CSU290 Lecture Notes Lecture 3 15 Sept 2008

Announcenent s

* Get the book! (Oder A S AP
* Downl oad, install, & start using ACL2s

* First homework T.B. A

ACL2 Val ues

Al data objects in ACL2 can be categorized as follows: (you don't
have to renenber all of these)

(Descri ption) (Predicatel/recogni zer)
* Atomi c data ("atons") ATOM or ENDP
i ncl ude:
* ACL2 Numbers ACL2- NUVBERP
are either:
* Rationals RATI ONALP
i ncl ude:
* I ntegers | NTEGERP
* Conplex rationals COVPLEX- RATI ONALP
* Synbol s SYMBOLP
i ncl ude:
* Bool eans BOOLEANP
* Keywor ds KEYWORDP
* Strings STRI NGP
* Characters CHARACTERP
* Cons pairs (conpound data) CONSP

One thing to notice is that ACL2 does not include "inexact" or
fl oati ng-poi nt nunbers natively.

Al so, the only way to build conmpound data is with Cons pairs. W
will discuss this in nore detail soon.

Here are the categories you should know.

(Descri ption) (Predicate) (Exanpl es)
* At oms ATOM or ENDP
i ncl ude:
* Rationals RATI ONALP 3/4 -20/3
i ncl ude:
* I ntegers | NTEGERP -7 0 523
* Synbol s SYMBOLP "green 'two
i ncl ude:
* Bool eans BOOLEANP t nil (exhaustive)
* Strings STRI NGP "hi" "Who, nme?"
* Characters CHARACTERP #A #\g

* Cons pairs CONSP (1. 2)

Bool eans

ACL2 and Conmon Lisp have two special constant synbols that are used
anong ot her things, as bool ean val ues:

t stands for "true"
ni stands for "fal se" (and has ot her uses)

Al of the predicate functions above return bool eans. For exanpl e,

(bool eanp t) =t (It is true that t is a bool ean)
(booleanp nil) =1t (It is true that nil is a bool ean)
(bool eanp 7) = nil (It is false that 7 is a bool ean)

t and nil are also synbols, which are atons:

(synmbol p t) =t (It is true that t is a synbol)
(symbolp nil) =1 (It is true that nil is a synbol)
(atomt) =t (It is true that t is an aton
(consp nil) = nil (It is false that nil is a cons pair)

Anot her function that always returns a boolean is EQJUAL, which tests data
objects for equality:

t
ni
t (Case is ignored when readi ng synbol s)

(equal nil nil)
(equal nil t)
(equal T t)

A few functions that are useful on bool eans are NOT, AND, and OR

(not t) = nil
(not nil) =t
(not (equal nil t)) =1t
(and t t) =t
(and nil t) = ni
(or nil t) =t
(or nil nil) = ni

AND and OR are special in that they can take any nunber of paraneters. AND
returns "true" iff all of its paranmeters are "true", and OR returns "true"
iff at least one of its paraneters is "true"

(and (equal nil nil)
(equal t t)
(not (equal t nil)))
(and t)
(and nil)
(and)
(or)
(or t)
(or nil)
(or (equal nil t)
(equal t t)
(not (equal t t)))

ni
(Al (zero) parameters are "true")
nil (No paraneter is "true")

o nn
—

ni

1
—

Nurber s

As nentioned, all ACL2 nunbers are exact, and their size is (in theory)
unbounded. This makes ACL2 nunbers behave as they do in nmathematics,
but we will stick with just rational nunbers--those that can be
represented as one integer divided by anot her

But first we consider those rationals with a denom nator of 1: the
integers. There are many ways to write integers in ACL2--all refering
to the sanme integers--but the standard way is fine for us:

t
t
t

(integerp -5)
(rationalp 37)
(equal 42 042)

We can conpare them

t
ni
t
t

(< 4 5)

(<= 4 -5)
(>0 -5)
(>: 7 7)

We can al so do sone standard arithnetic:

(+43 =7
(- 35 =-2
(* 2 -5 =-10
(/ 105) =2

These functions are special, however, because they can different nunbers
of paraneters. For exanple, + and * can take any nunber of paraneters:

