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Abstract.

We develop a compositional, algebraic theory of skipping refinement, as
well as local proof methods to effectively analyze the correctness of optimized
reactive systems. A verification methodology based on refinement involves
showing that any infinite behavior of an optimized low-level implementation
is a behavior of the high-level abstract specification. Skipping refinement is a
recently introduced notion to reason about the correctness of optimized imple-
mentations that run faster than their specifications, i.e., a step in the imple-
mentation can skip multiple steps of the specification. For the class of systems
that exhibit bounded skipping, existing proof methods have been shown to
be amenable to mechanized verification using theorem provers and model-
checkers. However, reasoning about the correctness of reactive systems that
exhibit unbounded skipping using these proof methods requires reachability
analysis, significantly increasing the verification effort. In this paper, we de-
velop two new sound and complete proof methods for skipping refinement.
Even in presence of unbounded skipping, these proof methods require only lo-
cal reasoning and, therefore, are amenable to mechanized verification. We also
show that skipping refinement is compositional, so it can be used in a stepwise
refinement methodology. Finally, we illustrate the utility of the theory of skip-
ping refinement by proving the correctness of an optimized event processing
system.

1 Introduction

Reasoning about the correctness of a reactive system using refinement involves
showing that any (infinite) observable behavior of a low-level, optimized imple-
mentation is a behavior allowed by the simple, high-level abstract specification.
Several notions of refinement like trace containment, (bi)simulation refinement,
stuttering (bi)simulation refinement, and skipping refinement [4, 10, 14, 20, 22]
have been proposed in the literature to directly account for the difference in the
abstraction levels between a specification and an implementation. Two attributes
of crucial importance that enable us to effectively verify complex reactive sys-
tems using refinement are: (1) Compositionality: this allows us to decompose a
monolithic proof establishing that a low-level concrete implementation refines
a high-level abstract specification into a sequence of simpler refinement proofs,
where each of the intermediate refinement proof can be performed independently
using verification tools best suited for it; (2) Effective proof methods: analyzing
the correctness of a reactive system requires global reasoning about its infinite
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behaviors, a task that is often difficult for verification tools. Hence it is crucial
that the refinement-based methodology also admits effective proof methods that
are amenable for mechanized reasoning.

It is known that the (bi)simulation refinement and stuttering (bi)simulation
refinement are compositional and support the stepwise refinement methodol-
ogy [24, 20]. Moreover, the proof methods associated with them are local, i.e.,
they only require reasoning about states and their successors. Hence, they are
amenable to mechanized reasoning. However, to the best of our knowledge, it
is not known if skipping refinement is compositional. Skipping refinement is a
recently introduced notion of refinement for verifying the correctness of opti-
mized implementations that can “execute faster” than their simple high-level
specifications, i.e., a step in the implementation can skip multiple steps in the
specification. Examples of such systems include superscalar processors, concur-
rent and parallel systems and optimizing compilers. Two proof methods, reduced
well-founded skipping simulation and well-founded skipping simulation have been
introduced to reason about skipping refinement for the class of systems that
exhibit bounded skipping [10]. These proof methods were used to verify the cor-
rectness of several systems that otherwise were difficult to automatically verify
using current model-checkers and automated theorem provers. However, when
skipping is unbounded, the proof methods in [10] require reachability analy-
sis, and therefore are not amenable to automated reasoning. To motivate the
need for alternative proof methods for effective reasoning, we consider the event
processing system (EPS), discussed in [10].

1.1 Motivating Example

An abstract high-level specification, AEPS, of an event processing system is
defined as follows. Let E be a set of events and V be a set of state variables.
A state of AEPS is a triple 〈t,Sch, St〉, where t is a natural number denoting
the current time; Sch is a set of pairs 〈e, te〉, where e ∈ E is an event scheduled
to be executed at time te ≥ t; St is an assignment to state variables in V . The

tEPS(σ) AEPS(δ)

−−−−

−−−−

−−−−

−−−−

(s1) 〈0, {(e1, 0)}, {v1 = 1, v2 = 1}〉 〈0, {(e1, 0)}, {v1 = 1, v2 = 1}〉 (w1)

(s2) 〈0, {(e2, k), . . .}, {v1 = 2, v2 = 1}〉 〈0, {(e2, k)}, {v1 = 2, v2 = 1}〉 (w2)

〈1, {(e2, k), . . .}, {v1 = 2, v2 = 1}〉 (w3)

(s3) 〈k, {. . .}, {v1 = 2, v2 = 2}〉 〈k, {. . .}, {v1 = 2, v2 = 2}〉 (w5)

