
Trans�nite Ordinals and Their Notations:For The UninitiatedVersion 1.1Hilbert LevitzDepartment of Computer ScienceFlorida State Universitylevitz@cs.fsu.eduIntoductionThis is supposed to be a primer to give you a feel for the subject fast.You're not expected to understand immediately why everything that is as-serted is true, but there's enough there so you could �ll in the gaps if youwanted to.The theory of trans�nite ordinals is a part of set theory. While theconcept is tied up with the completed in�nite and high cardinalities, we'llemphasize more constructive aspects of the theory. There have been appli-cations of constructive treatments of ordinals to recursive function theory,and proof theory.Pretty much everything we need to know about ordinals follows from thefollowing three properties of the class of all ordinals O. Just how the exis-tence of such a class can be shown we'll regard as a matter of mathematicalfoundations.Basic Properties of the System of Ordinal Numbers.1) O has a well ordering, which will be denoted by <.2) Any well ordered set whatsoever is order isomorphic to (a unique)initial segment of O. The ordinal determining the segment is called theordinal of the set. This makes the system of ordinals in some sense the\mother of all well ordered sets"3) Any set of members of O has a strict upper bound (and therefore bywell ordering, a least upper bound) in O.Warning: The collection of all ordinals itself is not a \set". You'll gethit with a famous paradox if you treat it like one. Sub-collections of initialsegments of the ordinals are sets, and these are all we use.As a consequence of the well ordering, we see easily that:i) One can do arguments by induction over the ordinals, or over anyinitial segment of them, if we use the < form of the induction principle.Recall that for natural numbers we also have induction in the n to n + 11



form, but that fails as soon as one has an object greater than every naturalnumber. Induction in the < form frequently goes under the fancy name\trans�nite induction"ii) We let 0 denote the smallest ordinal. Every ordinal has an immedi-ate successor, so by taking repeated successors of zero, we generate all thenatural numbers as an initial segment of the system of ordinals. Not all non-zero ordinals have an immediate predecessor. Those without an immediatepredecessor are called limit ordinals. The smallest number to follow all thenatural numbers is denoted by ! and it is a limit ordinal. Each limit ordinalis the least upper bound (\supremum") of the set of smaller ordinals.iii) On account of the well ordering we can de�ne by recursion operationsof addition, multiplication, and exponentiation. The only added feature overrecursion on natural numbers is that we need to specify what to do at limitordinals.x+ 0 = xx+ y0 = (x+ y)0x+ �y = supy<�y x+ y when �y is a limit ordinal.x�0 = 0x�y0 = x�y + xx��y = supy<�y x�y when �y is limit ordinal.x0 = 1xy0 = xy�xx�y = supy<�y xy when �y is a limit ordinal.It turns out that:a) Addition and Multiplication are associative. Neither is commutative.Multiplication distributes from the left over addition; that isx�(y + z) = x�y + x�z.Right distributivity fails, but we do have the inequality(x+ y)�z � x�z + y�zb) Addition, multiplication and exponentiation are (with trivial excep-tions): i) Continuous strictly increasing function of the right argument.ii) Weakly monotone increasing functions of the left argument.Cantor Normal FormThe theorem of ordinary number theory that justi�es writing any non-zero number to a number base, like base 10 or base 2, applies to trans�niteordinals as well. 2



Theorem. Any non-zero ordinal can be written uniquely as apolynomial to any base greater than 1 with descending exponentsand coe�cients less than the base. The coe�cients are writtento the right of the base. Such a representation is called a Cantornormal form.It's common to use as the base the number !, in which case the coe�-cients are natural numbers, thus a typical normal form looks like:!�1�n1 + !�2�n2 + :::::: + !�k�nkwhere�1 > �2 > ::::: > �k1) The rule for comparing two normal forms to see which represents thebigger ordinal is as follows: One �rst looks to see which has the highestleading exponent, if they are the same then you look to see which has thehighest leading coe�cient, etc. Such a method could go into an in�niteregress on account of the fact (shown in the next section) that some ordinalscan equal their own leading exponent.2) Numbers of the form !x determine initial segments closed under addi-tion, and numbers of the form !!x dertermine initial segments of the ordinalsclosed under multiplication.De�nition of the ordinal �01) The limit of the sequence! ; !!; !!! ::::::::::was named �0 by Cantor. We can see that it's a solution of the theequation !x = x by the following simple argument:Consider the recursively de�ned sequencei) ao = 0ii) an+1 = !anthen!lim an = lim !an = lim an+1 = lim an.Another way to say that a number is a solution of !x = x is to say thatit's a �xed point of the function !x.2) �0 is the smallest ordinal bigger than ! that determines an initialsegment closed under ordinal addition, multiplication, and exponentiation.From this it follows that you can't denote it just using symbols 0, !, plus,times, and exponentiation. One can show using Cantor Normal Form thatanything smaller can be so represented.3