(+5) =5

(+321) =6

* -2) =-2

(* 123 =6

(+) =0 (Additive identity, the sum of zero nunbers)

(*) =1 (Multiplicative identity, the product of zero nunbers)

- and / can take one or two paranmeters. G ven one argunent, they perform
negation and nultiplicative inversion respectively:

(- 5) =-5
(- -10) = 10
(- 0) =0
(/ 1) =1
(/ 5) = 1/5
(I -2/3) = -3/2

And that brings us to non-integer rationals. Equality anmong rationals
is mat hemati cal equality:

(equal 7/9 14/18)
(equal 8/2 4)

t
t

In fact, ACL2 automatically puts rationals in | owest terns, as shown
when printing themout or accessing the nunerator or denom nator:

-4/ 6 =-2/3
20/ 4 =5
(/I -6 -4) = 3/2
(/ 15/6 1/2) =5

-2
11

(numer at or -4/ 6)
(nunerator 22/ 8)
(nunerator -5)
(denom nat or -4/6)
(denom nat or 22/ 8)
(denom nat or -5)
(denom nat or 0)

PR AW

Arithnetic on rationals works as expect ed:

(+ 2/3 3/5) = 19/15
(+ 3/4 5/6) = 19/12
(* 2/3 3/5) = 6/15
(* 3/45/6) =58

Wi ch raises an interesting question: what is (/ 1 0) ? W knowin
mat hemati cs that anything divided by zero is undefined. So does ACL2
throw an error or what?

Introduction to Totality

ACL2 functions are total, which neans every function call returns

a value. This is one of the fundanental design choices in the
Boyer - Moore theorem prover, ACL2. For now, you can consider this
choice to keep sone things sinple by elimnating exceptional cases.

For exanple, ACL2 defines anything divided by O to be 0. Consequently,
division in ACL2 always returns a nunber, and we don't need to

figure out anything about the input to come to that conclusion

(More on this stuff cones later in the course.)

0
0

Also for totality, arithnetic functions treat non-nunbers as 0. Here
are sone exanpl es:

(+ 5 nil) =5
(* t 12) =0
(- nil) =0
(/ 5 nil) =0
(< nil b) =t
(> nil 5) = ni
(< -5nil) =t

Totality al so neans there are no "type errors” in which a function
was expecting one type of input and got another. The only thing we
have to get right is the nunber of paraneters, and that’'s an easy
check for ACL2:

ACL2 >(bool eanp 1 2)

ACL2 Error in TOP-LEVEL: BOOLEANP takes 1 argunent but in the cal
(BOOLEANP 1 2) it is given 2 argunents. The formal paraneters |ist
for BOOLEANP is (X).

ACL2 >

Back to Numbers, with Function Definition

Here are some extra functions pertaining to nunbers:

NATP - predicate for natural nunbers (0, 1, 2, ...)
PCSP - predicate for positive naturals (1, 2, 3, ...)
ZP - (not (posp X))

W will see how useful ZP is in our first function definition. Let
us define the factorial function, call it FACT. Here are exanples
of how factorial is witten and defined in nathematics:

5!
2!
1

0!

*4*3*2*1
* 1

PP DNO

So for any integer greater than O, the factorial is that integer
times the factorial of one less than the integer. (Recursion!)
Here's a first try at a definition:

; fact: nat -> nat
; Computes the factorial function
; (exanpl es above)

(defun fact (x)
(if (=x0)
1

(* x (fact (- x 1)))))

An | F | ooks like

(if <test> <true_part> <false part>)
If the test is true, then it evaluates to the true_part, otherw se the
fal se part.

Qur definition works on natural nunbers, but is it total? Does it return
a value on all inputs?

The answer is No. If we give it a negative nunber (or indeed, a
non- nunber) it does not termnnate:

(fact -1)

(* -1 (* -2 (* -3 ..
A solution is to treat everything outside the intended domain, the
naturals, as a base case, 0. So the new base case is 0 or anything not

a natural number. If only we had a function that captured all of that...

(defun fact (x)
(if (zp x)
1

(* x (fact (- x 1)))))

