
Chapter 7

Boundary Points and Resolution

Eugene Goldberg, Panagiotis Manolios

7.1 Chapter Overview

We use the notion of boundary points to study resolution proofs. Given a
CNF formula F , an l(x)-boundary point is a complete assignment falsifying
only clauses of F having the same literal l(x) of variable x. An l(x)-boundary
point p mandates a resolution on variable x. Adding the resolvent of this
resolution to F eliminates p as an l(x)-boundary point. Any resolution proof
has to eventually eliminate all boundary points of F . Hence one can study
resolution proofs from the viewpoint of boundary point elimination.

We use equivalence checking formulas to compare proofs of their unsatisfi-
ability built by a conflict driven SAT-solver and very short proofs tailored to
these formulas. We show experimentally that in contrast to proofs generated
by this SAT-solver, almost every resolution of a specialized proof eliminates
a boundary point. This implies that one may use the share of resolutions
eliminating boundary points as a metric of proof quality. We argue that ob-
taining proofs with a high value of this metric requires taking into account
the formula structure.

We show that for any unsatisfiable CNF formula there always exists a
proof consisting only of resolutions eliminating cut boundary points (which
are a relaxation of the notion of boundary points). This result enables building
resolution SAT-solvers that are driven by elimination of cut boundary points.

This chapter is an extended version of the conference paper [9].

7.2 Introduction

Resolution-based SAT-solvers [3, 6, 10, 13, 16, 12, 15] have achieved great
success in numerous applications. However, the reason for this success and,
more generally, the semantics of resolution is not well understood yet. This
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obviously impedes progress in SAT-solving. In this chapter, we study the re-
lation between the resolution proof system [2] and boundary points [11]. The
most important property of boundary points is that they mandate particu-
lar resolutions of a proof. So by studying the relation between resolution and
boundary points one gets a deeper understanding of resolutions proofs, which
should lead to building better SAT-solvers.

Given a CNF formula F , a non-satisfying complete assignment p is called
an l(x)-boundary point, if it falsifies only the clauses of F that have the same
literal l(x) of variable x. The name is due to the fact that for satisfiable
formulas the set of such points contains the boundary between satisfying and
unsatisfying assignments. If F is unsatisfiable, for every l(x)-boundary point
p there is a resolvent of two clauses of F on variable x that eliminates p.
(That is after adding such a resolvent to F , p is not an l(x)-boundary point
anymore). On the contrary, for a non-empty satisfiable formula F , there is
always a boundary point that can not be eliminated by adding a clause
implied by F .

To prove that a CNF formula F is unsatisfiable it is sufficient to eliminate
all its boundary points. In the resolution proof system, one reaches this goal
by adding to F resolvents. If formula F has an l(x)-boundary point, a reso-
lution proof has to have a resolution operation on variable x. The resolvents
of a resolution proof eventually eliminate all boundary points. We will call a
resolution mandatory if it eliminates a boundary point of the initial formula
F that has not been eliminated by adding the previous resolvents. (In [9]
such a resolution was called boundary.)

Intuitively, one can use the Share of Mandatory Resolutions (SMR) of
a proof as a metric of proof quality. The reason is that finding mandatory
resolutions is not an easy task. (Identification of a boundary point is computa-
tionally hard, which implies that finding a mandatory resolution eliminating
this point is not easy either.) However, finding mandatory resolutions be-
comes much simpler if one knows subsets of clauses of F such that resolving
clauses of these subsets eliminate boundary points. (An alternative is to try
to guess these subsets heuristically.) Intuitively, such subsets have a lot to do
with the structure of the formula. So the value of SMR may be used to gauge
how well the resolution proof built by a SAT-solver follows the structure of
the formula.

We substantiate the intuition above experimentally by comparing two
kinds of proofs for equivalence checking formulas. (These formulas describe
equivalence checking of two copies of a combinational circuit.) Namely, we
consider short proofs of linear size particularly tailored for equivalence check-
ing formulas and much longer proofs generated by a SAT-solver with conflict
driven learning. We show experimentally that the share of boundary reso-
lution operations in high-quality specialized proofs is much greater than in
proofs generated by the SAT-solver.

Generally speaking, it is not clear yet if for any irredundant unsatisfiable
formula there is a proof consisting only of mandatory resolutions. However,
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as we show in this chapter, for any unsatisfiable formula F there always exists
a proof where each resolution eliminates a cut boundary point. The latter is
computed with respect to the CNF formula FT consisting of clauses of F and
their resolvents that specify a cut T of a resolution graph describing a proof.
(Formula FT is unsatisfiable for any cut T ). The notion of a cut boundary
point is a relaxation of that of a boundary point computed with respect to
the initial formula F . Point p that is boundary for FT may not be boundary
for F . Proving that resolution is complete with respect to elimination of
cut boundary points enables building SAT-solvers that are driven by cut
boundary point elimination. Another important observation is that the metric
that computes the share of resolutions eliminating cut boundary points is
more robust than SMR metric above. Namely, it can be also applied to the
formulas that do not have proofs with a 100 % value of the SMR metric.

The contributions of this chapter are as follows. First, we show that one
can view resolution as elimination of boundary points. Second, we introduce
the SMR metric that can be potentially used as a measure of proof quality.
Third, we give some experimental results about the relation between SMR-
metric and proof quality. Fourth, we show that resolution remains complete
even when it is restricted to resolutions eliminating cut boundary points.

This chapter is structured as follows. Section 7.3 introduces main defini-
tions. Some properties of boundary points are given in Section 7.4. Section 7.5
views a resolution proof as a process of boundary point elimination. A class of
equivalence checking formulas and their short resolution proofs are described
in Section 7.6. Experimental results are given in Section 7.7. Some relevant
background is recalled in Section 7.8. In Section 7.9 we show that for any
unsatisfiable formula there is proof consisting only of resolutions eliminating
cut boundary points. Conclusions and directions for future research are listed
in Section 7.10.