3) Actually a similar argument can be used to show additional �xedpoints and they run clear through the ordinals. They can be arranged in atrans�nite sequence as�0; �1; �2:::::::�! ::::::Computation With Ordinals On Real ComputersWe describe below a system of formal terms T as follows:i) The symbol a is an element of Tii) If x and y are elements of T , then so is the formal term f(x; y).Our intention here is that a denote the ordinal number 0. The meaningof the function symbol f here we shall leave mysterious.Recursive De�nition of an ordering on T :i) a < f(x; y) for all terms x and y.ii) f(x; y) < f(u; v) i� one of the following holds.a) x = u and y < vb) x < u and y < f(u; v)c) u < x and ( f(x; y) = v or f(x; y) < v )This ordering is easily shown to be linear. It turns out to be a wellordering whose ordinal is �0. It is known that it can't be proven to be awell ordering in �rst order number theory, yet any initial segment can be.(Gentzen 1941)Each term can be regarded as a notation for an ordinal less than �0. Todemonstrate that we are dealing with objects that can be manipulated bycomputer, we give below a PROLOG program for telling of two terms u andv whether u < v.less(a; f(U; V )):less(f(X;Y ); f(U; V ) : �X = U; less(Y; V ):less(f(X;Y ); f(U; V )) : �less(X;U); less(Y; f(U; V )):less(f(X;Y ); f(U; V )) : �less(U;X); f(X;Y ) = V:less(f(X;Y ); f(U; V )) : �less(U;X); less(f(X;Y ); V ):Now if u and v are are formal terms of T , the query:less(u,v)?will cause he machine to return the answer \yes" if the ordinal denotedby u is less than the ordinal denoted by v, and \no" otherwise.Connections to the Multi-set Orderings of Term RewritingTheory. 4



i) The set of natural numbers ordered by the multi-set ordering hasordinal !!.In fact, in such a case the multi-set fm1;m2; ::::mkg with m1 � m2 �:::: � mk corresponds to the ordinal!m1 + !m2 + ::::::+ !mk .ii) If we permit multi-sets of multi-sets of multi-sets etc. of naturalnumbers, the ordinal is �0In fact, in such a case the multi-set fM1;M2; ::::;Mkg, where M1 �M2; ::::;� Mk are multi-sets, corresponds to the ordinal!ordM1 + !ordM2 + :::::: + !ordMk .Problem of Skolem.Nothing to do with logic really, but just about every one who's made acontribution works in logic..Consider the set of formal terms S de�ned inductively below:i) The symbols 1 and X are in S.ii) If u and v are in S, then so are (u+ v), (u�v), and uv .Each term determines in a natural way a function of one variable onpositive natural numbers.Consider the ordering of the functions.f < g i� f(x) < g(x) for su�ciently large x.Questions:1) Is it a linear ordering? (Yes, Richardson)2) Is it a well ordering? (Yes, Ehrenfeucht using Kruskal's Theorem)3) If yes to the above, what's the ordinal? (Unknown)Skolem showed �0 is a lower bound. Levitz showed that the �rst criticalepsilon number is an upper bound. The �rst critical epsilon number isde�ned as follows. Arrange the solutions of !x = x in order and call them�0, �1, �2, .... etc. Then the �rst critical epsilon number is the smallestmember of the sequence equal to own subscript.Levitz, Van den Dries, and Dahn have partial results supporting theconjecture that the actual ordinal is �0The Least Uncountable Ordinal 
.It is a theorem of general set theory that there are uncountable sets,and a further theorem that any set can be well ordered. Let 
 denotethe smallest ordinal that is the ordinal of an uncountable set. The initialsegment determined by 
 has the following properties.5