Fig. 1: Event simulation system

transition relation for the AEPS system is defined as follows. If at time t there is
no 〈e, t〉 ∈ Sch, i.e., there is no event scheduled to be executed at time t, then t
is incremented by 1. Otherwise, we (nondeterministically) choose and execute an
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event of the form 〈e, t〉 ∈ Sch. The execution of an event may result in modifying
St and also removing and adding a finite number of new pairs 〈e′, t′〉 to Sch.
We require that t′ > t. Finally, execution involves removing the executed event
〈e, t〉 from Sch. Now consider, tEPS, an optimized implementation of AEPS. As
before, a state is a triple 〈t,Sch, St〉. However, unlike the abstract system which
just increments time by 1 when there are no events scheduled at the current
time, the optimized system finds the earliest time in future an event is scheduled
to execute. The transition relation of tEPS is defined as follows. An event (e, te)
with the minimum time is selected, t is updated to te and the event e is executed,
as in the AEPS. Consider an execution of AEPS and tEPS in Figure 1. (We only
show the prefix of executions.) Suppose at t = 0, Sch be {(e1, 0)}. The execution
of event e1 add a new pair (e2, k) to Sch, where k is a positive integer. AEPS
at t = 0, executes the event e1, adds a new pair (e2, k) to Sch, and updates t
to 1. Since no events are scheduled to execute before t = k, the AEPS system
repeatedly increments t by 1 until t = k. At t = k, it executes the event e2. At
time t = 0, tEPS executes e1. The next event is scheduled to execute at time
t = k; hence it updates in one step t to k. Next, in one step it executes the event
e2. Note that tEPS runs faster than AEPS by skipping over abstract states when
no event is scheduled for execution at the current time. If k > 1, the step from s2
to s3 in tEPS neither corresponds to stuttering nor to a single step of the AEPS.
Therefore notions of refinement based on stuttering simulation and bisimulation
cannot be used to show that tEPS refines AEPS.

It was argued in [10] that skipping refinement is an appropriate notion of
correctness that directly accounts for the skipping behavior exhibited by tEPS.
Though, tEPS was used to motivate the need for a new notion of refinement,
the proof methods proposed in [10] are not effective to prove the correctness
of tEPS. This is because, execution of an event in tEPS may add new events
that are scheduled to execute at an arbitrary time in future, i.e., in general k
in the above example execution is unbounded. Hence, the proof methods in [10]
would require unbounded reachability analysis which often is problematic for
automated verification tools. Even in the particular case when one can a priori
determine an upper bound on k and unroll the transition relation, the proof
methods in [10] are viable for mechanical reasoning only if the upper bound k is
relatively small.

In this paper, we develop local proof methods to effectively analyze the cor-
rectness of optimized reactive systems using skipping refinement. These proof
methods reduce global reasoning about infinite computations to local reasoning
about states and their successor and are applicable even if the optimized imple-
mentation exhibits unbounded skipping. Moreover, we show that the proposed
proof methods are complete, i.e., if a system M1 is a skipping refinement of
M2 under a suitable refinement map, then we can always locally reason about
them. We also develop an algebraic theory of skipping refinement. In particular,
we show that skipping simulation is closed under relational composition. Thus,
skipping refinement aligns with the stepwise refinement methodology. Finally,
we illustrate the benefits of the theory of skipping refinement and the associ-
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ated proof methods by verifying the correctness of optimized event processing
systems in ACL2s [3].

2 Preliminaries

A transition system model of a reactive system captures the concept of a state,
atomic transitions that modify state during the course of a computation, and
what is observable in a state. Any system with a well defined operational seman-
tics can be mapped to a labeled transition system.

Definition 1 Labeled Transition System. A labeled transition system (TS)
is a structure 〈S,→, L〉, where S is a non-empty (possibly infinite) set of states,
→⊆ S × S, is a left-total transition relation (every state has a successor), and
L is a labeling function whose domain is S.

Notation: We first describe the notational conventions used in the paper. Func-
tion application is sometimes denoted by an infix dot “.” and is left-associative.
The composition of relation R with itself i times (for 0 < i ≤ ω) is denoted Ri

(ω = N and is the first infinite ordinal). Given a relation R and 1 < k ≤ ω, R<k

denotes
⋃

1≤i<k R
i and R≥k denotes

⋃
ω>i≥k R

i . Instead of R<ω we often write

the more common R+. ] denotes the disjoint union operator. Quantified expres-
sions are written as 〈Qx : r : t〉, where Q is the quantifier (e.g., ∃,∀,min,

⋃
), x is

a bound variable, r is an expression that denotes the range of variable x (true,
if omitted), and t is a term.

LetM = 〈S,−→, L〉 be a transition system. AnM-path is a sequence of states
such that for adjacent states, s and u, s → u. The jth state in an M-path σ is
denoted by σ.j. AnM-path σ starting at state s is a fullpath, denoted by fp.σ.s,
if it is infinite. AnM-segment, 〈v1, . . . , vk〉, where k ≥ 1 is a finiteM-path and
is also denoted by #»v . The length of an M-segment #»v is denoted by | #»v |. Let
INC be the set of strictly increasing sequences of natural numbers starting at
0. The ith partition of a fullpath σ with respect to π ∈ INC, denoted by πσi, is
given by an M-segment 〈σ(π.i), . . . , σ(π(i+ 1)− 1)〉.

3 Theory of Skipping Refinement

In this section we first briefly recall the notion of skipping simulation as described
in [10]. We then study the algebraic properties of skipping simulation and show
that a theory of refinement based on it is compositional and therefore can be
used in a stepwise refinement based verification methodology.

