I mplementing Survey Propagation on
Graphics Processing Units

Panagiotis Manolios and Yimin Zhang

College of Computing
Georgia Institute of Technology
Atlanta, GA, 30318

{manolios, ymzhang}@cc.gatech.edu

Abstract. We show how to exploit the raw power of current graphics processing
units (GPUSs) to obtain implementations of SAT solving algorithms that surpass
the performance of CPU-based algorithms. We have developed ab@&dtver-
sion of the survey propagation algorithm, an incomplete method capabtdvef

ing hard instances of randokrCNF problems close to the critical threshold with
millions of propositional variables. Our experimental results show thaG&HU-
based algorithm attains about a nine-fold improvement over the fasteank
CPU-based algorithms running on high-end processors.

1 Introduction

The Boolean satisfiability problem (SAT) has been intensalgied both from a theo-
retical and a practical point of view for about half a centdrye interest in SAT arises,
in part, from its wide applicability in domains ranging frohardware and software
verification to Al planning. In the last decade several higbliccessful methods and
algorithms have been developed that have yielded surghseffective SAT solvers
such as Chaff [13], Siege [17], and BerkMin [8]. A major reag$or the performance
results of recent SAT solvers is that the algorithms and siatectures used have been
carefully designed to take full advantage of the underly@jJs and their architecture,
including the memory hierarchy and especially the cach@p [1

We propose using graphics processing units (GPUs), todabld SAT problem.
Our motivation stems from the observation that modern GRue Ipeak performance
numbers that are more than an order of magnitude larger tivaent CPUs. In addition,
these chips are inexpensive commodity items, with the tigteseration video cards
costing around $500. Therefore, there is great potentialléweloping a new class of
highly efficient GPU-based SAT algorithms. The challengdaimg this is that GPUs
are specialized, domain-specific processors that areuiffic program and that were
not designed for general-purpose computation.

In this paper, we show how the raw power of GPUs can be harddesebtain
implementations of survey propagation and related algmst that exhibit almost an
order of magnitude increase over the performance of CPgebalgorithms. We believe
that we are the first to develop a competitive SAT algorithreeobon GPUs and the
first to show that GPU-based algorithms can eclipse the paéoce of state-of-the-art
CPU-based algorithms.

| [Pentium EE 840 3.2GHz Dual CdfgeForce GTX7800

FLOPs 25.6 GFLOPs 313 GFLOPs
Memory bandwidthl9.2 GB/sec 54.4 GB/sec
Transistors 230M 302M
Process 90nm 110nm
Clock 3.2GHz 430Mz

Table 1. Performance comparison of NVIDIAs GTX7800 and Intel’s PentiumaDCore EE 840
processor.

The SAT algorithm we consider is survey propagation (SPg¢camt algorithm for
solving randomly generatddCNF formulas that can handle hard instances that are too
large for any previous method to handle [2,1]. By “hard” weaménstances whose
ratio of clauses to variables is below the critical thredhedparating SAT instances
from UNSAT instances, but is close enough to the threshaldhfere to be a prepon-
derance of metastable states. These metastable statedt wifficult to find satisfying
assignments, and it has been shown in previous work thatrioss clustered around
the critical threshold are hard randd@aSAT problems [12, 3, 5].

The rest of the paper is organized as follows. In Section 2describe GPUs,
including their performance, architecture, and how theymogrammed. In section 3,
we provide an overview of the survey propagation algoritar GPU-based parallel
version of survey propagation is described in Section 4 areValuated in Section 5.
We discuss issues arising in the development of GPU-bagedthaims in Section 6 and
conclude in Section 7.

2 Graphical Processing Units

A GPU is a specialized processor that is designed to rendeplex 3D scenes. GPUs
are optimized to perform the kinds of operations needed ppat real-time realistic
animation, shading, and rendering. The performance of GRIdgyrown at a remark-
able pace during the last decade. This growth is fueled byitten game industry, a
multi-billion dollar per year industry whose revenues ed¢he total box office rev-
enues of the movie industry.