I) If � < 
 then are only countably many ordinals less than �.II) Every countable set of ordinals less than 
 has a strict upper boundless than 
.It turns out that any well ordered set with these properties is orderisomorphic to the initial segment determined by 
. More precisely, if W isa well ordered set each of whose members has only countably many smallermembers in W, and each countable subset of W has a strict upper bound inW, then W is order isomorphix to the initial segment determined 
.Normal Functions and Ordinal NotationsThis is not intended to give a rigorous de�nition of a system of ordi-nal notations, but rather to help develop some insight and intuition for acommonly used one.That cute little argument used to show that !x has �xed points can beabstracted to show that if a sequence of successive iterations of a continuousfunction approaches a limit, then that limit is a �xed point. What's more, ifthe function is strictly increasing and f(0) > 0, the iterations are increasingand, therefore, approach a limit. This brings us to the notion of a normalfunction.De�nition. A normal function f from 
 into 
 is a strictlyincreasing continuous function which has the additional propertythat f(0) > 0.i) Normal functions have �xed points and the set of such is order iso-morphic to the set of ordinals less than 
.ii) The function which enumerates the �xed points of a normal functionis itself a normal function. This suggests a hierarchy of normal functions ��for � < 
 given by:a) �0(x) = !x.b) For � < 
, the function �� enumerates, in order, the simultaneous�xed points of all �� for all � < �.One might attempt to de�ne a function �
 in this way, however theattempt to do so fails as it turns out that the set of simultaneous �xedpoints of all �� for all � < 
 is empty.Bachmann's idea (essentially) was to get around this collapse throughthe following considerations. The function �x(0) turns out to be a normal6



function, so he let �
 be de�ned as the function which enumerates, in order,the set of �xed points of �x(0). Now we can de�ne �
+1 to be the functionwhich enumerates in order the �xed points of �
. We can continue this waybut face a similar collapse in trying to de�ne �
+
. To keep things going,let �
+
 be de�ned as the function which enumerates, in order, the �xedpoints of �
+x(0) .With no more than what was said above, you can, without a general rulegoverning this phenomenon, work your way to things like �
2 and and �

and even �

::: .Feferman indicated how one can give a general rule for describing the hi-erarchy. His ideas have been worked out and re�ned variously by Weyrauch,Aczel, Bridge, and Bucholz. Not only is the least uncountable ordinal 
used in subscripts for this hierarchy, but ordinals from even higher cardi-nality classes are used. For example, ordinals like 
2, 
3, ....... 
!.......appear in subscripts.Despite the presence of uncountable ordinals in the description of thehierarchy, the ordinals we present below are countable and, in fact, recursive.To show this, one has to show how all ordinals in initial segments theydetermine can be represented by means of smaller ordinals using functionsof the hierarchy, and work out recursion relations that show how to comparetwo representations, assuming knowledge of how to compare their sub-terms.[If one starts the hierarchy using the function !x as we did here, then onealso needs the addition function on ordinals to get representations, since !xis additively prime.]One could now, if one so desires, build up the representations fromscratch as purely formal terms and recursively de�ne the ordering on them,thus throwing away the whole \sca�olding" of ordinal functions and un-countable ordinals used in the construction.An Ordinal MenagerieBelow we list some ordinals in order of size. There is an importantbody of literature in proof theory relating some of these to the \strength"of various formal systems. To keep things simple, we won't get into it here.7



�0(0) = the ordinal number 1.�1(0) = �0.�2(0) = the least critical epsilon number; that is, the smallest solutionof �x = x�!(0) = the closure ordinal for primitive recursive functions on the ordi-nals.�
(0) = the Feferman-Sch�utte ordinal �0. Maximal ordinal for recursivepath orderings (Dershowitz)�
2(0) = ordinal of the Ackermann notation system.�
!(0) = the maximal ordinal for simpli�cation orderings. (Dershowitz-Okada) An ordering of the natural numbers having this ordinal is presentedin the German edition of Sch�utte's book Beweistheorie.�
!+1(0) = Closure ordinal for �nite, structured, labeled, trees, underhomeomorphic embedding (as de�ned by Kruskal) with labels coming froma well quasi-ordered set. This is the closure ordinal in the sense that, if themaximal ordinal of well ordered extensions of the set of labels is smaller thanthis ordinal, then so will be the maximal ordinal for well ordered extensionsof the set of structured, labeled, trees. (D.Schmidt)�

(0) = Veblen's ordinal.�

::: (0) = ��
+1(0) = Howard's Ordinal.�
!(0) = the limiting ordinal of Takeuti's ordinal notations of �nite order(Levitz).ReferencesA nice introduction to trans�nite numbers generally is P. Halmos, NaiveSet Theory, Princeton, N.J., Van Nostrand 1960.An excellent treatment of ordinal notations is in K. Sch�utte, Proof The-ory, Springer-Verlag, Berlin/Heidelberg/New York 1977.8