The definition of skipping simulation is based on the notion of matching.
Informally, a fullpath σ matches a fullpath δ under the relation B iff the fullpaths
can be partitioned in to non-empty, finite segments such that all elements in a
segment of σ are related to the first element in the corresponding segment of δ.

Definition 2 smatch [10]. Let M = 〈S,−→, L〉 be a transition system, σ, δ be
fullpaths in M. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

scorr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sBδ(ξ.i)〉〉 and

smatch(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: scorr(B , σ, π, δ, ξ)〉.
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Figure 1 illustrates the notion of matching using our running example: σ is
the fullpath of the concrete system and δ is a fullpath of the absract system.
(The figure only shows the prefix of the fullpaths.) The other parameter for
matching is the relation B, which is just the identity function. In order to show
that smatch(B , σ, δ) holds, we have to find π, ξ ∈ INC satisfying the definition. In
Figure 1, we separate the partitions induced by our choice for π, ξ using −− and
connect elements related by B with . Since all elements of a σ partition are
related to the first element of the corresponding δ partition, scorr(B , σ, π, δ, ξ)
holds, therefore, smatch(B , σ, δ) holds.

Using the notion of matching, skipping simulation is defined as follows. Notice
that skipping simulation is defined using a single transition system; it is easy
to lift the notion defined on a single transition system to one that relates two
transition systems by taking the disjoint union of the transition systems.

Definition 3 Skipping Simulation (SKS). B ⊆ S × S is a skipping simula-
tion on a TSM = 〈S,−→, L〉 iff for all s, w such that sBw, both of the following
hold.

(SKS1) L.s = L.w
(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : smatch(B , σ, δ)〉〉

Theorem 1. Let M be a TS. If B is a stuttering simulation (STS) on M then
B is an SKS on M.

Proof: Follows directly from the definitions of SKS and STS [18].

3.1 Algebraic Properties

We now study the algebraic properties of SKS. We show that it is closed under
arbitrary union. We also show that SKS is closed under relational composition.
The later property is particularly useful since it enables us to use stepwise re-
finement and to modularly analyze the correctness of complex systems.

Lemma 1. Let M be a TS and C be a set of SKS’s on M. Then G = 〈∪B :
B ∈ C : B〉 is an SKS on M.

Corollary 1. For any TS M, there is a greatest SKS on M.

Lemma 2. SKS are not closed under negation and intersection.

The following lemma shows that skipping simulation is closed under relational
composition.

Lemma 3. Let M be a TS. If P and Q are SKS’s on M, then R = P ;Q is an
SKS on M.

Proof: To show that R is an SKS on M = 〈S,−→, L〉, we show that for any
s, w ∈ S such that sRw, SKS1 and SKS2 hold. Let s, w ∈ S and sRw. From the
definition of R, there exists x ∈ S such that sPx and xQw. Since P and Q are
SKS’s on M, L.s = L.x = L.w, hence, SKS1 holds for R.
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To prove that SKS2 holds for R, consider a fullpath σ starting at s. Since
P and Q are SKSs on M, there is a fullpath τ in M starting at x, a fullpath
δ in M starting at w and α, β, θ, γ ∈ INC such that scorr(P , σ, α, τ, β) and
scorr(Q , τ, θ, δ, γ) hold. We use the fullpath δ as a witness and define π, ξ ∈ INC
such that scorr(R, σ, π, δ, ξ) holds.

We define a function, r, that given i, corresponding to the index of a partition
of τ under β, returns the index of the partition of τ under θ in which the first
element of τ ’s ith partition under β resides. r.i = j iff θ.j ≤ β.i < θ(j + 1) Note
that r is indeed a function, as every element of τ resides in exactly one partition
of θ. Also, since there is a correspondence between the partitions of α and β,
(by scorr(P , σ, α, τ, β)), we can apply r to indices of partitions of σ under α to
find where the first element of the corresponding β partition resides. Note that
r is non-decreasing: a < b⇒ r.a ≤ r.b.

We define πα ∈ INC, a strictly increasing sequence that will allow us to merge
adjacent partitions in α as needed to define the strictly increasing sequence π on
σ used to prove SKS2. Partitions in π will consist of one or more α partitions.
Given i, corresponding to the index of a partition of σ under π, the function πα
returns the index of the corresponding partition of σ under α.

πα(0) = 0

πα(i) = min j ∈ ω s.t. |{k : 0 < k ≤ j ∧ r.k 6= r(k − 1)}| = i

Note that πα is an increasing function, i.e., a < b ⇒ πα(a) < πα(b). We now
define π as follows.

π.i = α(πα.i)

There is an important relationship between r and πα

r(πα.i) = · · · = r(πα(i+ 1)− 1)

That is, for all α partitions that are in the same π partition, the initial states of
the corresponding β partitions are in the same θ partition.

We define ξ as follows: ξ.i = γ(r(πα.i)).
We are now ready to prove SKS2. Let s ∈ πσi. We show that sRδ(ξ.i). By

the definition of π, we have

s ∈ ασπα.i ∨ · · · ∨ s ∈ ασπα(i+1)−1

Hence,
sPτ(β(πα.i)) ∨ · · · ∨ sPτ(β(πα(i+ 1)− 1))

Note that by the definition of r (apply r to πα.i):

θ(r(πα.i)) ≤ β(πα.i) < θ(r(πα.i) + 1)

Hence,

τ(β(πα.i))Qδ(γ(r(πα.i))) ∨ · · · ∨ τ(β(πα(i+ 1)− 1))Qδ(γ(r(πα(i+ 1)− 1)))
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By the definition of ξ and the relationship between r and πα described above,
we simplify the above formula as follows.