The raw power of GPUs currently far exceeds the power of CFEdsexample,
Table 1 compares a current Intel Pentium CPU and a current, G&tdely NVIDIA'S
GTX7800, in terms of floating point operations per seconddPk) and memory band-
width. Itis worth noting that the 313 GFLOPs number for theX&/B0O0 corresponds to
peak GFLOPs available in the GPU’s shader, the part of the tBBLis programmable.
The total GFLOPSs of the GTX 7800 is about 1,300 GFLOPs.

In addition, the performance of GPUs is growing at a fasttr ttaan CPU perfor-
mance. Whereas CPU speed has been doubling every eighte¢nsm@®U perfor-
mance has been doubling about every six months during thddaade, and estimates
are that this trend will continue during the next five yeanse Tapid improvements in

400

Pentiurrl1 _ I I
NVIDIA ---+---
300 -
%) ,,’
o /
9 200 | f
L /
O A
100 |]
AT ;/__
0 — : ' '
0 2002 2003 2004 2005 2006

Year

Fig. 1. Comparison of GPUs and CPUs with respect to peak floating point peafaze. The last
two CPU numbers are for dual-core machines. The figure is parthdlmsdata from lan Buck,
at Stanford University.

GPU performance can been seen in Figure 1, which compargsetiefloating point
performance of GPUs with CPUs over the course of about fivesyea

The reason why GPUs have such high peak FLOPs and memory lakinds
that they are architecturally quite different from CPUsfant, they should be thought
of as parallel stream processors providing both MIMD (MaldiInstruction Multiple
Data) and SIMD (Single Instruction Multiple Data) pipeléé-or example, NVIDIAs
GTX7800 has eight MIMD vertex processes and twenty four SIM&e| processors.
Each of the processors provides vector operations and &btapf executing four arith-
metic operations concurrently.

There is increasing interest in using GPUs for general-gaepcomputation and
many successful applications in domains that are not ktatgraphics have emerged.
Examples include matrix computations [7], linear algeldry] [sorting [10], Bioinfor-
matics [15], simulation [6], and so on. In fact, General Rggcomputation on GPUs
(GPGPU) is emerging as a new research field [9]. Owens etaaé Written a survey
paper of the field that provides an overview of GPUs and a cehwsarsive survey of the
general-purpose applications [14].

It is worth pointing out that there are significant challemgeharnessing the power
of GPUs for applications. Since GPUs are targeted and apginior video game de-
velopment, the programming model is non-standard and megsjah expert in computer
graphics to understand and make effective use of these. ¢hopgxample, GPUs only
support 32-bit floating point arithmetic (often not IEEE qaiant). They do not pro-
vide support for any of the following: 64-bit floating poinitametic, integers, shifting,
and bitwise logical operations. The underlying architeztuare largely secret and are
rapidly changing. Therefore, developers do not have daecess to the hardware, but
must instead use special-purpose languages and libraregram GPUs. It takes a

OpenGL 3D Application
or Direct3D or Game

GPU Primitive Rasterizatio Raster Frame
Front End || Assembly ™ Interpolation Operation ™| Buffer

ProgrammerablfLT Programmerablo/T

Vertex Processqr Pixel Processor

Fig. 2. Graphics pipeline

while for one to learn the many tricks, undocumented feat(mad bugs), perils, meth-
ods of debugging, etc. that are needed for effective GPUraroging.

2.1 GPU Pipdine

Nearly all current GPUs use a graphics pipeline consistirsgeeral stages, as outlined
in Figure 2. The graphics pipeline takes advantage of therentt parallelism found in
the kinds of computations used in 3D graphics.

An application, say a game, communicates with a GPU througd API such as
OpenGL or Direct3D. The application uses the API to send canis and the vertex
data modeling of the object to be rendered to the GPU. Objetsnodeled by a se-
quence of triangles, each of which is a 3-tuple of verticdterkeceiving this stream of
vertices, the GPU processes each vertex using a vertexrslaadapplication-specific
program that runs on the vertex processor and which competgsx-specific values,
such as position, color, normal vector, etc. These transdrvertices are then assem-
bled into triangles (by the primitive assembly stage) amdvidrtex information is then
used to perform interpolation and rasterization, prody@r2D raster image. Next, a
pixel shader, an application-specific program running anghxel processor is used
to compute the color values of pixels. The pixel shader caessinformation stored
ontextures memories organized as cubes. (In GPGPU applicationsireertemory is
used in lieu of main memory.) Finally, a color vector coniagnthe four values R(red),
G(green), B(blue), and A(alpha) is output to the frame buffied displayed on the
screen.

