, an incomplete method capable of solving hard
instances of randomk-CNF problems close to the critical threshold. Our algorithm ex-
hibits about an order of magnitude increase over the performance of the fastest CPU-
based algorithms. As far as we know, we are the first to developa competitive SAT
algorithm based on graphics processors and the first to show that GPU-based algo-
rithms can eclipse the performance of state-of-the-art CPU-based algorithms running
on high-end processors.

We foresee many opportunities to exploit the power of GPUs inthe context of
SAT solving and verification algorithms in general. Graphics processors are undergoing
rapid development and will almost certainly incorporate many new features that make
them even more suitable for general purpose computation in afew years. Consider that
programmable GPUs were first introduced in 2002 and now they support a rich in-
struction set and surpass the most powerful currently available CPUs both in terms of
memory bandwidth and peak floating point performance.

For future work, we plan to add further improvements to our algorithm and want to
explore using GPUs to help speed up complete SAT algorithms such as those based on
DPLL [4]. One simple idea is to use GPUs as coprocessors whichare used to compute
better heuristics that the DPLL algorithm running on the CPUcan take advantage of.
Another idea we are exploring is the use of other non-standard processors such as the
Cell processor.

References

1. A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation:an algorithm for satisfia-
bility. Random Structures and Algorithms, 27:201–226, 2005.

2. A. Braunstein and R. Zecchina. Survey and belief propagation on random k-SAT. In
6th International Conference on Theory and Applications of Satisfiability Testing, Santa
Margherita Ligure, Italy (2003), volume 2919, pages 519–528, 2003.

3. S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiability problem: A
survey. In Du, Gu, and Pardalos, editors,Satisfiability Problem: Theory and Applications,
volume 35, pages 1–17. American Mathematical Society, 1997.

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Com-
munications of the ACM, 5(7):394–397, 1962.

5. O. Dubois, R. Monasson, B. Selman, and R. Zecchina. Statistical mechanics methods and
phase transitions in optimization problems.Theoretical Computer Science, 265(3–67), 2001.

6. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high performance
computing. InSC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
pages 47–47, 2004.

7. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of GPU al-
gorithms for matrix-matrix multiplication. InHWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 133–138, 2004.

8. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. InDesign, Automation,
and Test in Europe (DATE ’02), pages 142–149, Mar 2002.

9. GPGPU. General-Purpose Computation using GPUs, 2006.http://www.gpgpu.org.
10. P. Kipfer and R. Westermann. Improved GPU sorting. In Pharr and Fernando [16], pages

733–746.
11. J. Kruger and R. Westermann. Linear algebra operators for GPUimplementation of numeri-

cal algorithms.ACM Transactions on Graphics, 22(3):908–916, 2003.
12. M. Mezard and R. Zecchina. The random k-satisfiability problem: from an analytic solution

to an efficient algorithm.Physical Review E, 66:056126, 2002.
13. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.Chaff: Engineering an

efficient SAT solver. InDesign Automation Conference (DAC’01), pages 530–535, 2001.
14. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, Aaron, E.Lefohn, and T. J.

Purcell. A survey of general-purpose computation on graphics hardware. InEurographics
2005, State of the Art Reports, pages 21–51, 2005.

15. B. R. Payne.Accelerating Scientific Computation in Bioinformatics by Using Graphics Pro-
cessing Units as Parallel Vector Processors. PhD thesis, Georgia State University, Nov.
2004.

16. M. Pharr and R. Fernando, editors. Addison Wesley, Mar 2005.
17. L. Ryan. Siege homepage. See URLhttp://www.cs.sfu.ca/ ∼loryan/personal.
18. L. Zhang and S. Malik. Cache performance of SAT solvers: A case study for efficient imple-

mentation of algorithms. In S. M. Ligure, editor,Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT2003), pages 287–298, 2003.