7.3 Basic Definitions

Definition 7.1. A literal of a Boolean variable x (denoted as l(x) is a
Boolean function of x. The identity and negation functions (denoted as x
and x respectively ) are called the positive literal and negative literal of
x respectively. We will denote l(x) as just l if the identity of variable x is not
important.

Definition 7.2. A clause is the disjunction of literals where no two (or
more) literals of the same variable can appear. A CNF formula is the
conjunction of clauses. We will also view a CNF formula as a set of clauses.
Denote by Vars(F ) (respectively Vars(C)) the set of variables of CNF
formula F (respectively clause C).
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Definition 7.3. Given a CNF formula F (x1, . . . , xn), a complete assign-
ment p (also called a point) is a mapping {x1, . . . , xn} → {0, 1}. Given
a complete assignment p and a clause C, denote by C(p) the value of C
when its variables are assigned by p. A clause C is satisfied (respectively
falsified) by p if C(p) = 1 (respectively C(p) = 0).

Definition 7.4. Given a CNF formula F , a satisfying assignment p is a
complete assignment satisfying every clause of F . The satisfiability prob-
lem (SAT) is to find a satisfying assignment for F or to prove that such an
assignment does not exist.

Definition 7.5. Let F be a CNF formula and p be a complete assignment.
Denote by Unsat(p,F ) the set of all clauses of F falsified by p.

Definition 7.6. Given a CNF formula F , a complete assignment p is called
an l(xi)-boundary point , if Unsat(p,F ) 6= ∅ and every clause of Unsat(p,F )
contains literal l(xi).

Example 7.1. Let F consist of 5 clauses: C1 = x2, C2 = x2∨x3, C3 = x1∨x3,
C4 = x1 ∨ x3, C5 = x2 ∨ x3. Complete assignment p1=(x1=0,x2=0,x3=1)
falsifies only clauses C1,C4. So Unsat(p1,F )={C1,C4}. There is no literal
shared by all clauses of Unsat(p1,F ). Hence p1 is not a boundary point.
On the other hand, p2= (x1=0,x2=1,x3=1) falsifies only clauses C4,C5 that
share literal x3. So p2 is a x3-boundary point.

7.4 Properties

In this section, we give some properties of boundary points.

7.4.1 Basic Propositions

In this subsection, we prove the following propositions. The set of bound-
ary points contains the boundary between satisfying and unsatisfying assign-
ments (Proposition 7.1). A CNF formula without boundary points is unsat-
isfiable (Proposition 7.2). Boundary points come in pairs (Proposition 7.3).

Definition 7.7. Denote by Bnd pnts(F) the set of all boundary points of
a CNF formula F . We assume that an l(xi)-boundary point p is specified
in Bnd pnts(F ) as the pair (l(xi),p). So the same point p may be present
in Bnd pnts(F ) more than once (e.g. if p is an l(xi)-boundary point and an
l(xj)-boundary point at the same time).
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Proposition 7.1. Let F be a satisfiable formula whose set of clauses is not
empty. Let p1 and p2 be two complete assignments such that a) F(p1)=0,
F(p2)=1; b) p1 and p2 are different only in the value of variable xi. Then
p1 is an l(xi)-boundary point.

Proof. Assume the contrary i.e. Unsat(p1,F ) contains a clause C of F that
does not have variable xi. Then p2 falsifies C too and so p2 cannot be a
satisfying assignment. A contradiction.

Proposition 7.1 means Bnd pnts(F ) contains the boundary between satisfying
and unsatisfying assignments of a satisfiable CNF formula F .

Proposition 7.2. Let F be a CNF formula that has at least one clause. If
Bnd pnts(F ) = ∅, then F is unsatisfiable.

Proof. Assume the contrary i.e. Bnd pnts(F ) = ∅ and F is satisfiable. Since
F is not empty, one can always find two points p1 and p2 such that F (p1)=0
and F (p2)=1 and that are different only in the value of one variable xi

of F . Then according to Proposition 7.1, p1 is an l(xi)-boundary point. A
contradiction.

Proposition 7.3. Let p1 be an l(xi)-boundary point for a CNF formula F .
Let p2 be the point obtained from p1 by changing the value of xi. Then p2 is
either a satisfying assignment or a l(xi)-boundary point.

Proof. Reformulating the proposition, one needs to show that Unsat(p2,F ) is
either empty or contains only clauses with literal l(xi). Assume that contrary,
i.e. Unsat(p2,F ) contains a clause C with no literal of xi. (All clauses with
l(xi) are satisfied by p2.) Then C is falsified by p1 too and so p1 is not an
l(xi)-boundary point. A contradiction.

Definition 7.8. Proposition 7.3 means that for unsatisfiable formulas every
xi-boundary point has the corresponding xi-boundary point (and vice versa).
We will call such a pair of points twin boundary points in variable xi.

Example 7.2. The point p2= (x1 = 0, x2 = 1, x3 = 1) of Example 7.1 is a
x3-boundary point. The point p3=(x1 = 0, x2 = 1, x3 = 0) obtained from
p2 by flipping the value of x3 falsifies only clause C2= x2 ∨ x3. So p3 is an
x3-boundary point.

7.4.2 Elimination of Boundary Points by Adding
Resolvents

In this subsection, we prove the following propositions. Clauses of a CNF for-
mula F falsified by twin boundary points can be resolved (Proposition 7.4.
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Adding such a resolvent to F eliminates these boundary points (Proposi-
tion 7.5). Adding the resolvents of a resolution proof eventually eliminates
all boundary points (Proposition 7.6). An l(xi)-boundary point can be elim-
inated only by a resolution on variable xi (Proposition 7.7). If formula F has
an l(xi)-boundary point, any resolution proof that F is unsatisfiable has a
resolution on variable xi (Proposition 7.8).

Definition 7.9. Let C1 and C2 be two clauses that have opposite literals of
variable xi (and no opposite literals of any other variable). The resolvent C
of C1 and C2 is the clause consisting of all the literals of C1 and C2 but the
literals of xi. The clause C is said to be obtained by a resolution operation
on variable xi. C1 and C2 are called the parent clauses of C.