Notice that there are two kinds of programmable processdheigraphics pipeline,
the vertex processor and pixel processor (also called aigefent processor). Both types
of processors are capable of vector processing and can neadtéxtures. However,
the vertex processors are MIMD processors, whereas thé igeessors are SIMD
processors.

One major difference between GPUs and CPUs is that GPUs pablesof “gath-
ering” but not “scattering.” Roughly speaking, gatheringans being able to read any
part of memory, while scattering means being able to writ@nyppart of memory. The

memories we are referring to are textures. Both vertex skadwl pixel shaders are ca-
pable of gathering, but as can be seen in Figure 2 vertex shadenot directly output
data. Instead, they output a fixed number of values to thegiage in the pipeline. In
contrast, pixel shaders are able to output data, by writitthe frame buffer. The out-
put for each pixel is a 4-word value representing a colororeixel shaders can also
write to textures by utilizing OpenGL extensions. A majaniling factor for GPGPU
applications is that the amount of information and its laratre fixed before the pixel
is processed. In graphics applications, this is not muchliofiigation because one typ-
ically knows where and what to draw first.

For general purpose computation, pixel processors ardlyiguaferable to vertex
processors. There are several reasons for this. First, Getiain more pixel processors
than vertex processors. Second, pixel processors cantatiggture memory, whereas
vertex processors cannot. Finally, pixel shader textusgngore highly optimized (and
thus much faster) than vertex shader texturing.

22 OpenGL

Recall that the architectures of GPUs are closely guardaeéise Therefore, developers
do not have direct access to GPUs and instead have to aceedsipis via a software
interface. One popular choice, which is what we use in thjgepas OpenGL (Open
Graphics Library), a specification for a low-level, crodatfprm, cross-language API
for writing 3D computer graphics applications.

Currently, the OpenGL specification is managed by ARB, ther@l Architecture
Review Board, which includes companies such as NVIDIA, Afitel, HP, Apple, IBM,
etc. OpenGL is an industry standard that is independenteobfferating system and
underlying hardware. Microsoft has its own API, DirectX, ielhis dedicated to the
Window operating system.

OpenGL is very popular for general purpose computing wittu§mn part due to its
ability to quickly extend the specification with extensiansesponse to GPU hardware
developments. These extension enable developers to mtyreake advantage of the
new functionality appearing in graphics chips. One exaroptais is the Frame Buffer
Object (FBO), an essential component for general purposguating with GPUs. The
FBO allows shader programs to write to a specified textustead of writing to the
frame buffer. This is quite useful because in the graphipslie, no matter what value
is written to the frame buffer, it is turned into a value in theerval [0..1], which makes
writing non-graphics applications quite difficult. A fughbenefit of using an FBO is
that we can write to a texture and then use this texture ag inghe next pass of the
rendering process.

2.3 The Cg Programming Language

Cg (C for Graphics) is a high-level language for programmviedex and pixel shaders,
developed by NVIDIA. Cg is based on C and has essentiallyaimessyntax. However,
Cg contains several features that make it suitable for pragring graphics chips. Cg
supports most of the operators in C, such as the Booleantopgrthe arithmetic oper-
ators, etc., but also includes supports for vector datsstgpe operations. For example,

float4 main(uniform samplerRECT exampletexture, float4 pos : WPOS) {
float4 color;
color = texRECT(exampletexture, pos.xy);
return color;

Fig. 3. This is an example of a pixel shader using Cg.

void draw() {

cgGLBindProgram(UpdateEta) ;
glDrawBuffer (GL_COLOR_ATTACHMENT3_EXT) ;
cgGLSetTextureParameter (etavarParam, varTex);
cgGLEnableTextureParameter (etavarParam) ;
glBegin (GL_QUADS) ;

glVertex2£(0.0, 0.0);

glVertex2f (100, 0.0);

glVertex2f (100, 100);

glVertex2£ (0.0, 100);
glEnd () ;

Fig.4. This is an OpenGL code snippet.

it supports float4, a vector of four floating point numbers] @rsupports MAD, a vec-
tor multiply and add operator. Cg also supports several gtaphic-based operations,
e.g, it provides functions to access the texture, as shown ithexample in Figure 3.