τ(β(πα.i))Qδ(ξ.i) ∨ · · · ∨ τ(β(πα(i+ 1)− 1))Qδ(ξ.i)

Therefore, by the definition of R, we have that sRδ(ξ.i) holds.

Theorem 2. The reflexive transitive closure of an SKS is an SKS.

Theorem 3. Given a TS M, the greatest SKS on M is a preorder.

Proof: Let G be the greatest SKS onM. From Theorem 2, G∗ is an SKS. Hence
G∗ ⊆ G. Furthermore, since G ⊆ G∗, we have that G = G∗, i.e., G is reflexive
and transitive.

3.2 Skipping Refinement

We now recall the notion of skipping refinement [10]. We use skipping simula-
tion, a notion defined in terms of a single transition system, to define skipping
refinement, a notion that relates two transition systems: an abstract transition
system and a concrete transition system. Informally, if a concrete system is a
skipping refinement of an abstract system, then its observable behaviors are also
behaviors of the abstract system, modulo skipping (which includes stuttering).
The notion is parameterized by a refinement map, a function that maps con-
crete states to their corresponding abstract states. A refinement map along with
a labeling function determines what is observable at a concrete state.

Definition 4 Skipping Refinement. Let MA = 〈SA,
A−→, LA〉 and

MC = 〈SC ,
C−→, LC〉 be transition systems and let r : SC → SA be a refinement

map. We say MC is a skipping refinement of MA with respect to r, written
MC .r MA, if there exists a binary relation B such that all of the following
hold.

1. 〈∀s ∈ SC :: sBr.s〉 and

2. B is an SKS on 〈SC ] SA,
C−→ ] A−→,L〉 where L.s = LA(s) for s ∈ SA, and

L.s = LA(r.s) for s ∈ SC .

Next, we use the property that skipping simulation is closed under relational
composition to show that skipping refinement supports modular reasoning us-
ing a stepwise refinement approach. In order to verify that a low-level complex
implementation MC refines a simple high-level abstract specification MA one
proceeds as follows: starting withMA define a sequence of intermediate systems
leading to the final complex implementationMC . Any two successive systems in
the sequence differ only in relatively few aspects of their behavior. We then show
that, at each step in the sequence, the system at the current step is a refinement
of the previous one. Since at each step, the verification effort is focused only on
the few differences in behavior between two systems under consideration, proof
obligations are simpler than the monolothic proof. Note that this methodology
is orthogonal to (horizontal) modular reasoning that infers the correctness of a
system from the correctness of its sub-components.
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Theorem 4. LetM1 = 〈S1,
1−→, L1〉,M2 = 〈S2,

2−→, L2〉, andM3 = 〈S3,
3−→, L3〉

be TSs, p : S1 → S2 and r : S2 → S3. If M1 .p M2 and M2 .r M3, then
M1 .p;rM3.

Proof: SinceM1 .pM2, we have an SKS, say A, such that 〈∀s ∈ S1 :: sA(p.s)〉.
Furthermore, without loss of generality we can assume that A ⊆ S1 × S2. Simi-
larly, since M2 .r M3, we have an SKS, say B, such that 〈∀s ∈ S2 :: sB(r.s)〉
and B ⊆ S2 × S3. Define C = A;B. Then we have that C ⊆ S1 × S3 and

〈∀s ∈ S1 :: sCr(p.s)〉. Also, from Theorem 2, C is an SKS on 〈S1]S3,
1−→ ] 3−→,L〉,

where L.s = L3(s) if s ∈ S3 else L.s = L3(r(p.s)).

Formally, to establish that a complex low-level implementation MC refines
a simple high-level abstract specification MA, one defines intermediate systems
M1, . . .Mn, where n ≥ 1 and establishes the following:MC =M0 .r0 M1 .r1
. . . .rn−1 Mn =MA. Then from Theorem 4, we have that MC .rMA, where
r = r0; r1; . . . ; rn−1. We illustrate the utility of this approach in Section 5 by
proving the correctness of an optimized event processing systems.

Theorem 5. Let M = 〈S,−→, L〉 be a TS. Let M′ = 〈S′,−→′ , L′〉 where S′ ⊆ S,
−→′ ⊆ S′ × S′, −→′ is a left-total subset of −→+, and L′ = L|S′ . Then M′ .I M,
where I is the identity function on S′.

Corollary 2. LetMC = 〈SC ,
C−→, LC〉 andMA = 〈SA,

A−→, LA〉 be TSs, r : SC →
SA be a refinement map. Let M′C = 〈S′C ,

C−→ ′
, L′C〉 where S′C ⊆ SC ,

C−→ ′
is a

left-total subset of
C−→+, and L′C = LC |S′C . If MC .r MA then M′C .r′ MA,

where r′ is r|S′C .

