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Generalizations
---------------

We have seen several approaches to geenralizing conjectures, to make them
better suited for proof by induction, and I will outline them here:

- Replace all occurrences of some expression with a new variable.

  E.g.  Replace all occurences of (rev x) with rx.  Sometimes you will
  also need to add a hypothesis about the variable that was true about
  the expression, such as (true-listp rx) in this case since
  (true-listp (rev x)) is true.

- Replace some occurrences of a variable with a new variable.

  E.g.  Replace the second x in (app x x) with y to get (app x y).  Often
  there are relationships between data in a conjecture that are unnecessary
  and can interfere with proof by induction.

- Weaken hypotheses that are unnecessarily strong, or completely eliminate
  irrelevant hypotheses.

  E.g. (implies (and (integer-listp x)
                     (integer-listp y))
                (true-listp (app x y)))
  can be generalized by eliminating the irrelevant hypothesis about x and
  weakening the hypothesis about y to only require it to be a true list:
  (implies (true-listp y)
           (true-listp (app x y)))

This list is not necessarily exhaustive.  Keep in mind the definition of
generalization I have presented previously.

More Induction
--------------

One of the difficulties of proving by induction is picking the right
induction scheme.  Now we will learn how to make that problem a little
easier.

Given:

(defun app (x y)
  (if (endp x)
    y
    (cons (car x) (app (cdr x) y))))

(defun rev (x)
  (if (endp x)
    nil
    (app (rev (cdr x))
         (cons (car x) nil))))

(defun rev-append (x y)
  (if (endp x)
    y
    (rev-append (cdr x) (cons (car x) y))))



Let us prove

(equal (rev-append x y)
       (app (rev x) y))

We have proven this before using the induction scheme from (rev-append x y),
but there are many cases in which the exact scheme is hard to guess.  That
scheme is related to that of (true-listp x), because both have a base test
of (endp x) and both replace x with (cdr x) in the induction hypothesis.  The
difference is that rev-append also replaces y with (cons (car x) y) in the
induction hypothesis.

It turns out that given a valid induction scheme, we can get another valid
induction scheme by replacing variables in the induction hypothesis that have
not already been replaced with anything.  For example, given the induction
scheme for true-listp:

  (and (implies (endp x) PHI)
       (implies (and (not (endp x))
                     (let ((x (cdr x))) PHI))
                PHI))

This is also a valid induction scheme:

  (and (implies (endp x) PHI)
       (implies (and (not (endp x))
                     (let ((x (cdr x))
                           (y <anything>))
                       PHI))
                PHI))

where <anything> can be any expression.  We could write a function that
gives us this new scheme:

  (defun f (x y)
    (if (endp x)
      t
      (f (cdr x) <anything>)))

and that function terminates because of the base test and what is passed for
x in the recursive call.  We could also elaborate the (true-listp x) scheme
to

  (and (implies (endp x) PHI)
       (implies (and (not (endp x))
                     (let ((x (cdr x))
                           (y <anything1>)
                           (z <anything2>))
                       PHI)
                     (let ((x (cdr x))
                           (y <anything3>)
                           (z <anything4>))
                       PHI))
                PHI))

which would come from a function like

  (defun f (x y z)
    (if (endp x)
      t
      (and (f (cdr x) <anything1> <anything2>)
           (f (cdr x) <anything3> <anything4>))))

which also terminates on all inputs.



Let us return to proving

  (equal (rev-append x y)
         (app (rev x) y))

Using this new approach, we can pick a simple scheme to start out with and
elaborate it as needed during the induction step.  When proving a formula
about lists, we will quite often need to use the scheme based on true-listp of
some variable.  Which variable is the best choice for this formula?  Consider
which base case, (endp x) or (endp y), is easier to prove.  In this case, we
see from the function definitions that the (endp x) is easy to prove.

Let us move on to the induction step.  We can write that as follows:

  (implies (and (not (endp x))
                (equal (rev-append (cdr x) new-y)
                       (app (rev (cdr x)) new-y)))
           (equal (rev-append x y)
                  (app (rev x) y)))

We have used the scheme (true-listp x), but have elaborated that to allow for
some yet-to-be-determined replacement for the variable y, new-y.  Let’s begin
the proof:

 (rev-append x y)
= { def rev-append, (not (endp x)) }
 (rev-append (cdr x) (cons (car x) y))

At this point we have something that matches our induction hypothesis, because
we can pick new-y to be anything.  In this case we need it to be
(cons (car x) y):

= { I.H. }
 (app (rev (cdr x)) (cons (car x) y))

Other side:
 (app (rev x) y)
= { def rev, (not (endp x)) }
 (app (app (rev (cdr x)) (cons (car x) nil)) y)
= { app-assoc lemma we have proven }
 (app (rev (cdr x)) (app (cons (car x) nil) y))
= { def app }
 (app (rev (cdr x)) (cons (car x) (app nil y)))
= { def app }
 (app (rev (cdr x)) (cons (car x) y))

In fact, if we needed to, we could have used the induction hypothesis multiple
times with the same or different replacements for the "unmeasured" variable y
each time.  If there were other variables in the conjecture, we could replace
those arbitrarily as well.  Base test (endp x) and replacing x with (cdr x)
each time makes it a valid induction scheme.