In addition to the features appearing in Cg that do not apjre&r, there are also
limitations in Cg that do not appear in C. For example, whierdefined functions
are supported, recursion is not allowed. Arrays are supdpbut array indices must be
compile-time constants. Pointers are not supported; hexvby using texture memory,
which is 2-dimensional, they can be simulated by storingl#héigh-level bits and the
16 low-level bits in the in th& andy coordinates, respectively. Loops are allowed only
when the number of loop iterations is fixed. In addition, #wetch, continue, and
break statements of C are not supported.

Figure 3 gives an example of a Cg program. The main entry of ar@gram can
have any name. In the above example, we have a funatian that is a pixel shader
whose output is a float4 representing a 4-channel color ke@to simple pixel shader
takes a single texturexampletexture, and a single float4os, as input and samples
a color value (using the Cg functiarxRECT) from positionpos in the texture.

In Figure 4, we provide an OpenGL example that simply drawecgangle of size
100x100 pixels on the screen. It first installs the pixel ghngorogram,UpdateEta
(from Figure 3); then it chooses the texture to write@b,COLOR_ATTACHMENT3_EXT,;
then it selects the texture to read fromarTex; and finally it sends the rendering com-
mand (starting aglBegin (GL_QUADS)). Executing the rendering command results in
running 10,000 pixel shader programs, one per pixel in tf8x100 area. Each pixel

shader program outputs a color, as described above. Ntitatetp utilize the GPU, we
have to “draw” something, and this means that the positicgh@butput has to be fixed.

3 Survey Propagation

Survey Propagation is a relatively new incomplete methagbdan ideas from statis-
tical physics and spin glass theory in particular [1]. SReimarkably powerful, able to
solve very hark-CNF problemsg.g, it can solve 3-CNF problems near threshold with
over 10 propositional variables.

In this section, we provide a brief overview of the algoritiive start by recalling
that a factor graph can be used to represent a SAT problembipartite graph whose
nodes are the propositional variables and clauses appgearihe SAT instance. There
is an edge between a variable and a clause iff the variableaapjin the clause. If the
clause contains a positive occurrence of variable, the &lgeawn with solid line;
otherwise, it is drawn with a dotted line. An example is shawRigure 5.

Fig. 5. The factor graph fofxy V X2 V =X3) A (—X1 VX3 V X4) A (—X2 V X3V —X4).

LetC,V represent sets of clauses and variables, respectively.ilNMese&a, b, c, ...
to denote clauses aridj,k, ... to denote variables. We definga) to be the set of
variables appearing in clauaeand similarlyC(i) denotes the set of clauses containing
variablei. C* (i) is the subset of(i) containing the clauses in whidhappears posi-
tively; andC~ (i) is the subset o(i) containing clauses in whidhappears negatively
(negated).

ifacC(i) CYi)=C(i); C3(i)=Ct(i)\{a}

(3.1) ifacC (i) Cii)=C'(i); Cii)=C ()\{a}

The SP algorithm is an iterative message-passing algothbfor every edgéa, i)
in the factor graph passes messages consisting of a floaiingrumbern,_.i, from
clausea to variablei and passes messages consisting a 3-tuple of floating paimt nu
bers,Mi_a = (MY ,,N%_,,M°), from variablei to clausea. This process is initial-

ized by randomly assigning valuestig_,; from the interval(0..1) for all edges(a,i)

in the factor graph. The process is then repeated, whereitsation is called ay-
cle, as described below. As is discussed in [1], the messagesectrought of corre-
sponding to probabilities of warnings. The valgg_.;, sent froma to i, corresponds
to the probability that clause sends a warning to variablewhich it will do if it re-
ceives a “u” symbol from all of its other variables. In the ethdirection, the triple
Misa= (M, M7, Hi"ﬂa) sent fromi to a corresponds to the probability thagends
the “u” symbol (indicating that it cannot satis§) or sends the “s” symbol (indicat-
ing that it can satisfy) or sends the “0” symbol (indicating that it is indifferenthe
formal definitions follow.