Proposition 7.4. Let p1 and p2 be twin boundary points of a CNF formula
F in variable xi. Let C1 and C2 be two arbitrary clauses falsified by p1 and
p2 respectively. Then a) C1, C2 can be resolved on variable xi; b) C(p1) = 0,
C(p2) = 0 where C is the resolvent of C1 and C2.

Proof. Since C1(p1)=0, C2(p2)=0 and p1 and p2 are twin boundary points
in xi, C1 and C2 have opposite literals of variable xi. Since p1 and p2 are
different only in the value of xi, clauses C1 and C2 can not contain opposite
literals of a variable other than xi. (Otherwise, p1 and p2 had to be different
in values of at least 2 variables.) Since p1 and p2 are different only in the
value of xi, they both set to 0 all the literals of C1 and C2 but literals of xi.
So the resolvent C of C1 and C2 is falsified by p1 and p2.

Example 7.3. Points p2= (x1 = 0, x2 = 1, x3 = 1) and p3=(x1 = 0, x2 =
1, x3 = 0) from Examples 7.1 and 7.2 are twin boundary points in variable x3.
Unsat(p2,F )={C4,C5} and Unsat(p3,F ) ={C2}. For example, C4 = x1 ∨ x3,
can be resolved with C2= x2 ∨x3 on variable x3. Their resolvent C= x1 ∨x2

is falsified by both p2 and p3.

Proposition 7.5. Let p1 and p2 be twin boundary points in variable xi and
C1 and C2 be clauses falsified by p1 and p2 respectively Then adding the
resolvent C of C1 and C2 to F eliminates the boundary points p1 and p2.
That is pairs (xi,p1) and (xi,p2) are not in the set Bnd pnts(F ∧ C) (here
we assume that p1 is an xi-boundary point and p2 is a xi-boundary point of
F ).

Proof. According to Proposition 7.4, any clauses C1 and C2 falsified by p1

and p2 respectively can be resolved on xi and p1 and p2 falsify the resolvent
C of C1 and C2. Since clause C does not have a literal of xi, p1 is not an
xi-boundary point and p2 is not a xi-boundary point of F ∧ C.

Proposition 7.6. If a CNF formula F contains an empty clause, then
Bnd pnts(F ) = ∅.

Proof. For any complete assignment p, the set Unsat(p,F ) contains the
empty clause of F . So p can not be an l-boundary point.
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Proposition 7.6 works only in one direction, i.e. if Bnd pnts(F ) = ∅, it does
not mean that F contains an empty clause. Proposition 7.6 only implies that,
given an unsatisfiable formula F for which Bnd pnts(F ) is not empty, the
resolvents of any resolution proof of unsatisfiability of F eventually eliminate
all the boundary points.

Proposition 7.7. Let F be a CNF formula and p be an l(xi)-boundary point
of F . Let C be the resolvent of clauses C1 and C2 of F that eliminates p (i.e.
(l(xi),p) is not in Bnd pnts(F ∧ C)). Then C is obtained by resolution on
variable xi. In other words, an l(xi)-boundary point can be eliminated only
by adding to F a resolvent on variable xi.

Proof. Assume the contrary i.e. adding C to F eliminates p and C is obtained
by resolving C1 and C2 on variable xj , j 6= i. Since C eliminates p as an l(xi)-
boundary point, it is falsified by p and does not contain l(xi). This means
that neither C1 nor C2 contain variable xi. Since C is falsified by p, one of the
parent clauses, say clause C1, is falsified by p too. Since C1 does not contain
literal l(xi), p is not an l(xi)- boundary point of F . A contradiction.

Proposition 7.8. Let p be an l(xi)-boundary point of a CNF formula F .
Then any resolution derivation of an empty clause from F has to contain a
resolution operation on variable xi.

Proof. According to Proposition 7.6, every boundary point of F is eventu-
ally eliminated in a resolution proof. According to Proposition 7.7, an l(xi)-
boundary point can be eliminated only by adding to F a clause produced by
resolution on variable xi.

7.4.3 Boundary Points and Redundant Formulas

In this subsection, we prove the following propositions. A clause C of a CNF
formula F that has a literal l and is not falsified by an l-boundary point
of F is redundant in F (Proposition 7.9). If F does not have any l(xi)-
boundary points, all clauses depending on variable xi can be removed from
F (Proposition 7.10). If p is an l(xi)-boundary point of F , it is also an l(xi)-
boundary point of every unsatisfiable subset of clauses of F .

Definition 7.10. A clause C of a CNF formula F is called redundant if
F \ {C} → C.

Proposition 7.9. Let C be a clause of a CNF formula F . Let l be a literal
of C. If no l-boundary point of F falsifies C, then C is redundant.

Proof. Assume the contrary, i.e. C is not redundant. Then there is an assign-
ment p such that C is falsified and all the other clauses of F are satisfied.
Then p is an l-boundary point. A contradiction.
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Importantly, Proposition 7.9 works only in one direction. That is the fact that
a clause C is redundant in F does not mean that no boundary point of F
falsifies C. Let CNF formula F (x1, x2) consist of four clauses: x1, x1, x1∨x2,
x1 ∨ x2. Although the clause x1 is redundant in F , p = (x1 = 0, x2 = 0) is
an x1-boundary point falsifying x1 (and x1 ∨x2). The resolvent of clauses x1

and x1 eliminates p as a boundary point.

Proposition 7.10. Let a CNF formula F have no l(xi)-boundary points.
Then removing the clauses containing xi or xi from F does not change F
(functionally).

Proof. Let C be a clause of F with a literal l(xi). Then according to Propo-
sition 7.9 C is redundant in F and so its removal does not change the
Boolean function specified by F . Removing C from F , cannot produce an
l(xi)-boundary point in F \ {C}. So Proposition 7.9 can be applied again to
any of the remaining clauses with xi or xi (and so on).

