CSU290 Lecture Notes Lecture 30 8 Dec 2008
Peter Dillinger

Ceneral i zati ons

We have seen several approaches to geenralizing conjectures, to make them
better suited for proof by induction, and I will outline them here:

- Replace all occurrences of sonme expression with a new vari abl e.

E.g. Replace all occurences of (rev x) with rx. Sonetinmes you wll
al so need to add a hypot hesis about the variable that was true about
the expression, such as (true-listp rx) in this case since
(true-listp (rev x)) is true.

- Repl ace sone occurrences of a variable with a new vari abl e.

E.g. Replace the second x in (app x Xx) with y to get (app x y). Oten
there are relationshi ps between data in a conjecture that are unnecessary
and can interfere with proof by induction

- Weaken hypot heses that are unnecessarily strong, or conpletely elimnate
i rrel evant hypot heses.

E.g. (inplies (and (integer-listp x)
(integer-listp y))
(true-listp (app x Vy)))
can be generalized by elimnating the irrel evant hypot hesis about x and
weakeni ng the hypothesis about y to only require it to be a true list:
(inplies (true-listp y)
(true-listp (app x vy)))

This list is not necessarily exhaustive. Keep in mind the definition of
generalization | have presented previously.

More | nduction

One of the difficulties of proving by induction is picking the right
i nduction scheme. Now we will |earn howto nake that problema little
easier.

G ven:

(defun app (x vy)
(if (endp x)

y
(cons (car x) (app (cdr x) y))))

(defun rev (x)
(if (endp x)
ni
(app (rev (cdr x))
(cons (car x) nil))))

(defun rev-append (x y)
(if (endp x)

y
(rev-append (cdr x) (cons (car x) Vy))))



Let us prove

(equal (rev-append x y)
(app (rev x) y))

We have proven this before using the induction scheme from (rev-append x y),
but there are many cases in which the exact schene is hard to guess. That
schene is related to that of (true-listp x), because both have a base test

of (endp x) and both replace x with (cdr x) in the induction hypothesis. The
difference is that rev-append also replaces y with (cons (car x) y) in the

i nducti on hypot hesi s.

It turns out that given a valid induction scheme, we can get another valid

i nducti on scheme by replacing variables in the induction hypothesis that have
not al ready been replaced with anything. For exanple, given the induction
scheme for true-listp:

(and (inplies (endp x) PH)
(inplies (and (not (endp x))
(let ((x (cdr x))) PH))
PH ))

This is also a valid induction schene:

(and (inplies (endp x) PH)
(inplies (and (not (endp x))
(let ((x (cdr x))
(y <anything>))
PHI))
PHI ))

wher e <anyt hi ng> can be any expression. W could wite a function that
gi ves us this new schene:

(defun f (x vy)
(if (endp x)
t

(f (cdr x) <anything>)))

and that function term nates because of the base test and what is passed for
X in the recursive call. W could also elaborate the (true-listp x) schene
to

(and (inplies (endp x) PHI)
(inplies (and (not (endp x))
(let ((x (cdr x))
(y <anyt hi ngl>)
(z <anything2>))
PHI )
(let ((x (cdr x))
(y <anyt hi ng3>)
(z <anyt hi ng4>))
PHI))
PHI))

whi ch woul d come froma function |ike

(defun f (x y z)
(if (endp x)
t

(and (f (cdr x) <anythingl> <anythi ng2>)
(f (cdr x) <anything3> <anything4>))))

which also term nates on all inputs.



Let us return to proving

(equal (rev-append x y)
(app (rev x) y))

Using this new approach, we can pick a sinmple scheme to start out with and

el aborate it as needed during the induction step. Wen proving a fornula
about lists, we will quite often need to use the scheme based on true-listp of
some variable. \Which variable is the best choice for this formula? Consider
whi ch base case, (endp x) or (endp y), is easier to prove. |In this case, we
see fromthe function definitions that the (endp x) is easy to prove.

Let us nove on to the induction step. W can wite that as foll ows:

(inplies (and (not (endp x))
(equal (rev-append (cdr x) newy)
(app (rev (cdr x)) newy)))
(equal (rev-append x y)
(app (rev x) y)))

We have used the schene (true-listp x), but have el aborated that to allow for
sone yet-to-be-determ ned replacenment for the variable y, newy. Let’s begin
the proof:

(rev-append x vy)
= { def rev-append, (not (endp x)) }
(rev-append (cdr x) (cons (car x) y))

At this point we have sonething that natches our induction hypothesis, because
we can pick newy to be anything. 1In this case we need it to be
(cons (car x) y):

={ I.H
(app (rev (cdr x)) (cons (car Xx) y))

O her side:

(app (rev x) vy)

= { def rev, (not (endp x)) }

(app (app (rev (cdr x)) (cons (car x) nil)) vy)
= { app-assoc |lema we have proven }

(app (rev (cdr x)) (app (cons (car x) nil) y))
= { def app }

(app (rev (cdr x)) (cons (car x) (app nil y)))

= { def app }
(app (rev (cdr x)) (cons (car x) vy))

In fact, if we needed to, we could have used the induction hypothesis multiple
times with the same or different replacenents for the "unnmeasured" variable y
each tine. |If there were other variables in the conjecture, we could repl ace
those arbitrarily as well. Base test (endp x) and replacing x with (cdr x)
each tine makes it a valid induction schene.