rl']l%a
(32) r]aai:
jevl(:!\{i} Mi—atMi—atM-a
A ;
(3.3) [M1=11-] @=no-p)| [] @=no-j)
j—a L beCy(j) - beC3(J)
. -
(3.4) [1=11— [] @—no-p)| [] @—nb-j)
j—a L beCi(i) - beCy())
0
(3.5) [1= |'L (1-"Np-j)
j—a beC(j)\{a}

The message passing described above is iterated until ame ettnvergence, which
occurs when each of thgvalues changes less than some predetermined value. Such a
sequence of cycles is calledaund At the end of a round, we identify a predetermined
fraction' of variables that the above process has identified as haki¢ptgest bias
and assign them their preferred values. Having fixed theegabf the variables just
identified, we perform Boolean Constraint Propagation (B@Peduce current SAT
problem to simpler one. If the ratio of clauses to variablesdmes small, then the
problem is under-constrained and we can use Walk-SAT or sihex SAT algorithm
to quickly find a solution. Otherwise, we again apply the Sfodathm to the reduced
SAT problem. Of course, it is possible that either BCP entensna contradiction or
that SP fails to converge, in which case the algorithm fails.

Most of running time of SP is spent trying to converge. Notltat this part of the
algorithm requires performing a large number of memory seand writes and also
requires a large number of floating point operations. Thiexictly what GPUs excel
at doing, which is why we have chosen to develop a GPU-baseadgdRthm.

1 We use 1 percent, the same percentage used in the publicly available imgéoreby the
authors of survey propagation.

2 |In our implementation, we say that SP fails to converge if it takes more tba0lcycles,
which is the same parameter used in the code by the authors of surgagptmn.

4 Parallel SP on GPU

The basic idea for how to parallelize the SP algorithm isgasitraightforward, because
the order in which edges in the factor graph are updated dutenatter. Therefore, we
can implement the SP algorithm by running a program per exddbe factor graph,
whose sole purpose is to update the messages on that edgenWeea update the
messages concurrently. That is the basic idea of the GPUiitaligo In more detail, we
ask the GPU to “draw” a quad on the screen where there is o p@x edge. This
allows us to use a pixel shader per edge to compute and ugdaedge messages,
and to store the result in the texture memory. Of course, R @nd GPU have to
communicate after every round of the SP algorithm, so thatGRU can inform the
CPU of what variables to fix, so the CPU can perform the BCP, @as$ so the CPU
can then update the GPU'’s data structures to reflect theamhpiterals. The CPU also
determines when the clause to variable ratio is such that"®AT should be used.

Given the irregular architecture of GPUs and the difficuttyprogramming them,
one must carefully consider the data structures used andetfadls of the algorithm,
something we now do.

4.1 Data Structures

When using GPUs, the textures are the only place where we aanlatge amounts of
data. Therefore, all of the data used by our algorithm is éedadnto textures, which
are rectangular areas of memory. One read-only textureeid srepresent the factor
graph. In it we store, for each clause, pointers to all tledis appearing in that clause
(i.e., pointers to all the edges in the factor graph). The poirftars: particular clause
are layed out sequentially, which make it easy for us to tse/¢he edges of a given
clause.

We also have three read-write textures, which are usediistiormation about the
variables, clauses, and edges. The variable texture hastignper variable; similarly
the clause and edge textures have entries per clause andesjugctively.

The main components of the variable texture for entrinclude [pec+(j)(1 —
Nb—j)s Moec—(j)(1—Nb—j), and a pointer to the edge texture. In the edge texture, the
edges with the same variable are layed out sequentiallijespdinter is to the first such
edge and we also store the number of edges containing \aiiabl

The main components of the clause texture for eatigclude a pointer into the
read-only texture (which points to the first pointer in theadenly texture for that

Nia
clause) and the valygjcy (a) [m] .