We now illustrate the usefulness of the theory of skipping refinement using
our running example of event processing systems. Consider MPEPS, that uses
a priority queue to find a non-empty set of events (say Et) scheduled to execute
at the current time and executes them. We allow the priority queue in MPEPS
to be deterministic or nondeterministic. For example, the priority queue may
deterministically select a single event in Et to execute, or based on considerations
such as resource utilization it may execute some subset of events in Et in a single
step. When reasoning about the correctness of MPEPS, one thing to notice is
that there is a difference in the data structures used in the two systems: MPEPS
uses a priority queue to effectively find the next set of events to execute in the
scheduler, while AEPS uses a simple abstract set representation for the scheduler.
Another thing to notice is that MPEPS can “execute faster” than AEPS in
two ways: it can increment time by more than 1 and it can execute more than
one event in a single step. The theory of skipping refinement developed in this
paper enables us to separate out these concerns and apply a stepwise refinement
approach to effectively analyse MPEPS.

First, we account for the difference in the data structures between MPEPS
and AEPS. Towards this we define an intermediate system MEPS that is identi-
cal to MPEPS except that the scheduler in MEPS is now represented as a set of
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event-time pairs. Under a refinement map, say p, that extracts the set of event-
time pairs in the priority queue of MPEPS, a step in MPEPS can be matched by
a step in MEPS. Hence, MPEPS .p MEPS. Next we account for the difference
between MEPS and AEPS in the number of events the two systems may execute
in a single step. Towards this, observe that the state space of MEPS and tEPS
are equal and the transition relation of MEPS is a left-total subset of the transi-
tive closure of the transition relation of tEPS. Hence, from Theorem 5, we infer
that MPEPS is a skipping refinement of tEPS using the identity function, say I1,
as the refinement map, i.e., MEPS .I1 tEPS. Next observe that the state spaces
of tEPS and AEPS are equal and the transition relation of tEPS is a left-total
subset of the transitive closure of the transition relation of AEPS. Hence, from
Theorem 5, tEPS is a skipping refinement of AEPS using the identity function,
say I2, as the refinement map, i.e., tEPS .I2 AEPS. Finally, from the transitiv-
ity of skipping refinement (Theorem 4), we conclude that MPEPS .p′ AEPS,
where p′ = p; I1; I2.

4 Mechanised Reasoning

To prove that a transition system MC is a skipping refinement of a transition
systemMA using Definition 3, requires us to show that for any fullpath fromMC

we can find a matching fullpath from MA. However, reasoning about existence
of infinite sequences can be problematic using automated tools. In this section,
we develop sound and complete local proof methods that are applicable even if a
system exhibits unbounded skipping. We first briefly present the proof methods,
reduced well-founded skipping and well-founded skipping simulation, developed
in [10].

Definition 5 Reduced Well-founded Skipping [10]. B ⊆ S×S is a reduced
well-founded skipping relation on TS M = 〈S,−→, L〉 iff :

(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is

well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w →+ v : uBv〉〉

Definition 6 Well-founded Skipping [10]. B ⊆ S × S is a well-founded
skipping relation on TS M = 〈S,−→, L〉 iff :

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
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(WFSK2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω,
such that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨
(d) 〈∃v : w →≥2 v : uBv〉〉

Theorem 6 [10]. Let M = 〈S,−→, L〉 be a TS and B ⊆ S × S. The following
statements are equivalent

(i) B is a SKS on M;
(ii) B is a WFSK on M;

(iii) B is a RWFSK on M.

Recall the event processing systems AEPS and tEPS described in Section 1.1.
When no events are scheduled to execute at a given time, say t, tEPS increments
time t to the earliest time in future, say k > t, at which an event is scheduled
for execution. Execution of an event can add an event that is scheduled to be
executed at an arbitrary time in future. Therefore, we cannot apriori determine
an upper-bound on k. Using any of the above two proof-methods to reason about
skipping refinement would require unbounded reachability analysis (conditions
RWFSK2b and WFSK2d), often difficult for automated verification tools. To
redress the situation, we develop two new proof methods of SKS; both require
only local reasoning about steps and their successors.

Definition 7 Reduced Local Well-founded Skipping. B ⊆ S×S is a local
well-founded skipping relation on TS M = 〈S,−→, L〉 iff:

(RLWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RLWFSK2) There exist functions, rankt : S × S −→ W , rankls : S × S −→ ω

such that 〈W,≺〉 is well founded, and, a binary relation O ⊆ S×S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w → v : uOv〉〉

and

〈∀x, y ∈ S : xOy :

(c) xBy ∨
(d) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Observe that to prove that a relation is an RLWFSK on a transition system, it
is sufficient to reason about single steps of the transition system. Also, note that
RLWFSK does not differentiate between skipping and stuttering on the right.
This is based on an earlier observation that skipping subsumes stuttering. We
used this observation to simplify the definition. However, it can often be useful to
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Fig. 2: Local well-founded skipping simulation (orange line indicates the states are
related by B and blue line indicate the states are related by O)

differentiate between skipping and stuttering. Next we define local well-founded
skipping simulation (LWFSK), a characterization of skipping simulation that
separates reasoning about skipping and stuttering on the right.