Proposition 7.11. Let F be an unsatisfiable formula. Let p be an l(xi)-
boundary point of F and F ′ be an unsatisfiable subset of clauses of F . Then
p is an l(xi)-boundary point of F ′.

Proof. Since F ′ ⊆ F then Unsat(p,F ′) ⊆ Unsat(p,F ). Since F ′ is unsatisfi-
able, Unsat(p,F ′) 6= ∅.

7.5 Resolution Proofs and Boundary Points

In this section, we view construction of a resolution proof as a process of
boundary point elimination and give a metric for measuring proof quality.

7.5.1 Resolution Proof as Boundary Point Elimination

First, we define the notion of a resolution proof [2] and a boundary resolution.

Definition 7.11. Let F be an unsatisfiable formula. Let R1, . . . , Rk be a set
of clauses such that (a) each clause Ri is obtained by resolution operation
where a parent clause is either a clause of F or the resolvent of a previous
resolution operation; (b) clauses Ri are numbered in the order they are de-
rived; (c) Rk is an empty clause. Then the set of resolutions that produced
the resolvents R1, . . . , Rk is called a resolution proof . We assume that
this proof is irredundant i.e. removal of any non-empty subset of these k
resolvents breaks condition (a).

Definition 7.12. Let {R1, . . . , Rk} be the set of resolvents forming a reso-
lution proof that a CNF formula F is unsatisfiable. Denote by Fi the CNF
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formula that is equal to F for i = 1 and to F ∪{R1, . . . , Ri−1} for i = 2, . . . , k.
We will say that the i-th resolution (i.e. one that produces resolvent Ri)
is non-mandatory if Bnd pnts(Fi) = Bnd pnts(Fi+1). Otherwise (i.e. if
Bnd pnts(Fi) ⊂ Bnd pnts(Fi+1), because adding a clause can not create a
boundary point) , i-th resolution is called mandatory . So a resolution op-
eration is mandatory if adding Ri to Fi eliminates a boundary point.

In Section 7.4, we showed that eventually all the boundary points of a CNF
formula F are removed by resolvents. Importantly, an l(xi)-boundary point
mandates a resolution on xi. Besides, as we showed in Subsection 7.4.3, even
redundant clauses can be used to produce new resolvents eliminating bound-
ary points. It is important because all clauses derived by resolution (e.g. con-
flict clauses generated by modern SAT-solvers) are redundant. So the derived
clauses are as good as the original ones for boundary point elimination.

A natural question arises about the role of non-mandatory resolutions.
When answering this question it makes sense to separate redundant and irre-
dundant formulas. (A CNF formula F is said to be irredundant if no clause
of F is redundant, see Definition 7.10.) For a redundant formula, one may
have to use non-mandatory resolutions. (In particular, a heavily redundant
formula may not have boundary points at all. Then every resolution operation
is non-mandatory.) For irredundant formulas the situation is different.

Proposition 7.12. Let F be an irredundant formula of m clauses. Then F
has at least d boundary points where d is the number of literals in F .

Proof. Let C be a clause of F . Then there is a complete assignment p falsify-
ing C and satisfying the clauses of F \{C}. This assignment is an l-boundary
point where l is a literal of C.

7.5.2 SMR metric and Proof Quality

Intuitively, to efficiently build a short proof for an unsatisfiable CNF formula
F , a resolution based SAT-solver has to find mandatory resolutions as soon
as possible. Otherwise, a lot of non-mandatory resolutions may be generated
that would not have been necessary, had mandatory resolutions been derived
early. (In particular, as we show in experiments, an entire proof may consist
only of mandatory resolutions.)

This implies that the Share of Mandatory Resolutions (SMR) of a proof
can be used as a proof quality metric. Generation of proofs with a high value
of SMR most likely requires a good knowledge of the formula structure. The
reason is as follows. Finding a mandatory resolution suggests identification
of at least one boundary point this resolution eliminates. But detection of
boundary points is hard. (Finding an l(xi)-boundary point of formula F
reduces to checking the satisfiability of the set of clauses F\ { the clauses of F
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with l(xi)}, see Section 7.7.) Identification of mandatory resolutions without
looking for boundary points of F , requires the knowledge of “special” subsets
of clauses of the current formula F . (These special subsets should contain
clauses whose resolutions produce resolvents eliminating boundary points).
Intuitively, such subsets can be identified if the formula structure is known.
This intuition is substantiated experimentally in Section 7.7.

The simplest example of information about the formula structure is to
identify a small unsatisfiable core. Even if the initial unsatisfiable CNF for-
mula F to be solved is irredundant, an unsatisfiable subformula of F in-
evitably appears due to the addition of new clauses. (In particular, one can
view an empty clause as the smallest unsatisfiable subformula of the final CNF
formula.) Let F1 be an unsatisfiable subformula of F . Then no l(xi)-boundary
point exists if xi is in Vars(F ) \ Vars(F1). (The set of clauses falsified by
any point p contains at least one clause C of F1 and xi /∈ Vars(C).) So any
resolution on a variable of Vars(F ) \ Vars(F1) is non-mandatory.

The appearance of unsatisfiable subformulas may lead to increasing the
share of non-mandatory resolutions in the final proof. For example, instead
of deriving an empty clause from F1, the SAT-solver may first derive some
clauses having variables of Vars(F1) from clauses of F \ F1. It is possible
since clauses of F \F1 may contain variables of Vars(F1). When deriving such
clauses the SAT-solver may use (non-mandatory) resolutions on variables of
Vars(F ) \ Vars(F1), which leads to redundancy of the final proof.

Unfortunately, we do not know yet if, given an unsatisfiable irredundant
CNF formula, there is always a proof consisting only of mandatory resolutions
(and so having a 100% value of SMR metric). Hence a low value of the SMR
metric for a CNF formula F may mean that the latter does not have a
“natural” proof in the resolution proof system (see Section 7.9). However, as
we show in Section 7.9, for any unsatisfiable formula there always exists a
proof where each resolution eliminates a cut boundary point. So, for measuring
proof quality one can also use the share of cut mandatory resolutions (i.e.
resolutions eliminating cut boundary points). This metric should be more
robust than SMR in the sense that it should work even for formulas that do
not have proofs with a 100% value of SMR metric.

