CSU290 Lecture Notes Lecture 4 17 Sept 2008

Announcenent s

* First homework due 23rd (Tuesday)

* First examon 24th (Wdnesday)

| F & Generalized Bool eans

Recall the ‘‘bool eans’’?

t stands for "true"
nil stands for "fal se" (and has ot her uses)

We briefly introduced I'F, which takes three argunents:
(if <test> <true_part> <fal se_part>)
Thus, for exanpl e,

"yes"

11 "yes"
1 2) "yes" "no")

"no"

(if (
(if (

("yes" and "no" are strings, of course.)

But what about totality? Wat if the test of an IF is something
ot her than a bool ean?

This brings us to the notion of "generalized bool eans,"” which ACL2

i nherits from Common Lisp. In a boolean context, NIL is the only
val ue that stands for ‘‘false’’ and everything else stands for
‘“‘true’’. T is just the canonical value for ‘‘true’’

(if 42 1 2) =1

(if "nil"™ 1 2) =1 ("nil" is a string)

(if #a 12 =1 (#\a is a character)

(not -3/2) = nil

(not 0) = nil

(not nil) =t (the only value for which NOT returns T)

The bool ean connectives AND and OR are a bhit nore conplicated because
if you pass themval ues other than just T and NIL, they can return
val ues other than T and NIL. But they behave as expected with regard
to the generalized bool ean notion of ‘‘true’’ being non-NI L:

(and 42 0) 12
(and nil 0) 1 2)
(or nil 0) 12
(or nil nil) 1 2)

NEFEDNBEF

That’'s all we really need to know about AND and OR. W know when they
return NIL and when they return non-NI L.

More functions

; SI MPLE-|I NTEREST: rational rational -> rationa
; Takes a principle anbunt and a rate of interest and returns
; the anmount that nust be repaid.

; Ampbunt = Principle * (1 + Rate)
; (see tests for exanples)
(defun sinple-interest (p r)

(* p(+1r1)))

(check= (sinple-interest 100 5/100) 105)
(check= (sinmple-interest 10 10/100) 11)
(check= (sinple-interest 1 7/100) 107/100)
(check= (sinple-interest 0 5/100) 0)
(check= (sinmple-interest 5 0) 5)

(check= (sinmple-interest nil nil) 0)

COVPOUND- | NTEREST: rational rational nat -> rationa

Takes a principle anbunt, a rate of interest, and a nunber of
times the interest has conpounded and returns the anmpunt that

must be repaid. This is equivalent to conmpoundi ng SI MPLE-| NTEREST
the number of tines specified.

s wa aa me oas

def un compound-interest (pr i)
(if (zp i)
p
(conmpound-interest (sinple-interest pr) r (- i 1))))

(check= (compound-interest 100 5/100 0) 100)
(check= (compound-interest 1 7/100 1) 107/100)
(check= (compound-interest 100 10/100 2) 121)

What about (compound-interest t "hi" nil)? It returns T. 1Is that

ok? T is not in the intended output range of the function, but we did
not give the function something in the intended i nput domain. Briefly,
the paraneters p and r do not control when the function term nates; only
i does--based on (zp i). Consequently, we won't put any extra effort
into naking sure we only conpute on p and r if they are in the expected
i nput domain. W' Il ook nore deeply at this in the future.

We saw last tinme that there aren’t any runtine type'’ errors; ACL2
functions are untyped and total. But it’'s not true that anything we

ri ght down gives us an answer. There are many *static* errors, in which
ACL2 rejects an expression or definition before it tries to execute it.

If we place something in the function position of an expression which is
not a function synmbol, then we get an error

ACL2 > (10 20 30)

ACL2 Error in TOP-LEVEL: Function applications in ACL2 nmust begin
with a synbol or LAMBDA expression. (10 20 30) is not of this form

ACL2 >
Functi ons cannot be used as val ues:
ACL2 > (+ endp consp)

ACL2 Error in TOP-LEVEL: d obal variables, such as CONSP and ENDP
are not all owed.

ACL2 >

And you nust give functions the correct nunber of argunments. Unlike
advanced Scheme, in which this check (and some of the previous) are
made a run tine, ACL2 nakes this check before executing anything:

ACL2 > (if t 42 (booleanp 1 2))

ACL2 Error in TOP-LEVEL: BOOLEANP takes 1 argunent but in the cal
(BOOLEANP 1 2) it is given 2 argunents. The formal paranmeters |ist
for BOOLEANP is (X).