Definition 8 Local Well-founded Skipping. B ⊆ S × S is a local well-
founded skipping relation on TS M = 〈S,−→, L〉 iff:

(LWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(LWFSK2) There exist functions, rankt : S×S −→W , rankl : S×S×S −→ ω,

and rankls : S × S −→ ω such that 〈W,≺〉 is well founded, and, a binary
relation O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) 〈∃v : w → v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w → v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉∨
(d) 〈∃v : w → v : uOv〉〉

and

〈∀x, y ∈ S : xOy :

(e) xBy ∨
(f) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Like RLWFSK, to prove that a relation is a LWFSK, reasoning about single
steps of the transition system suffices. However, LWFSK2b accounts for stutter-
ing on the right, and LWFSK2d along with LWFSK2e and LWFSK2f accounts
for skipping on the right. Also observe that states related by O are not required
to be labeled identically and may have no observable relationship to the states
related by B.

Soundness and Completeness We next show that RLWFSK and LWFSK
in fact completely characterize skipping simulation, i.e., RLWFSK and LWFSK
are sound and complete proof rules. Thus if a concrete systemMC is a skipping
refinement of MA, one can always effectively reason about it using RLWFSK
and LWFSK.
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Theorem 7. Let M = 〈S,−→, L〉 be a transition system and B ⊆ S × S. The
following statements are equivalent:

(i) B is an SKS on M;
(ii) B is a WFSK on M;

(iii) B is an RWFSK on M;
(iv) B is an RLWFSK on M;
(v) B is a LWFSK on M;

Proof: The equivalence of (i), (ii) and (iii) follows from Theorem 6. That (iv)
implies (v) follows from the simple observation that RLWFSK2 implies LWFSK2.
To complete the proof, we prove the following two implications. We prove below
that (v) implies (ii) in Lemma 4 and that (iii) implies (iv) in Lemma 5.

Lemma 4. If B is a LWFSK on M, then B is a WFSK on M.

Proof: Let B be a LWFSK on M. WFSK1 follows directly from LWFSK1. Let
rankt , rankl , and rankls be functions, and O be a binary relation such that
LWFSK2 holds. To show that WFSK2 holds, we use the same rankt and rankl
functions and let s, u, w ∈ S and s → u and sBw. LWFSK2a, LWFSK2b and
LWFSK2c are equivalent to WFSK2a, WFSK2b and WFSK2c, respectively, so
we show that if only LWFSK2d holds, then WFSK2d holds. Since LWFSK2d
holds, there is a successor v of w such that uOv. Since uOv holds, either
LWFSK2e or LWFSK2f must hold between u and v. However, since LWFSK2a
does not hold, LWFSK2e cannot hold and LWFSK2f must hold, i.e., there ex-
ists a successor v′ of v such that uOv′ ∧ rankls(v′, u) < rankls(v, u). So, we
need a path of at least 2 steps from w to satisfy the universally quantified con-
straint on O. Let us consider an arbitrary path, δ, such that δ.0 = w, δ.1 = v,
δ.2 = v′, uOδ.i, LWFSK2e does not hold between u and δ.i for i ≥ 1, and
rankls(δ.(i + 1), u) < rankls(δ.i, u). Notice that any such path must be finite
because rankls is well founded. Hence, δ is a finite path and there exists a k ≥ 2
such that LWFSK2e holds between u and δ.k. Therefore, WFSK2d holds, i.e.,
there is a state in δ reachable from w in two or more steps which is related to u
by B.

Lemma 5. If B is RWFSK on M, then B is an RLWFSK on M.

Proof: Let B be an RWFSK on M. RLWFSK1 follows directly from RWFSK1.
To show that RLWFSK2 holds, we use any rankt function that can be used to
show that RWFSK2 holds. We define O as follows.

O = {(u, v) : 〈∃z : v →+ z : uBz〉}

We define rankls(u, v) to be the minimal length of a M-segment that starts at
v and ends at a state, say z, such that uBz, if such a segment exists and 0
otherwise. Let s, u, w ∈ S, sBw and s → u. If RWFSK2a holds between s, u,
and w, then RLWFSK2a also holds. Next, suppose that RWFSK2a does not hold
but RWFSK2b holds, i.e., there is an M-segment 〈w, a, . . . , v〉 such that uBv;
therefore, uOa and RLWFSK2b holds.
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To finish the proof, we show that O and rankls satisfy the constraints im-
posed by the second conjunct in RLWFSK2. Let x, y ∈ S, xOy and x 6B y. From
the definition of O, we have that there is anM-segment from y to a state related
to x by B; let #»y be such a segment of minimal length. From definition of rankls,
we have rankls(y, x) = | #»y |. Observe that y cannot be the last state of #»y and
| #»y | ≥ 2. This is because the last state in #»y must be related to x by B, but from
the assumption we know that x 6B y. Let y′ be a successor of y in #»y . Clearly,
xOy′; therefore, rankls(y′, x) < | #»y |−1, since the length of a minimalM-segment
from y′ to a state related to x by B, must be less or equal to | #»y | − 1.