7.6 Equivalence Checking Formulas

In this section, we introduce the formulas we use in the experimental part
of this chapter. These are the formulas that describe equivalence checking
of two copies of a combinational circuit. In Subsection 7.6.1 we show how
such formulas are constructed. In Subsection 7.6.2, we build short proofs of
unsatisfiability particularly tailored for equivalence checking formulas.
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7.6.1 Building Equivalence Checking Formulas

Let N and N∗ be two single-output combinational circuits. To check their
functional equivalence one constructs a circuit called a miter (we denote it
as Miter(N ,N∗)). It is a circuit that is satisfiable (i.e. its output can be
set to 1) if and only if N and N∗ are not functionally equivalent. (N and
N∗ are not functionally equivalent if there is an input assignment for which
N and N∗ produce different output values.) Then a CNF formula FMiter is
generated that is satisfiable if and only if Miter(N ,N∗) is satisfiable. In our
experiments, we use a miter of two identical copies of the same circuit. Then
Miter(N ,N∗) is always unsatisfiable and so is CNF formula FMiter .

Example 7.4. Figure 7.1 shows the miter of copies N and N∗ of the same
circuit. Here g1, g∗1 are OR gates, g2, g∗2 are AND gates and h is an XOR
gate (implementing modulo-2 sum). Note that N and N∗ have the same
set of input variables but different intermediate and output variables. Since
g2 ⊕ g∗2 evaluates to 1 if and only if g2 6= g∗2 , and N and N∗ are functionally
equivalent, the circuit Miter(N ,N∗) evaluates only to 0.

A CNF formula FMiter whose satisfiability is equivalent to that of
Miter(N ,N∗) is formed as FN ∧ F ∗

N ∧ Fxor ∧ h. Here FN and F ∗
N are for-

mulas specifying the functionality of N and N∗ respectively. The formula
Fxor specifies the functionality of the XOR gate h and the unit clause h
forces the output of Miter(N ,N∗) to be set to 1. Since, in our case, the miter
evaluates only to 0, the formula FMiter is unsatisfiable.

Formulas FN and F ∗
N are formed as the conjunction of subformulas de-

scribing the gates of N and N∗. For instance, FN = Fg1 ∧ Fg2 where, for
example, Fg1 = (x1∨x2∨ g1)∧ (x1∨ g1)∧ (x2∨ g1) specifies the functionality
of an OR gate. Each clause of Fg1 rules out some inconsistent assignments to
the variables of gate g1. For example, the clause (x1 ∨ x2 ∨ g1) rules out the
assignment x1 = 0, x2 = 0, g1 = 1.

7.6.2 Short proofs for equivalence checking formulas

For a CNF formula FMiter describing equivalence checking of two copies N ,N∗

of the same circuit, there is a short resolution proof that FMiter is unsatisfi-
able. This proof is linear in the number of gates in N and N∗. The idea of
this proof is as follows. For every pair gi, g∗i of the corresponding gates of
N and N∗, the clauses of CNF formula Eq(gi,g∗i ) specifying the equivalence
of variables gi and g∗i are derived where Eq(gi,g∗i ) = (gi ∨ g∗i ) ∧ (gi ∨ g∗i ).
These clauses are derived according to topological levels of gates gi,g∗i in
Miter(N ,N∗). (The topological level of a gate gi is the length of the longest
path from an input to gate gi measured in the number of gates on this
path.) First, clauses of Eq(gi,g∗i ) are derived for all pairs of gates gi,g∗i of

11



topological level 1. Then using previously derived Eq(gi,g∗i ), same clauses
are derived for the pairs of gates gj ,g∗j of topological level 2 and so on.

Fig. 7.1 Circuit Miter(N, N∗)

Eventually, the clauses of Eq(gs,g∗s )
relating the output variables gs, g∗s of
N and N∗ are derived. Resolving the
clauses of Eq(gs,g∗s ) and the clauses
describing the XOR gate, the clause
h is derived. Resolution of h and the
unit clause h of FMiter produces an
empty clause.

Example 7.5. Let us explain the con-
struction of the proof using the
CNF FMiter from Example 7.4. Gates
g1,g∗1 have topological level 1 in
Miter(N ,N∗). So first, the clauses of
Eq(g1,g∗1) are obtained. They are de-
rived from the CNF formulas Fg1 and
Fg∗1

describing gates g1 and g∗1 . That
the clauses of Eq(g1,g∗1) can be de-
rived from Fg1 ∧Fg∗1

just follows from
the completeness of resolution and the
fact that Eq(g1,g∗1) is implied by the

CNF formula Fg1 ∧ Fg∗1
. (This implication is due to the fact that Fg1 and

Fg∗1
describe two functionally equivalent gates with the same set of input

variables). More specifically, the clause g1 ∨ g∗1 is obtained by resolving the
clause x1 ∨ x2 ∨ g1 of Fg1 with the clause x1 ∨ g∗1 of Fg∗1

and then resolving
the resolvent with the clause x2 ∨ g∗1 of Fg∗1

. In a similar manner, the clause
g1 ∨ g∗1 is derived by resolving the clause x1 ∨ x2 ∨ g∗1 of Fg∗1

with clauses
x1 ∨ g1 and x2 ∨ g1 of Fg1 .

Then the clauses of Eq(g2,g∗2) are derived (gates g2,g∗2 have topological
level 2). Eq(g2,g∗2) is implied by Fg2 ∧Fg∗2

∧ Eq(g1,g∗1). Indeed, g2 and g∗2 are
functionally equivalent gates that have the same input variable x3. The other
input variables g1 and g∗1 are identical too due to the presence of Eq(g1,g∗1). So
the clauses of Eq(g2,g∗2) can be derived from clauses of Fg2 ∧Fg∗2

∧ Eq(g1,g∗1)
by resolution. Then the clause h is derived as implied by Fxor∧ Eq(g2,g∗2)
(an XOR gate produces output 0 when its input variables have equal values).
Resolution of h and h produces an empty clause.