The main components of the edge texture for efary) are a pointer to the variable

i (in the variable texture), a pointer to the clawas@n the clause texture), angh_; =
. . Nj_a
Mievi@\i} [M :

In current version of OpenGL, the maximum texture size istBohto 256MB, and
this is a major restriction because it limits the size of thebpems we can consider. We
note that the amount of memory available on GPUs is congtamtteasing (already
GPUs with 1GB memory are available) and that it is possiblage multiple GPUs

together. Also, the OpenGL size constraints on texturelsew@intually be relaxed, but
for now, one can distribute the data across multiple testure

4.2 Algorithm

The algorithm is given as input a factor graph encoded in ¢xéutes as described
above. Also, the values are initialized with randomly generated numbensftioe in-
terval (0..1). If successful, the algorithm returns a satisfying assigmmAs previously
described, the algorithm consists of a sequence of rouhdspurpose of which is to
converge on the& values. A single round of the algorithm consists of a seqeafc
cycles, each of which includes four GPU passes, where werasthat we start with
the correct values and show how to compute thevalues for the next cycle. Recall
that computing on a GPU means we have to draw quads using @Qperi®h in turn
means that the computation is being performed by pixel sisatliée omit many of the
details and focus on the main ideas below.

1. For each variablg¢, compute[Tpcc+(j) (1 —Nb—j) @and[pec-(j)(1 —Nb-j) by iter-
ating over all of the edges that variable appears in. Releatlwe have a pointer
to the first such edge in the variable texture and that we knbatthe number of
such edges is.

Nj_a
Ni—a+N-a*M-a
edges this clause appears in. Recall that that we have a&ptirthe read-only tex-
ture and we know the number of such edges. The pointer to #tkarly memory
points to the first such edge in the edge texture and the néxtepgoints to the
next edge, and so on. By iterating and following the varigiaaters in the edge
texture, we can compute the above value. This is because nvasgathe values
§tored in thg variable texture to compyi§_,, [15_a, and|‘|‘]La for each variable
j occurring ina.

2. For each clause, compute[Tjcy a) { } by iterating over all the

3. For each edgga, i), computena—.i = [jev(a)\{i} [m . This can be
done by iterating over the elements in the edge texture and tise pointers to the
variable and clause of the edge. All that is required is a lrdjvision, given the
information already stored in the textures (and after rqmating |'|‘J-’_,a, |'|J$_,a, and

0
O).

4, Ujseaan occlusion query to test for convergence. If so,rtusid is over and the
GPU and CPU communicate as described previously. Othergige step 1. An
occlusion query is a way for the GPU to determine how many efailxel shaders
have updated the frame buffer. In our case, if the differdreteveen consecutive
n values is below a certain threshold, the pixel shader doespuate the frame
buffer. If the occlusion query returns 0, that means thatfahe pixel shaders were
killed, i.e., the algorithm has converged.

We note that a GPU’s inherent limitations with respect toshpport of dynamic
data structures can lead to inefficiencies. For exampler BIEP, the length of clause
may be reduced. Unfortunately, due to the restrictions seddy Cg, GPU-based pro-
grams cannot take advantage of reduced clause sizes angtilviiave to scan fok

1200 T T T T T T T
1100 Intel Xeon 3.06GHz —H——
1000 NVIDIA GTX 7900 ——-X--—

900
800
700
600
500
400
300
200

s S AR RN
0 S >|< 1 1 1

4 8 12 16 20 24 28 32 36
3-SAT variable number(10"4)

T T 1l

Computation time(secs)

Ne 1 1 1 1 1 1 1 1 1 1

N
o

Fig. 6. A comparison between our GPU-based algorithm and the fastest C&ad-ayorithm for
survey propagation on random 3-SAT instances, with a clause to varaidef 4.2.

literals. Fortunately, if we lay out the literals in a clause sequential fashion (which
we do), then there is a negligible effect on performance.

5 Experimental Results

We implemented our GPU-based survey propagation algotiing Cgl.4, C++, and
OpenGL2.0. The experiments were run on an AMD 3800+ 2.4GHzhima with an
NVIDIA GTX 7900 GPU. The operating system we use is 32-bit tidiwsXP. We note
that this is a 64-bit machine and we expect to get better pagfioce numbers if we use
it for 64-bit computation, but since the NVIDIA GTX 7900 is ather new GPU, the
only drivers we could find were for 32-bit Windows. We alsoetitat using NVIDIA'S
SLI (Scalable Link Interface) technology, we can use two BIM GPUs, which should
essentially double our performance numbers.