5 Case Study (Event Processing System)

In this section, we analyze the correctness of an optimized event processing
system (PEPS) that uses a priority queue to find an event scheduled to execute
at any given time. We show that PEPS refines AEPS, a simple event processing
system described in Section 1. Our goal is to illustrate the benefits of the theory
of skipping refinement and the associated local proof methods developed in the
paper. We use ACL2s [3], an interactive theorem prover, to define the operational
semantics of the systems and mechanize a proof of its correctness.

Operational Semantics of PEPS: A state of PEPS system is a triple 〈tm, otevs, mem〉,
where tm is a natural number denoting current time, otevs is a set of timed-
event pairs denoting the scheduler that is ordered with respect to a total order
te-< on timed-event pairs, and mem is a collection of variable-integer pairs de-
noting the shared memory. The transition function of PEPS is defined as follows:
if there are no events in otevs, then PEPS just increments the current time by
1. Otherwise, it picks the first timed-event pair, say 〈e, t〉 in otevs, executes it
and updates the time to t. The execution of an event may result in adding new
timed-events to the scheduler, removing existing timed-events from the scheduler
and updating the memory. Finally, the executed timed-event is removed from
the scheduler. This is a simple, generic model of an event processing system.
Notice that the ability to remove events can be used to specify systems with
preemption [23]: an event scheduled to execute at some future time may be can-
celed (and possibly rescheduled to be executed at a different time in future) as
a result of the execution of an event that preempts it. Notice that, for a given
total order, PEPS is a deterministic system.

The execution of an event is modeled using three constrained functions that
take as input an event, ev, a time, t, and a memory, mem: step-events-add re-
turns the set of new timed-event pairs to add to the scheduler; step-events-rm
returns the set of timed-event pairs to remove from the scheduler; and step-memory

returns a memory updated as specified by the event. We place minimal con-
straints on these functions. For example, we only require that step-events-add
returns a set of event-time pairs of the form 〈e, te〉 where te is greater than the
current time t. The constrained functions are defined using the encapsulate

construct in ACL2 and can be instantiated with any executable definitions that
satisfy these constraints without affecting the proof of correctness of PEPS.
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Moreover, note that the particular choice of the total order on timed-event pairs
is irrelevant to the proof of correctness of PEPS.

Stepwise Refinement: We show that PEPS refines AEPS using a stepwise
refinement approach: first we define an intermediate system HPEPS obtained by
augmenting PEPS with history information and show that PEPS is a simulation
refinement of HPEPS. Second, we show that HPEPS is a skipping refinement
of AEPS. Finally, we appeal to Theorem 1 and Theorem 4 to infer that PEPS
refines AEPS. Note that the compositionality of skipping refinement enables
us to decompose the proof into a sequence of refinement proofs, each of which
is simpler. Moreover, the history information in HPEPS is helpful in defining
the witnessing binary relation and the rank function required to prove skipping
refinement.

An HPEPS state is a four-tuple 〈tm, otevs,mem, h〉, where tm, otevs, mem are
respectively the current time, an ordered set of timed events and a collection of
variable-integer pairs, and h is the history information. The history information h

consists of a Boolean variable valid, time tm, and an ordered set of timed-event
pairs otevs and the memory mem. Intuitively, h records the state preceding the
current state. The transition function HPEPS is same as the transition function
of PEPS except that HPEPS also records the history in h.

PEPS refines HPEPS: Observe that, modulo the history information, a step
of PEPS directly corresponds to a step of HPEPS, i.e., PEPS is a bisimula-
tion refinement of HPEPS under a refinement map that projects a PEPS state
〈tm, otevs,mem〉 to the HPEPS state 〈tm, otevs,mem, h〉 where the valid com-
ponent of h is set to false. But we only prove that it is a simulation refinement,
because, from Theorem 1, it suffices to establish that PEPS is a skipping refine-
ment of HPEPS. The proofs primarily require showing that two sets of ordered
timed-events that are set equivalent are in fact equal and that adding and re-
moving equivalent sets of timed-event from equal schedulers results in equal
schedulers.

HPEPS refines AEPS: Next we show that HPEPS is a skipping refinement of
AEPS under the refinement map R, a function that simply projects an HPEPS
state to an AEPS state. To show that HPEPS is a skipping refinement of
AEPS under the refinement map R, from Definition 4, we must show as wit-
ness a binary relation B that satisfies the two conditions. Let B = {(s,R.s) :
s is an HPEPS state}. To establish that B is an SKS on the disjoint union of
HPEPS and AEPS, we have a choice of four proof-methods (Section 4). Recall
that execution of an event can add a new event scheduled to be executed at an
arbitrary time in the future. As a result, if we were to use WFSK or RWFSK,
the proof obligations from conditions WFSK2d (Definition 5) and RWFSK2b
(Definition 6) would require unbounded reachability analysis, something that
typically places a big burden on verification tools and their users. In contrast,
the proof obligations to establish RLWFSK are local and only require reasoning
about states and their successors, which significantly reduces the proof complex-
ity.
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RLWFSK1 holds trivially. To prove that RLWFSK2 holds we define a bi-
nary relation O and a rank function rankls and show that they satisfy the two
universally quantified formulas in RLWFSK2. Moreover, since HPEPS does not
stutter we ignore RLWFSK2a, and that is why we do not define rankt . Finally,
our proof obligation is: for all HPEPS s, u and AEPS state w such that s → u
and sBw holds, there exists a AEPS state v such that w → v and uOv holds.