7.7 Experimental Results

The goal of experiments was to compare the values of SMR metric (see Sub-
section 7.5.2) for two kinds of proofs of different quality. In the experiments we
used formulas describing the equivalence checking of two copies of combina-
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tional circuits. The reason for using such formulas is that one can easily gen-
erate high-quality specialized proofs of their unsatisfiability (see Section 7.6).
In the experiments we compared these short proofs with ones generated by
a well known SAT-solver Picosat, version 913 [3].

We performed the experiments on a Linux machine with Intel Core 2 Duo
CPU with 3.16GHz clock frequency. The time limit in all experiments was
set to 1 hour. The formulas and specialized proofs we used in the experiments
can be downloaded from [17].

Table 7.1 Computing value of SMR metric for
short specialized proofs

Name #vars #clau- #reso- SMR time
ses lutions % (s.)

c432 480 1,333 1,569 95 1.4
9symml 480 1,413 1,436 100 0.6
mlp7 745 2,216 2,713 100 1.3
c880 807 2,264 2,469 100 3.8
alu4 2,369 7,066 8,229 96 43
c3540 2,625 7,746 9,241 97 137
x1 4,381 12,991 12,885 97 351
dalu 4,714 13,916 15,593 84 286

Given a resolution proof R
of k resolutions that a CNF for-
mula F is unsatisfiable, com-
puting the value of SMR met-
ric of R reduces to k SAT-
checks. In our experiments,
these SAT-checks were per-
formed by a version of DMRP-
SAT [8]. Let Fi be the CNF for-
mula F ∪{R1, . . . , Ri−1} where
{R1, . . . , Ri−1} are the resol-
vents generated in the first i−1
resolutions. Let C1 and C2 be
the clauses of Fi that are the

parent clauses of the resolvent Ri. Let C1 and C2 be resolved on variable xj .
Assume that C1 contains the positive literal of xj . Checking if i-the resolu-
tion eliminates an xj-boundary point can be performed as follows. First, all
the clauses with a literal of xj are removed from Fi. Then one adds to Fi the
unit clauses that force the assignments setting all the literals of C1 and all
the literals of C2 but the literal xj to 0. Denote the resulting CNF formula
by Gi.

If Gi is satisfiable then there is a complete assignment p that is falsified by
C1 and maybe by some other clauses with literal xj . So p is an xj-boundary
point of Fi. Since p falsifies all the literals of C2 but xj , it is falsified by the
resolvent of C1 and C2. So the satisfiability of Gi means that i-th resolution
eliminates p and so this resolution is mandatory. If Gi is unsatisfiable, then
no xj-boundary point is eliminated by i-th resolution. All boundary points
come in pairs (see Proposition 7.3). So no xj-boundary point is eliminated
by i-th resolution either. Hence the unsatisfiability of Gi means that the i-th
resolution is non-mandatory.

Table 7.1 shows the value of SMR metric for the short specialized proofs.
The first column gives the name of the benchmark circuit whose self-
equivalence is described by the corresponding CNF formula. The size of this
CNF formula is given in the second and third columns. The fourth column of
Table 7.1 gives the size of the proof (in the number of resolutions). The fifth
column shows the value of SMR metric and the last column of Table 1 gives
the run time of computing this value. These run times can be significantly
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improved if one uses a faster SAT-solver and tunes it to the problem of com-
puting the SMR metric. (For example, one can try to share conflict clauses
learned in different SAT-checks.)

Looking at Table 7.1 one can conclude that the specialized proofs have a
very high value of SMR-metric (almost every resolution operation eliminates a
boundary point). The only exception is the dalu formula (84%). The fact that
the value of SMR metric for dalu and some other formulas is different from
100% is probably due to the fact that the corresponding circuits have some
redundancies. Such redundancies would lead to redundancy of CNF formu-
las specifying the corresponding miters, which would lower the value of SMR
metric.

Table 7.2 Computing value of SMR metric
for proofs generated by Picosat

Name #resolu- SMR run time (s)
tions % (% of proof

finished)
c432 19,274 41 75
9symml 12,198 47 28
mlp7 7,253,842 60 > 1h (1.2%)
c880 163,655 17 > 1h (72%)
alu4 672,293 41 > 1h (12%)
c3540 3,283,170 29 > 1h (2.7%)
x1 92,486 45 > 1h (84%)
dalu 641,714 33 > 1h (6.9%)

The values of SMR-metric for
the proofs generated by Picosat
are given in Table 7.2. The sec-
ond column gives the size of res-
olution proofs generated by Pi-
cosat. When computing the size of
these proofs we removed the obvious
redundancies. Namely, the deriva-
tion of the conflict clauses that
did not contribute to the deriva-
tion of an empty clause was ig-
nored. The third column shows
the value of SMR metric and the
last column gives the run time

of computing this value. In the case the computation did not finish
within the time limit, the number in parentheses shows the percent of
the resolution operations processed before the computation terminated.

Table 7.3 Using sampling to compute
SMR metric for Picosat proofs

Name sampling SMR proof pro-
rate % cessed %

mlp7 100 18 11
alu4 10 29 36
c3540 100 11 26
dalu 10 37 26

Table 7.2 shows that the size of
the proofs generated by Picosat is
much larger than that of specialized
proofs (Table 7.1, fourth column). Im-
portantly, the value of SMR metric we
give for the formulas for which compu-
tation was terminated due to exceeding
the time limit is higher than it should
be. Typically, the later a resolution oc-
curs in a resolution proof, the more

likely it is that this resolution is non-mandatory. So the early termination
of SMR metric computation ignored resolutions with the highest chances to
be non-mandatory.