The CPU-based survey propagation program we used is fromutiers of the
survey propagation algorithm [1] and is the fastest impletaigon of the algorithm we
know of. We ran the survey propagation algorithm on the f&stechine we had access
to, which is an Intel(R) Xeon(TM) CPU 3.06GHz with 512 KB ofate, running Linux
Redhat. (We did not use the same machine we ran the GPU exgrgsion because the
Intel machine is faster.) The experimental data we usedadadle upon request.

In Figure 6, we compare the two algorithms on a range of 3-$&Tances, where
the clause to variable ration is 4.2; this means that thelpnab are hard as they are
close to the threshold separating satisfiable problems tnogatisfiable problems [12].
The number of variables ranges from 40,000 to 400,000 ariddzta point corresponds
to the average running time for three problems of that sizeisfevident in Figure 6,
our algorithm is over nine times as fast as the CPU baseditdgor

In Figure 7, we compare the two algorithms on a range of hagd\B-instances,
where the clause to variable ration is 9.5. The results ®AHSAT instances are similar
to the results we obtained in the 3-SAT case. That is, for HaBAT instances, our

1000

Intel Xeon 3.06GHz — ' h
900 - NVIDIA GTX 7900 ---X---
800

700
600
500
400
300
200
100

Computation time(secs)

2 4 6 8 10 12 14
4-SAT variable number(10°4)

Fig. 7. A comparison between our GPU-based algorithm and the fastest C&dd-ayorithm for
survey propagation on random 4-SAT instances, with a clause to varaidef 9.5.

GPU-based algorithm attains about a nine-fold improverirerinning times over the
best known CPU-based algorithm.

6 Observationson Programming With GPUs

In this section, we outline some observations about progriaig with GPUs that we
think are relevant to the SAT community. The currently adalié information on GPU
programming is mostly geared to the graphics communitycameéxperience has been
that it takes a while for non-specialists to understand.éfidfy, our observations will
help to speed up the process for researchers interesteglyirapGPUs to SAT and
similar problems. A good source of information on this tapithe GPGPU Website [9].

When considering using GPUs for general purpose computirig,important to
choose or develop a parallel algorithm. Recall that thesegssors are best thought
of as parallel stream processors and all algorithms that baen successfully imple-
mented on these chips are parallel algorithms. In fact, GRrEls poor choice for per-
forming reductionse.g, selecting the biggest element in an integer array turngout
be very difficult to implement efficiently on a GPU.

It is also important to be aware GPUs do not currently supipbeger operations.
You may have noticed that Cg does have integer operatioghbse are compiled
away and are in fact emulated by floating point operationstider important difference
between CPU and graphics processors is that GPUs do notmpesfell in the presence
of branch instructions, as they do not support branch ptiedicAlso, reading data from
the GPU to the CPU is often a bottleneck. Finally, a majortttidon of GPUs is that
the per pixel output is restricted to be a four-word vectotgpsions allowing sixteen
four-word vectors are also currently available), whicteefively rules out the use of
GPUs for algorithms that do not fit this framework.

Since many optimization algorithms are iterative in nattiney may well be good
candidates for implementing on graphics processors. Whigig diois, we suggest that

one carefully encodes the problem into the texture. It isartgnt to do this in a way
that attains as much locality as possible because GPUs leayesmall caches, which
means that it is crucial to read memory sequentially, asawmnalccess to memory will
have a detrimental effect on performance.

Itis also often necessary to divide algorithms into seveaakes. For example, recall
that each pixel shader only outputs one four-word vectandfe than four words are
needed, then multiple passes have to be used. The generéd idgartition algorithms
into several steps, each of which performs a specific fundiod saves intermediate
results to a texture. Subsequent passes can then use thefésa previous passes.

One optimization that is quite useful is to test convergdmgeising an occlusion
guery. Without this, one has to use the CPU to test for comrerg, which will greatly
affect performance. In contrast, an occlusion query givesipe information and can
be pipelined, so it has negligible impact on the performarfcePUs.