Verification Effort: We used the defdata framework in ACL2s, to specify
the data definitions for the three systems and the definec construct to intro-
duce function definitions along with their input-contracts (pre-conditions) and
output-contracts (post-conditions). In addition to admitting a data definition,
defdata proves several theorems about the functions that are extremely helpful
in automatically discharging type-like proof obligations. We also developed a li-
brary to concisely describe functions using higher-order constructs like map and
reduce, which made some of the definitions clearer. ACL2s supports first-order
quantifiers via the defun-sk construct, which essentially amounts to the use
of Hilbert’s choice operator. We use defun-sk to model the transition relation
for AEPS (a non-deterministic system) and to specify the proof obligations for
proving that HPEPS refines AEPS. However, support for automated reasoning
about quantifiers is limited in ACL2. Therefore, we use the domain knowledge,
when possible (e.g., a system is deterministic), to eliminate quantifiers in the
proof obligations and provide explicit witnesses for existential quantifiers.

The proof makes essential use of several libraries available in ACL2 for reason-
ing about lists and sets. In addition, we prove a collection of additional lemmas
that can be roughly categorized into four categories. First, we have a collection
of lemmas to prove the input-output contracts of the functions. Second, we have
a collection of lemmas to show that operations on the schedulers in the three
systems preserve various invariants, e.g., that any timed-event in the scheduler
is scheduled to execute at a time greater or equal to the current time. Third, we
have a collection of lemmas to show that inserting and removing two equivalent
sets of timed-events from a scheduler results in an equivalent scheduler. And
fourth, we have a collection of lemmas to show that two schedulers are equiva-
lent iff they are set equal. The above lemmas are used to establish a relationship
between priority queues, a data structure used by the implementation system,
and sets, the corresponding data structure used in the specification system. The
behavioral difference between the two systems is accounted for by the notion
of skipping refinement. This separation significantly eases understanding as well
as mechanical reasoning about the correctness of reactive systems. We have 8
top-level proof obligations and a few dozen supporting lemmas. The entire proof
takes about 120 seconds on a machine with 2.2 GHz Intel Core i7 with 16GB
main memory.

6 Related Work

Several notions of correctness have been proposed in the literature and their
properties been widely studied [2, 5, 11, 16, 17]. In this paper, we develop a the-
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ory of skipping refinement to effectively prove the correctness of optimized reac-
tive systems using automated verification tools. These results establish skipping
refinement on par with notions of refinement based on (bi)simulation [22] and
stuttering (bi)simulation [20, 24], in the sense that skipping refinement is (1)
compositional and (2) admits local proofs methods. Together the two proper-
ties have been instrumental in significantly reducing the proof complexity in
verification of large and complex systems. We developed the theory of skipping
refinement using a generic model of transition systems and place no restrictions
on the state space size or the branching factor of the transition system. Any
system with a well-defined operational semantics can be mapped to a labeled
transition system. Moreover, the local proof methods are sound and complete,
i.e., if an implementation is a skipping refinement of the specification, we can
always use the local proof methods to effectively reason about it.

Refinement-based methodologies have been successfully used to verify the
correctness of several realistic hardware and software systems. In [13], several
complex concurrent programs were verified using a stepwise refinement method-
ology. In addition, Kragl and Qadeer [13] also develop a compact representation
to facilitate the description of programs at different levels of abstraction and asso-
ciated refinement proofs. Several back-end compiler transformations are proved
correct in Compcert [15] using simulation refinement. In [25], several compiler
transformations were verified using stuttering refinement and associated local
proof methods. Recently, refinement-based methodology has also been applied to
verify the correctness of practical distributed systems [8] and a general-purpose
operating system microkernel [12]. The full verification of CertiKOS [6, 7], an
OS kernel, is based on the notion of simulation refinement. Refinement based
approaches have also been extensively used to verify microprocessor designs [1,
9, 19, 21, 26]. Skipping refinement was used to verify the correctness of optimized
memory controllers and a JVM-inspired stack machine [10].

7 Conclusion and Future Work

In this paper, we developed the theory of skipping refinement. Skipping refine-
ment is designed to reason about the correctness of optimized reactive systems,
a class of systems where a single transition in a concrete low-level implemen-
tation may correspond to a sequence of observable steps in the corresponding
abstract high-level specification. Examples of such systems include optimizing
compilers, concurrent and parallel systems and superscalar processors. We de-
veloped sound and complete proof methods that reduce global reasoning about
infinite computations of such systems to local reasoning about states and their
successors. We also showed that the skipping simulation is closed under composi-
tion and therefore is amenable to modular reasoning using a stepwise refinement
approach. We experimentally validated our results by analyzing the correctness
of an optimized event-processing system in ACL2s. For future work, we plan to
precisely classify temporal logic properties that are preserved by skipping refine-
ment. This would enable us to transfer temporal properties from specifications
to implementations, after establishing refinement.
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