The intuition above is confirmed by the results of Table 7.3. To reach later
resolutions we sampled four largest resolution proofs that is we checked only
every k-th resolution whether it was mandatory. The value of k is shown in
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the second column. The next column gives the value of SMR metric computed
over the set of sampled resolutions. The part of the proof covered by sampling
within the 1-hour time limit is shown in the last column. It is not hard to
see that taking into account later resolutions significantly reduced the value
of SMR metric for 3 proofs out of 4.

Summing up, one can conclude that for the formulas we considered in
experiments, the proofs of poorer quality (generated by Picosat) have lower
values of SMR metric. This substantiates the reasoning of Section 7.5 that
not taking into account the formula structure leads to generation of proofs
with a low value of SMR metric. On the contrary, picking “right” subsets
of clauses to be resolved with each other i.e. closely following the formula
structure leads to generation of proofs with a high value of SMR metric.

7.8 Some Background

The notion of boundary points was introduced in [11] where they were called
essential points. (We decided to switch to the term ”boundary point” as more
precise.) Boundary points were used in [11] to help a SAT-solver prune the
search space. If the subspace xi=0 does not contain a satisfying assignment or
an xi-boundary point, one can claim that the symmetric subspace xi=1 can
not contain a satisfying assignment either (due to Proposition 7.3). The same
idea of search pruning was independently described in [14] and implemented
in the SAT-solver Jerusat. The ideas of search pruning introduced in [11]
were further developed in [5].

In [7], we formulate two proof systems meant for exploring the
1-neighborhood of clauses of the formula to be solved. The union of the
1-neighborhoods of these clauses is essentially a superset approximation of
the set of boundary points. To prove that a formula is unsatisfiable it is suf-
ficient to eliminate all boundary points (Proposition 7.2). The proof systems
of [7] show that one can eliminate all boundary points without generation of
an empty clause. So resolution can be viewed as a special case of boundary
point elimination.

The results of this chapter can also be considered as an approach to im-
proving automatizability of resolution [4]. General resolution is most likely
non-automatizable [1]. This means that finding short proofs can not be done
efficiently in general resolution. A natural way to mitigate this problem is to
look for restricted versions of general resolution that are ”more automatiz-
able” i.e. that facilitate finding good proofs. Intuitively, mandatory resolu-
tions is a tiny part of the set of all possible resolutions. So the restriction of
resolutions to mandatory ones (or cut mandatory ones, see Section 7.9) can
be viewed as a way to make it easier to find good proofs.
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7.9 Completeness of Resolution Restricted to Boundary
Point Elimination

In this section, we show that, given a CNF formula (irredundant or not), there
always exists a proof consisting only of resolutions that eliminate so called
cut boundary points. (This result was not published in [9]). The importance
of this result is that it enables SAT-solvers to use (cut) boundary point
elimination for building resolution proofs.

7.9.1 Cut Boundary Points

Let F be a CNF formula and resolvents R1, ..., Rk form a proof R that F
is unsatisfiable. So far we considered elimination of boundary points of the
original CNF formula F (by adding resolvents Ri). Now we introduce the
notion of a cut boundary point.

Denote by GR a DAG (called a resolution graph) specified by proof R.
The nodes of GR correspond to the clauses of F (the sources of GR) and
resolvents R1, ..., Rk (the empty clause Rk being the sink of GR). Graph GR

has an edge directed from n1 to n2 if and only if n2 corresponds to a resolvent
and n1 corresponds to a parent clause of this resolvent.

Denote by T a cut of GR i.e. a set of nodes such that every path from a
source to the sink of GR has to go through a node of T . Denote by FT the CNF
formula that consists of the clauses corresponding to the nodes of cut T . (If
cut T consists of the sources of GR, then FT is the initial formula F . ) Formula
FT is unsatisfiable for any cut T . Indeed, the resolutions corresponding to
the nodes located between the nodes of T and this sink of GR form a proof
that FT is unsatisfiable. In terms of Definition 7.12, FT is a subset of Fi for
some i ≤ k where Fi = F ∪ R1 ∪ . . . ∪ Ri. (Since Fi is redundant, one can
remove some clauses of Fi without breaking its unsatisfiability.)

Definition 7.13. Let T be a cut of a proof GR that a CNF formula F is un-
satisfiable. Let p be an l-boundary point for FT (i.e. p ∈ Bnd pnts(FT )). We
will call p an l-boundary point with respect to cut T or just cut boundary
point .

Note that Vars(Fi) = Vars(F ) and Vars(FT ) ⊆ Vars(F ). For the sake of
simplicity, we will assume that if p is a boundary point for FT , the variables
of Vars(F ) \ Vars(FT ) are assigned in p (even though these assignments
cannot affect satisfying or falsifying a clause of FT ). Importantly, since FT is
only a subset of Fi, a point p that is l-boundary for FT may not be such for
Fi.

Note that if F is an irredundant CNF formula, all resolution graphs GR

have the same cut T consisting only of the nodes that are sources of GR. (For
such a cut, FT = F ).
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7.9.2 The Completeness Result

In this subsection, we describe the procedure gen proof that, given an un-
satisfiable CNF formula F , builds a resolution proof where every resolution
eliminates a cut boundary point. This means that the resolution proof system
remains complete even if it is restricted only to the resolution operations that
eliminate cut boundary points.

gen proof (F )
{/* Fxi - the clauses of F with xi

Fxi
- the clauses of F with xi */

while (true)
{xi = pick variable(F );
while (true)
{(ans,p) ← find bp(F ,xi);
if (ans == failure)
{F = F \ (Fxi

∪ Fxi
);

break;} /* leave the inner loop */
(C,Cxi , Cxi

)← elim bp(Fxi ,Fxi
,p);

update proof (GR, C, Cxi
, Cxi

);
if (empty clause(C))

return(rem redundant(GR));
F = F ∪ C; }}}

Fig. 7.2 gen proof generates a proof where ev-
ery resolution eliminates a cut boundary point

The pseudocode of gen proof is
shown in Figure 7.2. In the outer
while loop, gen proof processes
variables of F one by one. First, a
variable xi to be processed is cho-
sen by the function pick variable.
Then all l(xi)-boundary points are
eliminated by gen proof in the in-
ner while loop. (Finding and elim-
ination of l(xi)-boundary points is
performed by procedures find bp
and elim bp respectively.)