ACL2 >

Note that in that expression (booleanp 1 2) would not be evaluated. (By
the way! IF is a special function in that it only evalutes either the
<true_part> or the <false part>, never both. That is pretty inportant to
term nation of recursive functions.)

We will encounter sone other kinds of static errors, and we wi || consider
those in nmore detail as they become nore inportant.

More Functi ons

We saw how ZP is useful for recursions that count down to zero. Let’'s
consi der sone variations on that and how that changes the job of
witing a function that term nates on all inputs.

Let’s wite a function LOX that conputes the base-2 |ogarithm of a
nunber - -not the exact |ogarithm but the next highest integer. Recal
that the base-2 logarithm of a number is the power to which 2 nmust be
rai sed to get that nunber. Wth our rounding up, we are essentially
counting how many powers of 2 are |less than a nunber. The powers of
two are

270
2" 1
272
2”3

AN

So we want

(log2 1)
(log2 2)
(log2 3)
(1 og2 4)
(1 og2 5)
(1 og2 8)
(1 og2 16777216)
(1 og2 16777217)

WWMNNEFL O

24
25

The key observation in solving this problemrecursively is the
mat hemat i cal equati on

log2 (2 * x) =1 + 1092 X
or
log2 x = 1 + log2 (x/2)

And we have the base case that

log2 1 =0 (because 270 = 1)

Now |l et us begin to wite this function

; LOX2: pos -> nat

; computes the log base 2 of the positive natural parameter, rounded
up to the nearest natural
(see tests as exanpl es)

(defun log2 (x)
<body>)

(check= (log2 1) 0)
(check= (log2 2) 1)
(check= (log2 3) 2)
(check= (log2 4) 2)
(check= (log2 5) 3)
(check= (log2 8) 3)
(check= (log2 16777216) 24)
(check= (log2 16777217) 25)

Based on the recursive deconposition of logarithms (math formul a above),
it will probably Iook like this:

(defun lo0g2 (x)
(if <test>
0
(+ 1 (log2 (/ x 2)))))

So what should <test> be? |If all we check is (= x 1), then our
function will not termnate for rationals |ess than one, negative
rati onal s, and many other inputs. (Feel free to test it!)

I nst ead, we shoul d nake our job easier by only worrying about our
recursion ternminating on the intended inputs. Thus, we're going to
treat everything less than 1 or not a natural number as 1 and return O.
(I'f you foresee trouble, you mght be correct.) There are many ways we
can express this base case:

(or (not (posp X))

(=x 1))
(or (zp x)
(=x 1))
(or (zp x)
(<=x 1))
(or (not (integerp x))
(<= x 1))

So let’s go with

(defun log2 (x)
(if (or (not (integerp x))
(<= x 1))
0
(+ 1 (log2 (/ x 2)))))

Does that pass all our tests? No!?!
ACL2 > (check= (log2 3) 2)
ACL2 Error in CHECK=: Check failed (values not equal).

First value: 1
Second val ue: 2

ACL2 >
VWhat happened?

(log2 3)

{ 3is an integer and > 1}
+ 1 (log2 (/ 3 2)))
+ 1 (log2 3/2))
3/2 is NOT an integer! }
0

)

+
[l =

[l | R B | R I | R I |

Qops! We forgot to nake sure that our recursive calls adhere to the
i nput specification (type ‘‘pos’’). It is possible to nodify our
recursive calls to fix this, but we haven't [earned the functions to
do that. What we can do, is make this function operate on rationa
nunbers:

; LOX: rational -> nat

; conputes the |log base 2 of the given rational, rounded up to the
; nearest natural

; <exanpl es from above woul d go here>

(defun lo0g2 (x)
(if (or (not (rationalp x))
(<= x 1))
0
(+ 1 (log2 (/ x 2)))))

NOTE: This LO& function is in sone ways nore conplicated than what
you will be expected to wite. The point was to encounter sone
problens by trying to solve an atypical problemw thout thinking about
it very deeply.

In fact, the term nation proof for this function is conplicated enough
that ACL2 needs a little help to admt it for |ogical reasoning--in
nodes outside of Progranmm ng Mode. This function uses rational nunbers
in figuring out when it’'s in a base case, and you're not likely to

see that again. But you mght very well encounter simlar problens

if you blindly try to apply sinple solutions. Think!