7 Conclusions and Futurework

In this paper, we have shown how to harness the raw power ofs@GBldbtain an
implementation of survey propagation, an incomplete nattapable of solving hard
instances of randork-CNF problems close to the critical threshold. Our algonitix-
hibits about an order of magnitude increase over the pednom of the fastest CPU-
based algorithms. As far as we know, we are the first to devalopmpetitive SAT
algorithm based on graphics processors and the first to shatM@PU-based algo-
rithms can eclipse the performance of state-of-the-art ®R&kd algorithms running
on high-end processors.

We foresee many opportunities to exploit the power of GPUth@ context of
SAT solving and verification algorithms in general. Gragtpeocessors are undergoing
rapid development and will almost certainly incorporatengnaew features that make
them even more suitable for general purpose computatioiaw gears. Consider that
programmable GPUs were first introduced in 2002 and now thepart a rich in-
struction set and surpass the most powerful currently @viglCPUs both in terms of
memory bandwidth and peak floating point performance.

For future work, we plan to add further improvements to ogodthm and want to
explore using GPUs to help speed up complete SAT algorithutis as those based on
DPLL [4]. One simple idea is to use GPUs as coprocessors vérnehised to compute
better heuristics that the DPLL algorithm running on the Gfald take advantage of.
Another idea we are exploring is the use of other non-stahparcessors such as the
Cell processor.

References

1. A. Braunstein, M. Mezard, and R. Zecchina. Survey propagadiomlgorithm for satisfia-
bility. Random Structures and Algorithn#7:201-226, 2005.

2. A. Braunstein and R. Zecchina. Survey and belief propagation maora k-SAT. In
6th International Conference on Theory and Applications of Satisfiabiligfiig Santa
Margherita Ligure, Italy (2003)volume 2919, pages 519-528, 2003.

11.

12.

13.

14.

15.

16.
17.
18.

S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiabilibblem: A
survey. In Du, Gu, and Pardalos, editdBstisfiability Problem: Theory and Applications
volume 35, pages 1-17. American Mathematical Society, 1997.

. M. Davis, G. Logemann, and D. Loveland. A machine program feotttm proving.Com-

munications of the ACIMb(7):394-397, 1962.

. O. Dubois, R. Monasson, B. Selman, and R. Zecchina. Statisticdlanies methods and

phase transitions in optimization problemeoretical Computer Scien@65(3-67), 2001.

. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU clusteihigh performance

computing. InSC '04: Proceedings of the 2004 ACM/IEEE conference on Supergomp
pages 47-47, 2004.

. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understandindfitieney of GPU al-

gorithms for matrix-matrix multiplication. ItHWWS ’'04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardwzages 133-138, 2004.

. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-&ol\in Design, Automation,

and Test in Europe (DATE '02pages 142-149, Mar 2002.

. GPGPU. General-Purpose Computation using GPUs, 200fp.: //www . gpgpu . org.
10.

P. Kipfer and R. Westermann. Improved GPU sorting. In PhatrFamnando [16], pages
733-746.

J. Kruger and R. Westermann. Linear algebra operators fori@pldmentation of numeri-
cal algorithms. ACM Transactions on Graphic22(3):908-916, 2003.

M. Mezard and R. Zecchina. The random k-satisfiability probleomfan analytic solution
to an efficient algorithmPhysical Review F56:056126, 2002.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Mahaff: Engineering an
efficient SAT solver. IrDesign Automation Conference (DAC'Oppges 530-535, 2001.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krgexroh, E.Lefohn, and T. J.
Purcell. A survey of general-purpose computation on graphics feedwnEurographics
2005, State of the Art Reporisages 21-51, 2005.

B. R. PayneAccelerating Scientific Computation in Bioinformatics by Using Graphics Pro-
cessing Units as Parallel Vector ProcessorBhD thesis, Georgia State University, Nov.
2004.

M. Pharr and R. Fernando, editors. Addison Wesley, Mar 2005.

L. Ryan. Siege homepage. See URltp: //www.cs.sfu.ca/ ~loryan/personal.

L. Zhang and S. Malik. Cache performance of SAT solvers: & saigdy for efficient imple-
mentation of algorithms. In S. M. Ligure, edit@ixth International Conference on Theory
and Applications of Satisfiability Testing (SAT20(®)ges 287-298, 2003.