To eliminate an l(xi)-boundary
point, the resolvent C of parent
clauses Cxi and Cxi

is generated.
Here Cxi ∈ Fxi and Cxi

∈ Fxi

where Fxi
and Fxi

are the clauses
of F having literals xi and xxi

re-
spectively. If C is an empty clause,

gen proof stops and returns the resolution graph GR specifying a proof that
F is unsatisfiable. (GR may contain nodes corresponding to resolvents that
are not on a path leading from a source to the empty clause. So, the pro-
cedure rem redundant is called to remove the parts of GR corresponding to
redundant resolution operations.) Otherwise, a new l(xi)-boundary point is
looked for. When all l(xi)-boundary points are eliminated, the clauses Fxi

and Fxi
are removed from F and proof gen leaves the inner loop.

That the proof gen procedure is sound follows from the soundness of the
resolution proof system. The proof gen procedure is also complete. The num-
ber of l(xi)-boundary points is finite and monotonically decreases in the pro-
cess of adding resolvents C to F . So after a finite number of steps, all l(xi)-
boundary points are eliminated from the current formula F . At this point,
the clauses of F containing xi or xi are removed from F , which does affect
its unsatisfiability (see Proposition 7.10). After processing all the variables,
an empty clause is inevitably derived (because the resulting formula has no
variables and has to be functionally equivalent to the original formula F that
is unsatisfiable).

Let us show that every resolution operation of the proof GR produced by
gen proof eliminates a cut boundary point. Let C be a resolvent on variable
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xi produced from parent clauses Cxi and Cxi
in the inner loop of the gen proof

procedure. By construction, C eliminates an l(xi)-boundary point p of the
current formula F . The nodes corresponding to F form a cut of GR (because
every resolvent produced in the future is a descendent of clauses of F ). The
elimination of redundant nodes of GR by the procedure rem redundant of
gen proof does not change much. If the resolvent C turns out to be redun-
dant, then whether or not adding C to F eliminates a cut boundary point is
irrelevant. If the resolvent C stays in the proof, it still eliminates the same
l(xi) boundary p (according to Proposition 7.11).

Summarizing, each resolution of the proof specified by the graph GR built
by gen proof eliminates a cut boundary point. (The cut corresponding to
a resolution is specified by the formula F at the time this resolution was
performed minus some redundant clauses identified by rem redundant).

7.9.3 Boundary Points as Complexity Measure

The existence of an l(xi)-boundary point of a CNF formula F implies depen-
dency of F on variable xi. In this subsection, we argue that in the context
of resolution proofs, Bnd pnts(F ) is a more precise complexity measure than
Vars(F ). Besides, we introduce the notion of natural resolution proofs.

Let resolution graph GR specify a proof that a CNF formula F is unsatisfi-
able. Such a proof can be represented as a sequence of unsatisfiable formulas
FT1 , . . . , FTm

corresponding to cuts T1,..,Tm of GR. We assume that FT1 = F
and FTm consists only of an empty clause and that Ti ≤ Tj if i ≤ j. (The
partial order Ti ≤ Tj holds iff there is no path from a source to the sink of
GR such that a node of Tj appears on this path before a node of Ti.)

It is natural to expect that formulas FTi are getting easier to solve as
the value of i grows and eventually the trivial formula Fm is derived. Note
that in terms of the number of variables this is true because Ti ≤ Tj →
Vars(Ti) ⊆ Vars(Tj). However, in terms of boundary points this is, in general,
not true. For example, it is possible that Bnd pnts(FTi) is not a subset of
Bnd pnts(FTj

) even though Ti ≤ Tj . The reason is that FTj
is obtained

from FTi by adding and removing some clauses. The removal of a clause C
from FTi may lead to appearance of a new l(xs)-boundary point p where
xs /∈ Vars(C). This means that FTj in some aspect depends on xs stronger
than FTi (because a resolution on variable xs is mandated by p).

The observation above implies that boundary points provide a more pre-
cise way to measure formula complexity than just computing the set of vari-
ables on which the formula depends. It would be interesting to find classes
of formulas for which there exist resolution proofs where the complexity of
formulas FTi monotonically reduces in terms of Bnd pnts(FTi). Intuitively,
this is possible if the proof structure follows the natural structure of the for-
mula. So such proofs can be called natural. On the other hand, there may be
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a class of formulas for which natural resolution proofs do not exist (due to
the fact that the structure of any resolution proof does not agree with that
of a formula from this class).

7.10 Conclusions and Directions for Future Research

We show that a resolution proof can be viewed as the process of boundary
point elimination. We introduce the SMR metric that is the percent of reso-
lutions of the proof that eliminate boundary points (mandatory resolutions).
This metric can be used for gauging proof quality. We experimentally show
that short specialized proofs for equivalence checking formulas have high
values of SMR metric. On the other hand, values of this metric for proofs
generated by a SAT-solver with conflict driven learning are low. As we argue
in Section 7.5, this may be attributed to not taking into account the formula
structure.

The idea of treating resolution as boundary proof elimination has many
interesting directions for research. Here are a few of them.

1. Studying the quality of proofs consisting only of resolutions eliminating
cut boundary points. (We showed the existence of such proofs for every
CNF formula but have not made any claims about their quality.)

2. Studying further the relation between the value of SMR metric for resolu-
tion proofs obtained by SAT-solvers and their ability to take into account
the formula structure.

3. Building SAT-solvers based on the idea of (cut) boundary point elimina-
tion.

4. Finding the classes of formulas for which “natural” proofs exist i.e. proofs
for which the complexity of cut CNF formulas monotonically decreases (in
terms of cut boundary points).
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